- 相關(guān)推薦
解直角三角形教案
作為一名無(wú)私奉獻(xiàn)的老師,時(shí)常會(huì)需要準(zhǔn)備好教案,教案是教學(xué)活動(dòng)的總的組織綱領(lǐng)和行動(dòng)方案。我們應(yīng)該怎么寫教案呢?下面是小編幫大家整理的解直角三角形教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
解直角三角形教案1
1、教學(xué)目標(biāo)
1.使學(xué)生掌握直角三角形的邊角關(guān)系,會(huì)運(yùn)用勾股定理、直角三角形的兩個(gè)銳角互余及銳角三角函數(shù)解直角三角形;
2.通過綜合運(yùn)用勾股定理,直角三角形的兩個(gè)銳角互余及銳角三角函數(shù)解直角三角形,逐步培養(yǎng)學(xué)生分析問題、解決問題的能力;
3.通過本節(jié)的學(xué)習(xí),向?qū)W生滲透數(shù)形結(jié)合的數(shù)學(xué)思想,培養(yǎng)他們良好的學(xué)習(xí)習(xí)慣.
2、學(xué)情分析
本班學(xué)生對(duì)前面學(xué)過的三角函數(shù)基本知識(shí)點(diǎn)掌握較好,可以繼續(xù)進(jìn)行新授課。
3、重點(diǎn)難點(diǎn)
本節(jié)的重點(diǎn)和難點(diǎn)是直角三角形的解法.為了使學(xué)生熟練掌握直角三角形的解法,首先要使學(xué)生知道什么叫做解直角三角形,直角三角形中三邊之間的關(guān)系,兩銳角之間的關(guān)系,邊角之間的關(guān)系.正確選用這些關(guān)系,是正確、迅速地解直角三角形的關(guān)鍵.
4、教學(xué)過程
4.1第一學(xué)時(shí)
教學(xué)活動(dòng)
活動(dòng)1
【導(dǎo)入】課前預(yù)習(xí)
活動(dòng)2
【導(dǎo)入】完成以下題目
1、在直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B這五個(gè)元素之間有哪些等量關(guān)系呢?
(1)邊角之間關(guān)系:sinA=_cosA=_tanA=_cotA=__
(2)三邊之間關(guān)系:勾股定理_______
(3)銳角之間關(guān)系:________。
2、在Rt△ABC中,∠C=90°,AB=13,AC=12,求∠A的各個(gè)三角函數(shù)值。
3、自述30°、45°、60°角的正弦、余弦、正切、余切值。
4、在Rt△ABC中,∠C=90°,已知c=15,∠B=60°,求a.
5、在Rt△ABC中,∠C=90°,已知∠A=45°,b=3,求c.
你有哪些疑問?小組交流討論。
生甲:如果不是特殊值,怎樣求角的度數(shù)呢?
生乙:我想知道已知哪些條件能解出直角三角形?
◆師:你有什么看法?
生乙:從課前預(yù)習(xí)看,知道了特殊的一邊一角也能解,那么兩邊呢??jī)山悄?還有三邊、三角呢?
◆師:好!這位同學(xué)不但提的問題非常好,而且具有非凡的觀察力,那么他的意見對(duì)不對(duì)?這正是這一節(jié)我們要來探究和解決的:怎樣解直角三角形以及解直角三角形所需的條件。
◆師:把握了直角三角形邊角之間的各種關(guān)系,我們就能解決與直角三角形有關(guān)的問題了,這節(jié)課我們就來學(xué)習(xí)“解直角三角形”,解決同學(xué)們的疑問。
設(shè)計(jì)意圖:數(shù)學(xué)知識(shí)是環(huán)環(huán)相扣的,課前預(yù)習(xí)能讓學(xué)生為接下來的.學(xué)習(xí)作很好的鋪墊和自然的過渡。帶著他們的疑問來學(xué)習(xí)解直角三角形,去探索解直角三角形的條件,激發(fā)了他們研究的興趣和探究的激情。
【探究新知】
例1、在Rt△ABC中,∠C=90°,由下列條件解直角三角形:
已知a=5,b=
◆師:(1)題目中已知哪些條件,還要求哪些條件?
。2)請(qǐng)同學(xué)們獨(dú)立思考,自己解決。
(3)小組討論一下各自的解題思路,在班內(nèi)交流展示。
▲解(1)利用勾股定理,先求得c值.由a=c,可得∠A=30°,∠B=60°。
(2)由勾股定理求得c后,可利用三角函數(shù)tanB=
=,求得∠B=60°,兩銳角互余得∠A=30°。
(3)由于知道了兩條直角邊,可直接利用三角函數(shù)求得∠A,得到∠B,再通過函數(shù)值求c 。
◆師:通過上面的例子,你們知道“解直角三角形”的含義嗎?
學(xué)生討論得出“解直角三角形”的含義(課件展示):“在直角三角形中,由已知元素求出未知元素的過程,叫做解直角三角形!
。▽W(xué)生討論過程中需使其理解三角形中“元素”的內(nèi)涵,即條件。)
設(shè)計(jì)意圖:讓學(xué)生初步體會(huì)解直角三角形的含義、步驟及解題過程。通過展示他們的思路讓他們更好的體會(huì)已知直角三角形的兩條邊能解出直角三角形。
◆師:上面的例子是給了兩條邊,我們求出了其他元素,解決了同學(xué)們的一個(gè)疑問。
那么已知直角三角形的一條邊和一個(gè)角,這個(gè)角不是特殊值能不能解出直角三角形呢?以及學(xué)習(xí)了解直角三角形在實(shí)際生活中有什么用處呢?
帶著這些疑問結(jié)合實(shí)際問題我們來學(xué)習(xí)例2:(課件展示例2涉及的場(chǎng)景--虎門炮臺(tái)圖,讓同學(xué)們欣賞并思考問題)學(xué)習(xí)了之后,你就會(huì)有很深的體會(huì)。
學(xué)習(xí)例2:(課件展示涉及的場(chǎng)景--虎門炮臺(tái)圖)
例2:
如圖,在虎門有東西兩炮臺(tái)A、B相距20xx米,同時(shí)發(fā)現(xiàn)入侵?jǐn)撑濩,炮臺(tái)A測(cè)得敵艦C在它的南偏東40°的方向,炮臺(tái)B測(cè)得敵艦C在它的正南方,試求敵艦與兩炮臺(tái)的距離(精確到1米)。
總結(jié)(1)由∠DAC=40°得∠BAC=50°,用∠BAC的三角函數(shù)求得BC≈2384米,AC≈3111米。
。2)由∠BAC的三角函數(shù)求得BC≈2384米,再由勾股定理求得AC≈3112米。
學(xué)生討論得出各法,分析比較(課件展示),得出——使用題目中原有的條件,可使結(jié)果更精確。
設(shè)計(jì)意圖:(1)轉(zhuǎn)化的數(shù)學(xué)思想方法的應(yīng)用,把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型解決
。2)鞏固解直角三角形的定義和目標(biāo),初步體會(huì)解直角三角形的方法——直角三角形的邊角關(guān)系(勾股定理、兩銳角互余、銳角三角函數(shù))使學(xué)生體會(huì)到“在直角三角形中,除直角外,只要知道其中2個(gè)元素(至少有一個(gè)是邊)就可以求出其余的3個(gè)元素”
交流討論;歸納總結(jié)
◆師:通過對(duì)上面例題的學(xué)習(xí),如果讓你設(shè)計(jì)一個(gè)關(guān)于解直角三角形的題目,你會(huì)給題目幾個(gè)條件?如果只給兩個(gè)角,可以嗎?(幾個(gè)學(xué)生展示)
學(xué)生討論分析,得出結(jié)論。
◆師:通過上面兩個(gè)例子的學(xué)習(xí),你們知道解直角三角形有幾種情況嗎?
學(xué)生交流討論歸納(課件展示討論的條件)
總結(jié):解直角三角形,有下面兩種情況:(其中至少有一邊)
。1)已知兩條邊(一直角邊一斜邊;兩直角邊)
(2)已知一條邊和一個(gè)銳角(一直邊一銳角;一斜邊一銳角)
設(shè)計(jì)意圖:這是這節(jié)課的重點(diǎn),讓學(xué)生歸納和討論,能讓他們深刻理解解直角三角形的有幾種情況,必須滿足什么條件能解出直角三角形,給學(xué)生展示的平臺(tái),增強(qiáng)學(xué)生的興趣及自信心。
【知識(shí)應(yīng)用,及時(shí)反饋】
1、在Rt△ABC中,∠C=90°,已知AB=2,∠A=45°,解這個(gè)直角三角形。(先畫圖,后計(jì)算)
2、海船以30海里/時(shí)的速度向正北方向航行,在A處看燈塔Q在海船的北偏東30°處,半小時(shí)后航行到B處,發(fā)現(xiàn)此時(shí)燈塔Q與海船的距離最短,求(1)從A處到B處的距離(2)燈塔Q到B處的距離。
(畫出圖形后計(jì)算,用根號(hào)表示)
設(shè)計(jì)意圖:使學(xué)生鞏固利用直角三角形的有關(guān)知識(shí)解決實(shí)際問題,考察建立數(shù)學(xué)模型的能力,轉(zhuǎn)化的數(shù)學(xué)思想在學(xué)習(xí)中的應(yīng)用,提高學(xué)生分析問題、解決問題的能力。以及在學(xué)習(xí)中還存在哪些問題,及時(shí)反饋矯正。
【總結(jié)提升】
讓學(xué)生自己總結(jié)這節(jié)課的收獲,教師補(bǔ)充、糾正(課件展示)。
1、“解直角三角形”是由直角三角形中已知的元素求出未知元素的過程。
2、解直角三角形的條件是除直角外的兩個(gè)元素,且至少需要一邊,即已知兩邊或已知一邊一銳角。
3、解直角三角形的方法:
。1)已知兩邊求第三邊(或已知一邊且另兩邊存在一定關(guān)系)時(shí),用勾股定理(后一種需設(shè)未知數(shù),根據(jù)勾股定理列方程);
(2)已知或求解中有斜邊時(shí),用正弦、余弦;無(wú)斜邊時(shí),用正切、余切;
。3)已知一個(gè)銳角求另一個(gè)銳角時(shí),用兩銳角互余。
選用關(guān)系式歸納為:
已知斜邊求直邊,正弦余弦很方便;
已知直邊求直邊,正切余切理當(dāng)然;
已知兩邊求一邊,勾股定理最方便;
已知兩邊求一角,函數(shù)關(guān)系要選好;
已知銳角求銳角,互余關(guān)系要記好;
已知直邊求斜邊,用除還需正余弦,
計(jì)算方法要選擇,能用乘法不用除。
設(shè)計(jì)意圖:學(xué)生回顧本堂課的收獲,體會(huì)如何從條件出發(fā),正確選用適當(dāng)?shù)倪吔顷P(guān)系解題。
【達(dá)標(biāo)測(cè)試】:
1、在Rt△ABC中,∠C=90°,∠A=60°,BC=1,則AB=_____
2、等腰三角形中,腰長(zhǎng)為5cm,底邊長(zhǎng)8cm,則它的底角的正切值是
3、在正方形網(wǎng)格中,的位置如右圖所示,則的值為__________
設(shè)計(jì)意圖:(1)是基本應(yīng)用.(2)是在三角形中的靈活應(yīng)用.(3)是變形訓(xùn)練.考察學(xué)生對(duì)知識(shí)的認(rèn)知和應(yīng)用程度。
【課后延伸】:xxx
解直角三角形教案2
一、教學(xué)目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
使學(xué)生理解直角三角形中五個(gè)元素的關(guān)系,會(huì)運(yùn)用勾股定理,直角三角形的兩個(gè)銳角互余及銳角三角函數(shù)解直角三角形.
(二)能力訓(xùn)練點(diǎn)
通過綜合運(yùn)用勾股定理,直角三角形的兩個(gè)銳角互余及銳角三角函數(shù)解直角三角形,逐步培養(yǎng)學(xué)生分析問題、解決問題的能力.
(三)德育滲透點(diǎn)
滲透數(shù)形結(jié)合的數(shù)學(xué)思想,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣.
二、教學(xué)重點(diǎn)、難點(diǎn)和疑點(diǎn)
1.重點(diǎn):直角三角形的解法.
2.難點(diǎn):三角函數(shù)在解直角三角形中的靈活運(yùn)用.
3.疑點(diǎn):學(xué)生可能不理解在已知的兩個(gè)元素中,為什么至少有一個(gè)是邊.
三、教學(xué)過程
(一)明確目標(biāo)
1.在三角形中共有幾個(gè)元素?
2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B這五個(gè)元素間有哪些等量關(guān)系呢?
(1)邊角之間關(guān)系
如果用表示直角三角形的一個(gè)銳角,那上述式子就可以寫成.
(2)三邊之間關(guān)系
a2+b2=c2(勾股定理)
(3)銳角之間關(guān)系∠A+∠B=90°.
以上三點(diǎn)正是解直角三角形的依據(jù),通過復(fù)習(xí),使學(xué)生便于應(yīng)用.
(二)整體感知
教材在繼銳角三角函數(shù)后安排解直角三角形,目的是運(yùn)用銳角三角函數(shù)知識(shí),對(duì)其加以復(fù)習(xí)鞏固.同時(shí),本課又為以后的應(yīng)用舉例打下基礎(chǔ),因此在把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題之后,就是運(yùn)用本課——解直角三角形的知識(shí)來解決的.綜上所述,解直角三角形一課在本章中是起到承上啟下作用的重要一課.
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)與目標(biāo)完成過程
1.我們已掌握Rt△ABC的邊角關(guān)系、三邊關(guān)系、角角關(guān)系,利用這些關(guān)系,在知道其中的兩個(gè)元素(至少有一個(gè)是邊)后,就可求出其余的元素.這樣的導(dǎo)語(yǔ)既可以使學(xué)生大概了解解直角三角形的概念,同時(shí)又陷入思考,為什么兩個(gè)已知元素中必有一條邊呢?激發(fā)了學(xué)生的學(xué)習(xí)熱情.
2.教師在學(xué)生思考后,繼續(xù)引導(dǎo)“為什么兩個(gè)已知元素中至少有一條邊?”讓全體學(xué)生的思維目標(biāo)一致,在作出準(zhǔn)確回答后,教師請(qǐng)學(xué)生概括什么是解直角三角形?(由直角三角形中除直角外的兩個(gè)已知元素,求出所有未知元素的過程,叫做解直角三角形).
3.例題
例1在△ABC中,∠C為直角,∠A、∠B、∠C所對(duì)的邊分別為a、b、c,且c=287.4,∠B=42°6′,解這個(gè)三角形.
解直角三角形的方法很多,靈活多樣,學(xué)生完全可以自己解決,但例題具有示范作用.因此,此題在處理時(shí),首先,應(yīng)讓學(xué)生獨(dú)立完成,培養(yǎng)其分析問題、解決問題能力,同時(shí)滲透數(shù)形結(jié)合的.思想.其次,教師組織學(xué)生比較各種方法中哪些較好
完成之后引導(dǎo)學(xué)生小結(jié)“已知一邊一角,如何解直角三角形?”
答:先求另外一角,然后選取恰當(dāng)?shù)暮瘮?shù)關(guān)系式求另兩邊.計(jì)算時(shí),利用所求的量如不比原始數(shù)據(jù)簡(jiǎn)便的話,最好用題中原始數(shù)據(jù)計(jì)算,這樣誤差小些,也比較可靠,防止第一步錯(cuò)導(dǎo)致一錯(cuò)到底.
例2在Rt△ABC中,a=104.0,b=20.49,解這個(gè)三角形.
在學(xué)生獨(dú)立完成之后,選出最好方法,教師板書.
4.鞏固練習(xí)
解直角三角形是解實(shí)際應(yīng)用題的基礎(chǔ),因此必須使學(xué)生熟練掌握.為此,教材配備了練習(xí)針對(duì)各種條件,使學(xué)生熟練解直角三角形,并培養(yǎng)學(xué)生運(yùn)算能力.
說明:解直角三角形計(jì)算上比較繁鎖,條件好的學(xué)校允許用計(jì)算器.但無(wú)論是否使用計(jì)算器,都必須寫出解直角三角形的整個(gè)過程.要求學(xué)生認(rèn)真對(duì)待這些題目,不要馬馬虎虎,努力防止出錯(cuò),培養(yǎng)其良好的學(xué)習(xí)習(xí)慣.
(四)總結(jié)與擴(kuò)展
1.請(qǐng)學(xué)生小結(jié):在直角三角形中,除直角外還有五個(gè)元素,知道兩個(gè)元素(至少有一個(gè)是邊),就可以求出另三個(gè)元素.
2.出示圖表,請(qǐng)學(xué)生完成
abcAB
1√√
2√√
3√b=acotA√
4√b=atanB√
5√√
6a=btanA√√
7a=bcotB√√
8a=csinAb=ccosA√√
9a=ccosBb=csinB√√
10不可求不可求不可求√√
注:上表中“√”表示已知。
四、布置作業(yè)
解直角三角形教案3
一、教學(xué)目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
鞏固用三角函數(shù)有關(guān)知識(shí)解決問題,學(xué)會(huì)解決坡度問題。
(二)能力目標(biāo)
逐步培養(yǎng)學(xué)生分析問題、解決問題的能力;滲透數(shù)形結(jié)合的數(shù)學(xué)思想和方法。
(三)德育目標(biāo)
培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí),滲透理論聯(lián)系實(shí)際的觀點(diǎn)。
二、教學(xué)重點(diǎn)、難點(diǎn)和疑點(diǎn)
1.重點(diǎn):解決有關(guān)坡度的實(shí)際問題。
2.難點(diǎn):理解坡度的有關(guān)術(shù)語(yǔ)。
3.疑點(diǎn):對(duì)于坡度i表示成1∶m的形式學(xué)生易疏忽,教學(xué)中應(yīng)著重強(qiáng)調(diào),引起學(xué)生的重視。
三、教學(xué)過程
1.創(chuàng)設(shè)情境,導(dǎo)入新課。
例 同學(xué)們,如果你是修建三峽大壩的工程師,現(xiàn)在有這樣一個(gè)問題請(qǐng)你解決:如圖
水庫(kù)大壩的橫斷面是梯形,壩頂寬6m,壩高23m,斜坡AB的坡度i 1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,壩底寬AD和斜坡AB的長(zhǎng)(精確到0.1m)。
同學(xué)們因?yàn)槟惴Q他們?yōu)楣こ處煻湴,滿腔熱情,但一見問題又手足失措,因?yàn)檫B題中的術(shù)語(yǔ)坡度、坡角等他們都不清楚。這時(shí),教師應(yīng)根據(jù)學(xué)生想學(xué)的心情,及時(shí)點(diǎn)撥。
通過前面例題的教學(xué),學(xué)生已基本了解解實(shí)際應(yīng)用題的`方法,會(huì)將實(shí)際問題抽象為幾何問題加以解決。但此題中提到的坡度與坡角的概念對(duì)學(xué)生來說比較生疏,同時(shí)這兩個(gè)概念在實(shí)際生產(chǎn)、生活中又有十分重要的應(yīng)用,因此本節(jié)課關(guān)鍵是使學(xué)生理解坡度與坡角的意義。
解直角三角形教案4
1教學(xué)目標(biāo)
。ㄒ唬┲R(shí)目標(biāo)
1、使學(xué)生理解直角三角形中五個(gè)元素的關(guān)系,及什么是解直角三角形;2、會(huì)運(yùn)用勾股定理,直角三角形的兩個(gè)銳角互余及銳角三角函數(shù)解直角三角形.
。ǘ┠芰τ(xùn)練點(diǎn)
1、通過綜合運(yùn)用勾股定理,直角三角形的兩個(gè)銳角互余及邊角之間的關(guān)系解直角三角形,逐步培養(yǎng)學(xué)生分析問題、解決問題的能力;2通過數(shù)行結(jié)合的運(yùn)用,培養(yǎng)學(xué)生添加適當(dāng)輔助線的能力。
(三)情感目標(biāo)
滲透數(shù)形結(jié)合的數(shù)學(xué)思想,培養(yǎng)學(xué)生學(xué)以致用的良好的學(xué)習(xí)習(xí)慣.
2學(xué)情分析
九年級(jí)學(xué)生已經(jīng)牢固掌握了勾股定理,也剛剛學(xué)習(xí)過銳角三角函數(shù),但銳角三角函數(shù)的運(yùn)用不一定熟練,綜合運(yùn)用所學(xué)知識(shí)解決問題,將實(shí)際問題抽象為數(shù)學(xué)問題的能力都比較差,因此要在本節(jié)課進(jìn)行有意識(shí)的培養(yǎng)。
為實(shí)現(xiàn)本節(jié)既定的教學(xué)目標(biāo),根據(jù)教材特點(diǎn)和學(xué)生實(shí)際水平對(duì)本節(jié)教學(xué)采用的基本策略是:
、賱(chuàng)設(shè)問題情境,激發(fā)學(xué)生思維的主動(dòng)性。
②以實(shí)際問題為載體,結(jié)合簡(jiǎn)單教具及多媒體提供的圖象,引導(dǎo)學(xué)生建立數(shù)學(xué)模型,把實(shí)際問題抽象為數(shù)學(xué)問題。
③把實(shí)際問題中提供的條件轉(zhuǎn)化為數(shù)學(xué)問題中的數(shù)量,掌握探索解決問題的思想和方法。
④課堂盡量為學(xué)生提供探索、交流的空間,發(fā)動(dòng)學(xué)生既獨(dú)立又合作的愉快的學(xué)習(xí)。
由于大部分學(xué)生的閱讀分析能力相對(duì)較弱,教學(xué)中引導(dǎo)學(xué)生討論、交流,羅列出問題中的所有已知條件、未知條件,探索已知與未知之間的數(shù)量關(guān)系,進(jìn)而結(jié)合勾股定理、三角函數(shù)關(guān)系式尋求解決的方案,從而達(dá)到解決的目的。
有效的數(shù)學(xué)學(xué)習(xí)活動(dòng),不能單純地依賴模仿與記憶。動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。本節(jié)課的例題與練習(xí)題的已知、未知都有所不同,合理引導(dǎo),利用這種“不同”讓學(xué)生在探究學(xué)習(xí)中得到提高,獲得知識(shí),也是本節(jié)課追求的主要目標(biāo)。
我打算采用“創(chuàng)設(shè)情境———自主探究———合作交流———達(dá)標(biāo)訓(xùn)練———反思?xì)w納”的流程來進(jìn)行本節(jié)課的教學(xué)。
3重點(diǎn)難點(diǎn)
1.重點(diǎn):直角三角形的解法.
2.難點(diǎn):把實(shí)際問題抽象為數(shù)學(xué)問題,建立數(shù)學(xué)模型;三角函數(shù)在解直角三角形中的`靈活運(yùn)用;j解直角三角形時(shí),在已知的兩個(gè)元素中,為什么至少有一個(gè)元素是邊.
4教學(xué)過程4、1第一學(xué)時(shí)教學(xué)活動(dòng)活動(dòng)1【講授】教學(xué)活動(dòng)
1.我們已經(jīng)掌握了Rt△ABC的邊角關(guān)系、三邊關(guān)系、角角關(guān)系,利用這些關(guān)系,在知道其中的兩個(gè)元素(至少有一個(gè)是邊)后,就可求出其余的元素.這樣的導(dǎo)語(yǔ)既可以使學(xué)生大概了解解直角三角形的概念,同時(shí)又可啟發(fā)引導(dǎo)學(xué)生思考,為什么兩個(gè)已知元素中必有一條邊呢?從而激發(fā)學(xué)生的學(xué)習(xí)、探索熱情。
2.教師在學(xué)生思考后,繼續(xù)引導(dǎo)“為什么兩個(gè)已知元素中至少有一條邊?”讓全體學(xué)生的思維目標(biāo)一致,在作出準(zhǔn)確回答后,教師讓學(xué)生概括什么是解直角三角形?(由直角三角形中除直角外的兩個(gè)已知元素,求出所有未知元素的過程,叫做解直角三角形).
3.例題評(píng)析
例1在Rt△ABC中,∠C為直角,AC= BC=,解這個(gè)三角形.
例2在△ABC中,∠C為直角,∠A、∠B、∠C所對(duì)的邊分別為a、b、c,且b= 20 =35,解這個(gè)三角形(精確到0、1).
解直角三角形的方法很多,靈活多樣,學(xué)生完全可以自己解決,但例題具有示范作用.因此,此題在處理時(shí),首先,應(yīng)讓學(xué)生獨(dú)立完成,培養(yǎng)其分析問題、解決問題的能力,同時(shí)滲透數(shù)形結(jié)合的思想.其次,教師組織學(xué)生比較各種方法中哪些較好,選一種板演.
完成之后引導(dǎo)學(xué)生小結(jié)“已知一邊一角,如何解直角三角形?”
答:先求另外一角,然后選取恰當(dāng)?shù)暮瘮?shù)關(guān)系式求另兩邊.計(jì)算時(shí),利用所求的量如不比原始數(shù)據(jù)簡(jiǎn)便的話,最好用題中原始數(shù)據(jù)計(jì)算,這樣誤差小些,也比較可靠,防止第一步錯(cuò)導(dǎo)致一錯(cuò)到底.
議一議
在直角三角形中,
。1)已知a,b,怎樣求∠B的度數(shù)?
。2)已知a,c,怎樣求∠B的度數(shù)?
。3)已知b,c,怎樣求∠B的度數(shù)?
你能總結(jié)一下已知兩邊解直角三角形的方法嗎?與同伴交流。
。
(三)鞏固練習(xí)
在△ABC中,∠C為直角,AC=4,BC=4,解此直角三角形。課本74頁(yè)。
1、找四名學(xué)生板演,重視過程的規(guī)范性和完整性;2、學(xué)生獨(dú)立完成,教師簡(jiǎn)評(píng)。
解直角三角形是解實(shí)際應(yīng)用題的基礎(chǔ),因此必須使學(xué)生熟練掌握.為此,教材配備了練習(xí)針對(duì)各種條件,使學(xué)生熟練解直角三角形,并培養(yǎng)學(xué)生運(yùn)算能力.
試一試
。ㄋ模┛偨Y(jié)與擴(kuò)展
引導(dǎo)學(xué)生小結(jié):
1、在直角三角形中,除直角外還有五個(gè)元素,知道兩個(gè)元素(至少有一個(gè)是邊),就可以求出另三個(gè)元素.
2、解決問題要結(jié)合圖形(沒有圖形時(shí)要先畫草圖)。
解直角三角形教案5
教材與學(xué)情:
解直角三角形的應(yīng)用是在學(xué)生熟練掌握了直角三角形的解法的基礎(chǔ)上進(jìn)行教學(xué),它是把一些實(shí)際問題轉(zhuǎn)化為解直角三角形的數(shù)學(xué)問題,對(duì)分析問題能力要求較高,這會(huì)使學(xué)生學(xué)習(xí)感到困難,在教學(xué)中應(yīng)引起足夠的重視。
信息論原理:
將直角三角形中邊角關(guān)系作為已有信息,通過復(fù)習(xí)(輸入),使學(xué)生更牢固地掌握(貯存);再通過例題講解,達(dá)到信息處理;通過總結(jié)歸納,使信息優(yōu)化;通過變式練習(xí),使信息強(qiáng)化并能靈活運(yùn)用;通過布置作業(yè),使信息得到反饋。
教學(xué)目標(biāo):
、闭J(rèn)知目標(biāo):
、哦贸R娒~(如仰角、俯角)的意義
⑵能正確理解題意,將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)
、悄芾靡延兄R(shí),通過直接解三角形或列方程的方法解決一些實(shí)際問題。
、材芰δ繕(biāo):培養(yǎng)學(xué)生分析問題和解決問題的能力,培養(yǎng)學(xué)生思維能力的靈活性。
⒊情感目標(biāo):使學(xué)生能理論聯(lián)系實(shí)際,培養(yǎng)學(xué)生的對(duì)立統(tǒng)一的觀點(diǎn)。
教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):利用解直角三角形來解決一些實(shí)際問題
難點(diǎn):正確理解題意,將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題。
信息優(yōu)化策略:
、旁趯W(xué)生對(duì)實(shí)際問題的.探究中,神經(jīng)興奮,思維活動(dòng)始終處于積極狀態(tài)
、圃跉w納、變換中激發(fā)學(xué)生思維的靈活性、敏捷性和創(chuàng)造性。
⑶重視學(xué)法指導(dǎo),以加速教學(xué)效績(jī)信息的順利體現(xiàn)。
教學(xué)媒體:
投影儀、教具(一個(gè)銳角三角形,可變換圖2-圖7)
高潮設(shè)計(jì):
1、例1、例2圖形基本相同,但解法不同;這是為什么?學(xué)生的思維處于積極探求狀態(tài)中,從而激發(fā)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性
2、將一個(gè)銳角三角形紙片通過旋轉(zhuǎn)、翻折等變換,使學(xué)生對(duì)問題本質(zhì)有了更深的認(rèn)識(shí)
教學(xué)過程:
一、復(fù)習(xí)引入,輸入并貯存信息:
1.提問:如圖,在Rt△ABC中,∠C=90°。
⑴三邊a、b、c有什么關(guān)系?
⑵兩銳角∠A、∠B有怎樣的關(guān)系?
、沁吪c角之間有怎樣的關(guān)系?
2.提問:解直角三角形應(yīng)具備怎樣的條件:
注:直角三角形的邊角關(guān)系及解直角三角形的條件由投影給出,便于學(xué)生貯存信息
二、實(shí)例講解,處理信息:
例1.(投影)在水平線上一點(diǎn)C,測(cè)得同頂?shù)难鼋菫?0°,向山沿直線 前進(jìn)20為到D處,再測(cè)山頂A的仰角為60°,求山高AB。
、乓龑(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題。
、品治觯呵驛B可以解Rt△ABD和
Rt△ABC,但兩三角形中都不具備直接條件,但由于∠ADB=2∠C,很容易發(fā)現(xiàn)AD=CD=20米,故可以解Rt△ABD,求得AB。
、墙忸}過程,學(xué)生練習(xí)。
、人伎迹杭偃纭螦DB=45°,能否直接來解一個(gè)三角形呢?請(qǐng)看例2。
例2.(投影)在水平線上一點(diǎn)C,測(cè)得山頂A的仰角為30°,向山沿直線前進(jìn)20米到D處,再測(cè)山頂A的仰角為45°,求山高AB。
分析:
⑴在Rt△ABC和Rt△ABD中,都沒有兩個(gè)已知元素,故不能直接解一個(gè)三角形來求出AB。
⑵考慮到AB是兩直角三角形的直角邊,而CD是兩直角三角形的直角邊,而CD均不是兩個(gè)直角三角形的直角邊,但CD=BC=BD,啟以學(xué)生設(shè)AB=X,通過 列方程來解,然后板書解題過程。
解:設(shè)山高AB=x米
在Rt△ADB中,∠B=90°∠ADB=45°
∵BD=AB=x(米)
在Rt△ABC中,tgC=AB/BC
∴BC=AB/tgC=√3(米)
∵CD=BC-BD
∴√3x-x=20 解得 x=(10√3+10)米
答:山高AB是(10√3+10)米
三、歸納總結(jié),優(yōu)化信息
例2的圖開完全一樣,如圖,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,則需解Rt△ABD例2中∠2≠2∠1求AB,則利用CD=BC-BD,列方程來解。
四、變式訓(xùn)練,強(qiáng)化信息
(投影)練習(xí)1:如圖,山上有鐵塔CD為m米,從地上一點(diǎn)測(cè)得塔頂C的仰角為∝,塔底D的仰角為β,求山高BD。
練習(xí)2:如圖,海岸上有A、B兩點(diǎn)相距120米,由A、B兩點(diǎn)觀測(cè)海上一保輪船C,得∠CAB=60°∠CBA=75°,求輪船C到海岸AB的距離。
練習(xí)3:在塔PQ的正西方向A點(diǎn)測(cè)得頂端P的
仰角為30°,在塔的正南方向B點(diǎn)處,測(cè)得頂端P的仰角為45°且AB=60米,求塔高PQ。
教師待學(xué)生解題完畢后,進(jìn)行講評(píng),并利用教具揭示各題實(shí)質(zhì):
、艑⒒緢D形4旋轉(zhuǎn)90°,即得圖5;將基本圖形4中的Rt△ABD翻折180°,即可得圖6;將基本圖形4中Rt△ABD繞AB旋轉(zhuǎn)90°,即可得圖7的立體圖形。
、埔龑(dǎo)學(xué)生歸納三個(gè)練習(xí)題的等量關(guān)系:
練習(xí)1的等量關(guān)系是AB=AB;練習(xí)2的等量關(guān)系是AD+BD=AB;練習(xí)3的等量關(guān)系是AQ2+BQ2=AB2
五、作業(yè)布置,反饋信息
《幾何》第三冊(cè)P57第10題,P58第4題。
板書設(shè)計(jì):
解直角三角形的應(yīng)用
例1已知:………例2已知:………小結(jié):………
求:………求:………
解:………解:………
練習(xí)1已知:………練習(xí)2已知:………練習(xí)3已知:………
求:………求:………求:………
解:………解:………解:………
【解直角三角形教案】相關(guān)文章:
解直角三角形教案9篇03-29
庖丁解牛教案01-06
《庖丁解牛》教案03-08
《庖丁解!方贪3篇01-11
《庖丁解牛》教案14篇04-02
庖丁解牛教案14篇04-02
庖丁解牛教案15篇04-02
《庖丁解!方贪15篇03-08