亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

絕對值教案

時間:2022-11-10 14:23:13 教案大全 我要投稿

絕對值教案

  作為一名人民教師,時常會需要準(zhǔn)備好教案,借助教案可以更好地組織教學(xué)活動。來參考自己需要的教案吧!以下是小編精心整理的絕對值教案,歡迎大家分享。

絕對值教案

絕對值教案1

  【學(xué)習(xí)目標(biāo)】

  1.借助數(shù)軸,初步理解絕對值和相反數(shù)的概念,能求一個數(shù)的絕對值和相反數(shù),2.會利用絕對值比較兩負(fù)數(shù)的大小;學(xué)習(xí)數(shù)形結(jié)合的數(shù)學(xué)方法和分類討論的思想。

  3.會與人合作,并能與他人交流思想的過程和結(jié)果;

  【學(xué)習(xí)方法】

  自主探究與合作交流相結(jié)合。

  【學(xué)習(xí)重難點】

  重點:會求一個數(shù)的絕對值和相反數(shù),會利用絕對值比較兩負(fù)數(shù)的大小。

  難點:對絕對值和相反數(shù)的代數(shù)意義、幾何意義的理解。

  【學(xué)習(xí)過程】

  模塊一 預(yù)習(xí)反饋

  一、學(xué)習(xí)準(zhǔn)備

  1.數(shù)軸:規(guī)定了xxxxx、xxxxxxx、xxxxxxxxxx的一條直線叫做xxxxxxxx.

  2.數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的 ;正數(shù)大于 ,負(fù)數(shù)小于 ,正數(shù)大于一切 。

  3.請同學(xué)們閱讀教材p30—p32,預(yù)習(xí)過程中請注意:⑴不懂的地方要用紅筆標(biāo)記符號;⑵完成你力所能及的習(xí)題和課后作業(yè)。

  二、精讀教材

  4.相反數(shù)的意義

  +3與—3,—5與+5,—1.5與1.5這三對數(shù)有什么共同點?還能列舉出這樣的數(shù)嗎?

  歸納:如果兩個數(shù)只有xxxxxx不同,那么稱其中一個數(shù)為另一個數(shù)的xxxxxxxx,也稱這兩個數(shù)xxxxxxxxxxxx.特別地,0的相反數(shù)是xxxx。如,+3的'相反數(shù)是—3,也可以說+3與—3互為相反數(shù)。相反數(shù)是成對出現(xiàn)的,不能單獨存在。

  《2.3絕對值》課時練習(xí)

  一、選擇題(共10題)

  1.有理數(shù)的絕對值一定是( )

  A.正數(shù) B.負(fù)數(shù)

  C.零或正數(shù) D.零或負(fù)數(shù)

  答案:C

  解析:解答:根據(jù)絕對值的定義可知:正數(shù)的絕對值是它本身,負(fù)數(shù)的絕對值是正數(shù),零的絕對值是零;所以答案選擇C選項

  分析:考查有理數(shù)的絕對值,注意正數(shù)的絕對值是它本身,負(fù)數(shù)的絕對值是正數(shù),零的絕對值是零

  2.絕對值等于它本身的數(shù)有( )

  A.0個 B.1個 C. 2個 D .無數(shù)個

  答案:D

  解析:解答:根據(jù)絕對值得定義可知正數(shù)和零的絕對值是它本身,所以答案選擇D選項

  分析:考查絕對值這一知識點.

  3.相反數(shù)等于-5的數(shù)是( )

  A.5 B.-5 C.5或-5 D.不能確定

  答案:A

  解析:解答:根據(jù)相反數(shù)的定義可知,互為相反數(shù)的兩個數(shù)只有符號不同,所以答案選擇A選項

  分析:考查相反數(shù)的基本概念。

  2.3絕對值》同步練習(xí)

  10.如果|a|=-a,下列成立的是(  )

  A.-a一定是非負(fù)數(shù) B.-a一定是負(fù)數(shù)

  C.|a|一定是正數(shù) D.|a|不能是0

  11.下列說法:①一個數(shù)的絕對值一定是正數(shù);②-a一定是一個負(fù)數(shù);③沒有絕對值為-3的數(shù);④若|a|=a,則a是一個正數(shù);⑤-20xx的絕對值是20xx.其中正確的有xxxxxxxx.(填序號)

  12.若絕對值相等的兩個數(shù)在數(shù)軸上的對應(yīng)點的距離為6,則這兩個數(shù)為(  )

  A.+6和-6   B.-3和+3   C.-3和+6   D.-6和+3

絕對值教案2

  教學(xué)目標(biāo)

  1.了解絕對值的概念,會求有理數(shù)的絕對值;

  2.會利用絕對值比較兩個負(fù)數(shù)的大小;

  3.在絕對值概念形成過程中,滲透數(shù)形結(jié)合等思想方法,并注意培養(yǎng)學(xué)生的思維能力.

  教學(xué)建議

  一、重點、難點分析

  絕對值概念既是本節(jié)的教學(xué)重點又是教學(xué)難點。關(guān)于絕對值的概念,需要明確的是無論是絕對值的幾何定義,還是絕對值的代數(shù)定義,都揭示了絕對值的一個重要性質(zhì)——非負(fù)性,也就是說,任何一個有理數(shù)的絕對值都是非負(fù)數(shù),即無論a取任意有理數(shù),都有

  。

  教材上絕對值的定義是從幾何角度給出的,也就是從數(shù)軸上表示數(shù)的點在數(shù)軸上的位置出發(fā),得到的定義。這樣,數(shù)軸的概念、畫法、利用數(shù)軸比較有理數(shù)的大小、相反數(shù),以及絕對值,通過數(shù)軸,這些知識都聯(lián)系在一起了。此外,0的絕對值是0,從幾何定義出發(fā),就十分容易理解了。

  二、知識結(jié)構(gòu)

  絕對值的定義

  絕對值的表示方法

  用絕對值比較有理數(shù)的大小

  三、教法建議

  用語言敘述絕對值的定義,用解析式的形式給出絕對值的定義,或利用數(shù)軸定義絕對值,從理論上講都是可以的.初學(xué)絕對值用語言敘述的定義,好像更便于學(xué)生記憶和運用,以后逐步改用解析式表示絕對值的定義,即

  在教學(xué)中,只能突出一種定義,否則容易引起混亂.可以把利用數(shù)軸給出的定義作為絕對值的一種直觀解釋.

  此外,要反復(fù)提醒學(xué)生:一個有理數(shù)的絕對值不能是負(fù)數(shù),但不能說一定是正數(shù).“非負(fù)數(shù)”的概念視學(xué)生的情況,逐步滲透,逐步提出.

  四、有關(guān)絕對值的一些內(nèi)容

  1.絕對值的代數(shù)定義

  一個正數(shù)的絕對值是它本身;一個負(fù)數(shù)的.絕對值是它的相反數(shù);零的絕對值是零.

  2.絕對值的幾何定義

  在數(shù)軸上表示一個數(shù)的點離開原點的距離,叫做這個數(shù)的絕對值.

  3.絕對值的主要性質(zhì)

  (2)一個實數(shù)的絕對值是一個非負(fù)數(shù),即|a|≥0,因此,在實數(shù)范圍內(nèi),絕對值最小的數(shù)是零.

  (4)兩個相反數(shù)的絕對值相等.

  五、運用絕對值比較有理數(shù)的大小

  1.兩個負(fù)數(shù)大小的比較,因為兩個負(fù)數(shù)在數(shù)軸上的位置關(guān)系是:絕對值較大的負(fù)數(shù)一定在絕對值較小的負(fù)數(shù)左邊,所以,兩個負(fù)數(shù),絕對值大的反而小.

  比較兩個負(fù)數(shù)的方法步驟是:

  (1)先分別求出兩個負(fù)數(shù)的絕對值;

  (2)比較這兩個絕對值的大小;

  (3)根據(jù)“兩個負(fù)數(shù),絕對值大的反而小”作出正確的判斷.

  2.兩個正數(shù)大小的比較,與小學(xué)學(xué)習(xí)的方法一致,絕對值大的較大.

  教學(xué)設(shè)計示例

  絕對值(一)

  一、素質(zhì)教育目標(biāo)

  (一)知識教學(xué)點

  1.能根據(jù)一個數(shù)的絕對值表示“距離”,初步理解絕對值的概念.

  2.給出一個數(shù),能求它的絕對值.

  (二)能力訓(xùn)練點

  在把絕對值的代數(shù)定義轉(zhuǎn)化成數(shù)學(xué)式子的過程中,培養(yǎng)學(xué)生運用數(shù)學(xué)轉(zhuǎn)化思想指導(dǎo)思維活動的能力.

  (三)德育滲透點

  1.通過解釋絕對值的幾何意義,滲透數(shù)形結(jié)合的思想.

  2.從上節(jié)課學(xué)的相反數(shù)到本節(jié)的絕對值,使學(xué)生感知數(shù)學(xué)知識具有普遍的聯(lián)系性.

  (四)美育滲透點

  通過數(shù)形結(jié)合理解絕對值的意義和相反數(shù)與絕對值的聯(lián)系,使學(xué)生進(jìn)一步領(lǐng)略數(shù)學(xué)的和諧美.

  二、學(xué)法引導(dǎo)

  1.教學(xué)方法:采用引導(dǎo)發(fā)現(xiàn)法,輔之以講授,學(xué)生討論,力求體現(xiàn)“教為主導(dǎo),學(xué)為主體”的教學(xué)要求,注意創(chuàng)設(shè)問題情境,使學(xué)生自得知識,自覓規(guī)律.

  2.學(xué)生學(xué)法:研究+6和-6的不同點和相同點→絕對值概念→鞏固練習(xí)→歸納小結(jié)(絕對值代數(shù)意義)

  三、重點、難點、疑點及解決辦法

  1.重點:給出一個數(shù)會求出它的絕對值.

  2.難點:絕對值的幾何意義,代數(shù)定義的導(dǎo)出.

  3.疑點:負(fù)數(shù)的絕對值是它的相反數(shù).

絕對值教案3

導(dǎo)學(xué)目標(biāo)

  1、借助數(shù)軸,初步理解絕對值的概念,能求一個數(shù)的絕 對值,會利用絕對值比較兩個負(fù)數(shù)的大小。

  2、通過應(yīng)用絕對值解決實際問題絕對值的意義和作用。

  導(dǎo)學(xué)重點:

  正確理解絕對值的概念?

  導(dǎo)學(xué)難點:

  負(fù)數(shù)大小比較??

  導(dǎo)學(xué)過程

  溫故:

  1、下列各數(shù)中:

  +7,—2, ,—8?3,0,+0?01,— ,1 ,哪些是正數(shù)?哪些是負(fù)數(shù)?哪些是非負(fù)數(shù)?

  2、什么叫做數(shù)軸?畫一條數(shù)軸,并在數(shù)軸上標(biāo)出下列各數(shù):

  —3,4,0,3,—1?5,—4, ,2?

  鏈接:

  問題2中有哪些數(shù)互為相反數(shù)?從數(shù)軸上看,互為相反數(shù)的一對有理數(shù)有什么特點?

  知新:

  1、什么叫絕對值?

  在數(shù)軸上,一個數(shù)所對應(yīng)的點與 的 叫做這個 數(shù)的絕對值.例如+5的絕對值等于5,記作+5=5 ;—3的絕對值等于3,記作 。

  2、絕對值的特點有哪些?

 。1)一個正數(shù)的.絕對值是 ;例如,4= , +7。1 = 。

 。2)一個負(fù)數(shù)的絕對值是 ;例如,-2= ,-5。2= 。

 。3)0的絕對值是 .

  容易看出,兩個互為相反數(shù)的數(shù)的絕對值 .如—5=+5=5.

  練一練:1。已知| |=5,求 的值。

  2、填空:

 。1)+3的符號是_____,絕對值是_ _____;(2)—3的符號是_____,絕對值是______;

 。3)— 的符號是____,絕對值是______;(4)10—5的符號是_____,絕對值是______?

  3、填空:

 。1)符號是+號,絕對值是7的數(shù)是________;(2)符號是—號,絕對值是7的數(shù)是________; (3)符號是—號,絕對值是0?35的 數(shù)是________;(4)符號是+號,絕對值是1 的數(shù) 是________;

  4、(1)絕對值是 的數(shù)有幾個?各是什么?(2)絕對值是0的數(shù)有幾個?各是什么?

 。3)有沒有絕對值是—2的數(shù)?

  3。理解:

  若用a表示一個數(shù),當(dāng)a 是正數(shù)時可以表示成a>0,當(dāng)a是負(fù)數(shù)時可以表示成a<0,這樣,上面的絕對值的特點可用用符號語言可表示為:

 。1) 如果a>0,那么a=a;

 。2) 如果a<0,那么a=-a;

 。3) 如果a=0,那么a =0。

  4。 比較兩個負(fù)數(shù)的大小

  由于絕對值是表示數(shù)的點到原點的距離,則離原點越遠(yuǎn)的點表示的數(shù)的絕對值越大.負(fù)數(shù)的絕對值越大,表示 這個數(shù)的點就越靠左邊,因此,兩個負(fù)數(shù)比較,絕對值大的反而小.

  練一練: 比較 和 的大小

絕對值教案4

  教學(xué)目標(biāo)

  1.知識與技能

  會利用絕對值比較兩個負(fù)數(shù)的大小.

  2.過程與方法

  利用絕對值概念比較有理數(shù)的大小,培養(yǎng)學(xué)生的邏輯思維能力.

  3.情感、態(tài)度與價值觀

  敢于面對數(shù)學(xué)活動中的困難,有學(xué)好數(shù)學(xué)的自信心.

  教學(xué)重點難點

  重點:利用絕對值比較兩個負(fù)數(shù)的大小.

  難點:利用絕對值比較兩個異分母負(fù)分?jǐn)?shù)的.大小.

  教與學(xué)互動設(shè)計

  (一)創(chuàng)設(shè)情境,導(dǎo)入新課

  投影 你能比較下列各組數(shù)的大小嗎?

  (1)│-3│與│-8│ (2)4與-5 (3)0與3

  (4)-7和0 (5)0.9和1.2

  (二)合作交流,解讀探究

  討論交流 由以上各組數(shù)的大小比較可見:正數(shù)都大于0,0都大于負(fù)數(shù),正數(shù)都大于負(fù)數(shù).

  思考 若任取兩個負(fù)數(shù),該如何比較它的大小呢?

  點撥 若-7表示-7℃,-1表示-1℃,則兩個溫度誰高誰低?

  【總結(jié)】 兩個負(fù)數(shù),絕對值大的反而小,或說,兩個負(fù)數(shù)絕對值小的反而大.

  注意 ①比較兩個負(fù)數(shù)的大小又多了一種方法,即:兩個負(fù)數(shù),絕對值大的反而小.

 、诋愄柕膬蓴(shù)比較大小,要考慮它們的正負(fù);同號兩數(shù)比較大小,要考慮先比較它們的絕對值.

 、墼跀(shù)軸上表示有理數(shù),它們從左到右的順序也就是從小到大的順序,即:左邊的數(shù)總比右邊的數(shù)要小.即:利用數(shù)軸來比較有理數(shù)的大小.

絕對值教案5

  【學(xué)習(xí)目標(biāo)】

  1、使學(xué)生能說出相反數(shù)的意義

  2、使學(xué)生能求出已知數(shù)的相反數(shù)

  3、使學(xué)生能根據(jù)相反數(shù)的意思進(jìn)行化簡

  【學(xué)習(xí)過程】

  【情景創(chuàng)設(shè)】

  回憶上節(jié)課的情境,小明從學(xué)校出發(fā)沿東西大街走了0.5千米,在數(shù)軸上表示出他的位置。點a,點b即是小明到達(dá)的位置。

  觀察a,b兩點位置及共到原點的距離,你有什么發(fā)現(xiàn)嗎?

  觀察下列各對數(shù),你有什么發(fā)現(xiàn)?

  ‐5與5,‐6、1與6、1,‐34 與+34

  相反數(shù)的描述性定義:符號不同,絕對值相等的兩個數(shù),叫做相反數(shù)(只有符號不同)

  規(guī)定0的'相反數(shù)是0

  想一想:你能舉出互為相反數(shù)的例子嗎?

  【例題精講】

  例1

  例2

  試一試: 化簡―[―(+3、2)]

  想一想:

  請同學(xué)們仔細(xì)觀察這五個等式,它們的符號變化有什么規(guī)律?

  把一個數(shù)的多重符號化成單一符號時,若該數(shù)前面有奇數(shù)個“―”號,則化簡的結(jié)果是負(fù);若該數(shù)前面有偶數(shù)個“―”號,則化簡的結(jié)果是正、

  練一練:填空

 。1)-2的相反數(shù)是 ,

  3、75與 互為相反數(shù),

  相反數(shù)是其本身的數(shù)是 ;

 。2)-(+7)= ,

 。ǎ7)= ,

 。璠+(-7)]= ,

 。璠-(-7)]= ;

 。3)判斷下列語句,正確的是 、

 、 ―5 是相反數(shù);

 、 ―5 與 +3 互為相反數(shù);

 、 ―5 是 5 的相反數(shù);

 、 ―5 和 5 互為相反數(shù);

 、 0 的相反數(shù)還是 0 、

  選擇:

 。1)下列說法正確的是 ( )

  a、正數(shù)的絕對值是負(fù)數(shù);

  b、符號不同的兩個數(shù)互為相反數(shù);

  c、π的相反數(shù)是 ―3、14;

  d、任何一個有理數(shù)都有相反數(shù)、

 。2)一個數(shù)的相反數(shù)是非正數(shù),那么這

  個數(shù)一定是 ( )

  a、正數(shù) b、負(fù)數(shù) c、零或正數(shù) d、零

  畫一畫:

  在數(shù)軸上畫出表示下列各數(shù)以及它們的相反數(shù)的點:

  動腦筋:

  如果數(shù)軸上兩點 a、b 所表示的數(shù)互為相反數(shù),點 a 在原點左側(cè),且 a、b 兩點距離為 8 ,你知道點 b 代表什么數(shù)嗎?

  【課后作業(yè)】

  1、判斷題

 。1) 0沒有相反數(shù)。 ( )

 。2)任何一個有理數(shù)的相反數(shù)都與原來的符號相反。 ( )

 。3)如果一個有理數(shù)的相反數(shù)是正數(shù),則這個數(shù)是負(fù)數(shù)、 ( )

 。4)只有0的相反數(shù)是它本身 ( )

  (5) 互為相反數(shù)的兩個數(shù)絕對值相等

  2、填空題

  (1) —(—2、8)= _________; —(+7)= _________;

  (2) —3、4的相反數(shù)是 ________、

 。3) —2、6是________的相反數(shù)、

 。4)│—3、4│=________;│5、7│=________;

  —│2、65│=_______;—│—12、56│=_______

  (5)絕對值等于5的數(shù)是_________

 。6)相反數(shù)等于本身的數(shù)是__________

  3、化簡:

 。1) —(—1966)=______ (2) +│—1978│=______(3)+(—1983)=______

  (4) —(+1997)=_______ (5) +│+XX│=______

  4、選擇題:

  (1)在—3、+(—3)、—(—4)、—(+2)中,負(fù)數(shù)的個數(shù)有( )

  a、1個 b、2個 c、3個

 。2)在+(—2)與—2、—(+1)與+1、—(—4)與+(—4)、

  —(+5)與+(—5)、—(—6)與+(+6)、+(+7)與+(—7)

  這幾對數(shù)中,互為相反數(shù)的有( )

  a、6對 b、5對 c、4對 d、3對

  5、在數(shù)軸上標(biāo)出3、—2、5、2、0、 以及它們的相反數(shù)。

  6、請在數(shù)軸上畫出表示3、—2、—3、5及它們相反數(shù)的點,并分別用a、b、c、d、e、f來表示

  (1)把這6個數(shù)按從小到大的順序用<連接起來

 。2)點c與原點之間的距離是多少?點a與點c之間的距離是多少?

絕對值教案6

  教學(xué)目標(biāo):

  知識目標(biāo):(1)理解絕對值的概念及表示法。

  (2)理解數(shù)的絕對值的幾何意義。

  能力目標(biāo):(1)掌握求一個數(shù)的絕對值及有關(guān)的簡單計算,

  (2)掌握絕對值等于某一正數(shù)的有理數(shù)的求法,探索絕對值的簡單應(yīng)用。

  情感目標(biāo):讓學(xué)生經(jīng)歷絕對值的產(chǎn)生過程,體會數(shù)形結(jié)合思想。

  教學(xué)重點、難點:

  重點:絕對值的概念和求一個數(shù)的絕對值。

  難點:絕對值的幾何意義。

  教學(xué)手段:多媒體(powerpoint)教學(xué)與板書相結(jié)合。

  教學(xué)過程:

  一、新課引入

  我們已經(jīng)知道有理數(shù)在日常生活中應(yīng)用廣泛,與生產(chǎn)實踐聯(lián)系緊密,用正、負(fù)數(shù)可以來表示相反意義的量,而數(shù)軸使我們直觀的感受到有理數(shù)中正、負(fù)數(shù)的區(qū)別和數(shù)在數(shù)軸上相應(yīng)的位置。

  乘城市中的出租車去逛商店是我們經(jīng)常經(jīng)歷的事,其中的數(shù)量關(guān)系與我們所學(xué)的有理數(shù)、數(shù)軸有密切聯(lián)系。例如有2位同學(xué)在書店購買書籍后回家,一位同學(xué)乘上甲出租車向東行駛10Km到達(dá)A處,另一位同學(xué)乘上乙出租車向西行駛10Km到達(dá)B處。

  二、合作學(xué)習(xí)

  把全班同學(xué)分4—5組分組討論完成下面的三個問題

  1:描述請大家用數(shù)軸來表示這一過程(記向東行駛的里程數(shù)為正)

  2:思考兩位同學(xué)付費額度是否一樣?為什么?

  3:結(jié)論付費額度與行駛方向有沒有關(guān)系?

  然后請各組代表總結(jié)發(fā)言:(鼓勵學(xué)生積極參與,并給予高度的評價)

  這兩位同學(xué)由于乘車離開書店的距離一樣,所以付費額度也是一樣的,與行駛方向無關(guān)。說明在數(shù)軸上的A(+10)、B(—10)兩點到原點(書店)的距離是一樣的,都是10。同樣數(shù)軸上+5和—5兩點到原點的距離也是一樣的。

  我們把一個數(shù)在數(shù)軸上對應(yīng)的點到原點的距離叫做這個數(shù)的絕對值。(注意是離開原點的距離)

  如數(shù)軸上表示-5的點到原點的距離是5,所以—5的絕對值是5,記作;+5的`絕對值也是5,記作。其實際意義是:數(shù)軸上+5這個點到原點的距離為5。(強調(diào)絕對值符號的書寫格式)

  三、課內(nèi)練習(xí)

  1、求下列各數(shù)的絕對值:-1。60-10+10同時說出它們的幾何意義。

  2、說出下列各數(shù)的絕對值:-7-2。0501000

  由上述兩題可概括出:(在教師的引導(dǎo)下讓學(xué)生得出結(jié)論)

  一個正數(shù)的絕對值是它本身,一個負(fù)數(shù)的絕對值是它的相反數(shù),零的絕對值是零,互為相反的兩個數(shù)的絕對值相等。(注意一個數(shù)的絕對值不可能是負(fù)數(shù),而是非負(fù)數(shù)。)

 。ㄒ唬┑淅治

  1、求絕對值等于4的數(shù)?

  注:分析例題時盡量培養(yǎng)學(xué)生利用數(shù)軸來解決問題的能力。

  2、計算:

  四、反饋練習(xí)

  3、舉一個生活中的實際例子,說明解決有的問題只需考慮數(shù)的絕對值。(如港口的吞吐量;一位學(xué)生上學(xué)、放學(xué)一共所走過的路等)

  4、填表:

  相反數(shù)

  絕對值

  21

  —0。75

  5、畫一條數(shù)軸,在數(shù)軸上分別標(biāo)出絕對值是6,1。2,0的數(shù)

  6、計算:

  五、探究學(xué)習(xí)

  1、某人因工作需要租出租車從A站出發(fā),先向南行駛6Km至B處,后向北行駛10Km至C處,接著又向南行駛7Km至D處,最后又向北行駛2Km至E處。

  請通過列式計算回答下列兩個問題:

  (1)這個人乘車一共行駛了多少千米?

 。2)這個人最后的目的地在離出發(fā)地的什么方向上,相隔多少千米?

  2、寫出絕對值小于3的整數(shù),并把它們記在數(shù)軸上。

  六、小結(jié)

  一頭牛耕耘在一塊田地上,忙碌了一整天,表面上它在原地踏步,沒有踏出這塊土地,但我們說,它付出了艱辛和汗水,因為它所走過的距離之和,有時候我們是無法想象的。這就是今天所學(xué)的絕對值的意義所在。所以絕對值是不考慮方向意義時的一種數(shù)值表示。

  七、布置作業(yè)

  做作業(yè)本中相應(yīng)的部分。

絕對值教案7

  一、教學(xué)目標(biāo)

  1、知識與技能(1)、借助數(shù)軸,初步理解絕對值的概念,能求一個數(shù)的絕對值,會利用絕對值比較兩個

  負(fù)數(shù)的大小。 (2)、通過應(yīng)用絕對值解決實際問題,體會絕對值的意義和作用。 2、過程與方法目標(biāo):(1)、通過運用“| |”來表示一個數(shù)的絕對值,培養(yǎng)學(xué)生的數(shù)感和符號感,達(dá)到發(fā)展學(xué)

  生抽象思維的目的(2)、通過探索求一個數(shù)絕對值的方法和兩個負(fù)數(shù)比較大小方法的過程,讓學(xué)生學(xué)會通過

  觀察,發(fā)現(xiàn)規(guī)律、總結(jié)方法,發(fā)展學(xué)生的實踐能力,培養(yǎng)創(chuàng)新意識; (3)、通過對“做一做”“議一議” “試一試”的交流和討論,培養(yǎng)學(xué)生有條理地用語言

  表達(dá)解決問題的方法;通過用絕對值或數(shù)軸對兩個負(fù)數(shù)大小的比較,讓學(xué)生學(xué)會嘗試評價兩種不同方法之間的差異。

  3、情感態(tài)度與價值觀:

  借助數(shù)軸解決數(shù)學(xué)問題,有意識地形成“腦中有圖,心中有數(shù)”的數(shù)形結(jié)合思想。通過“做一做“議一議”“試一試”問題的思考及回答,培養(yǎng)學(xué)生積極參與數(shù)學(xué)活動,并在數(shù)學(xué)活動中體驗成功,鍛煉學(xué)生克服困難的意志,建立自信心,發(fā)展學(xué)生清晰地闡述自己觀點的能力以及培養(yǎng)學(xué)生合作探索、合作交流、合作學(xué)習(xí)的'新型學(xué)習(xí)方式。

  二、教學(xué)重點和難點

  理解絕對值的概念;求一個數(shù)的絕對值;比較兩個負(fù)數(shù)的大小。

  三、教學(xué)過程:

  1、教師檢查組長學(xué)案學(xué)習(xí)情況,組長檢查組員學(xué)案學(xué)習(xí)情況。(約5分鐘) 2.在組長的組織下進(jìn)行討論、交流。(約5分鐘) 3、小組分任務(wù)展示。(約25分鐘) 4、達(dá)標(biāo)檢測。(約5分鐘) 5、總結(jié)(約5分鐘)

  四、小組對學(xué)案進(jìn)行分任務(wù)展示

  (一)、溫故知新:

  前面我們已經(jīng)學(xué)習(xí)了數(shù)軸和數(shù)軸的三要素,請同學(xué)們回想一下什么叫數(shù)軸?數(shù)軸的三要素什么?

  (二)小組合作交流,探究新知

  1、觀察下圖,回答問題: (五組完成)

  大象距原點多遠(yuǎn)?兩只小狗分別距原點多遠(yuǎn)?

  歸納:在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做這個數(shù)的。一個數(shù)a的絕對值記作:.

  4的絕對值記作,它表示在上與的距離,所以| 4|= 。

  2、做一做:

  (1)、求下列各數(shù)的絕對值:(四組完成) -1.5,0,-7,2 (2)、求下列各組數(shù)的絕對值:(一組完成)

  (1)4,-4; (2) 0.8,-0.8;

  從上面的結(jié)果你發(fā)現(xiàn)了什么?

  3、議一議:(八組完成)

  (1)|+2|=,

  1=,|+8.2|= ; 5(2)|-3|=,|-0.2|=,|-8|= . (3)|0|= ;

  你能從中發(fā)現(xiàn)什么規(guī)律?

  小結(jié):正數(shù)的絕對值是它,負(fù)數(shù)的絕對值是它的,0的絕對值是。

  4、試一試:(二組完成)

  若字母a表示一個有理數(shù),你知道a的絕對值等于什么嗎?

  (通過上題例子,學(xué)生歸納總結(jié)出一個數(shù)的絕對值與這個數(shù)的關(guān)系。)

  5:做一做:(三組完成)

  1、( 1 )在數(shù)軸上表示下列各數(shù),并比較它們的大。

  - 3,- 1

  ( 2 )求出(1)中各數(shù)的絕對值,并比較它們的大小

  ( 3 )你發(fā)現(xiàn)了什么?

  2、比較下列每組數(shù)的大小。

  (1) -1和– 5;(五組完成) (2) ?

  (3) -8和-3(七組完成)

  5和- 2.7(六組完成) 6五、達(dá)標(biāo)檢測:

  1:填空:

  絕對值是10的數(shù)有( )

  |+15|=( ) |–4|=( )

  | 0 |=( ) | 4 |=( ) 2:判斷(1)、絕對值最小的數(shù)是0。( ) (2)、一個數(shù)的絕對值一定是正數(shù)。( ) (3)、一個數(shù)的絕對值不可能是負(fù)數(shù)。( )

  (4)、互為相反數(shù)的兩個數(shù),它們的絕對值一定相等。( ) (5)、一個數(shù)的絕對值越大,表示它的點在數(shù)軸上離原點越近。( )

  六、總結(jié):

  1絕對值:在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值.

  2.絕對值的性質(zhì):正數(shù)的絕對值是它本身;

  負(fù)數(shù)的絕對值是它的相反數(shù); 0的絕對值是0.

  因為正數(shù)可用a>0表示,負(fù)數(shù)可用a<0表示,所以上述三條可表述成:a="">0,那么|a|=a (2)如果a<0,那么|a|=-a (3)如果a=0,那么|a|=0

  3、會利用絕對值比較兩個負(fù)數(shù)的大。簝蓚負(fù)數(shù)比較大小,絕對值大的反而小.

  七、布置作業(yè)

  P50頁,知識技能第1,2題.

絕對值教案8

  一、素質(zhì)教育目標(biāo)

 。ㄒ唬┲R教學(xué)點

  1.能根據(jù)一個數(shù)的絕對值表示“距離”,初步理解絕對值的概念.

  2.給出一個數(shù),能求它的絕對值.

 。ǘ┠芰τ(xùn)練點

  在把絕對值的代數(shù)定義轉(zhuǎn)化成數(shù)學(xué)式子的過程當(dāng)中,培養(yǎng)學(xué)生運用數(shù)學(xué)轉(zhuǎn)化思想指導(dǎo)思維活動的能力.

 。ㄈ┑掠凉B透點

  1.通過解釋絕對值的幾何意義,滲透數(shù)形結(jié)合的思想.

  2.從上節(jié)課學(xué)的相反數(shù)到本節(jié)的絕對值,使學(xué)生感知數(shù)學(xué)知識具有普遍的聯(lián)系性.

 。ㄋ模┟烙凉B透點

  通過數(shù)形結(jié)合理解絕對值的意義和相反數(shù)與絕對值的聯(lián)系,使學(xué)生進(jìn)一步領(lǐng)略數(shù)學(xué)的和諧美.

  二、學(xué)法引導(dǎo)

  1.教學(xué)方法:采用引導(dǎo)發(fā)現(xiàn)法,輔之以講授,學(xué)生討論,力求體現(xiàn)“教為主導(dǎo),學(xué)為主體”的教學(xué)要求,注意創(chuàng)設(shè)問題情境,使學(xué)生自得知識,自覓規(guī)律.

  2.學(xué)生學(xué)法:研究+6和-6的不同點和相同點→絕對值概念→鞏固練習(xí)→歸納小結(jié)(絕對值代數(shù)意義)

  三、重點、難點、疑點及解決辦法

  1.重點:給出一個數(shù)會求出它的絕對值.

  2.難點:絕對值的幾何意義,代數(shù)定義的導(dǎo)出.

  3.疑點:負(fù)數(shù)的絕對值是它的相反數(shù).

  四、課時安排

  2課時

  五、教具學(xué)具準(zhǔn)備

  投影儀(電腦)、三角板、自制膠片.

  六、師生互動活動設(shè)計

  教師提出+6和-6有何相同點和不同點,學(xué)生研究討論得出絕對值概念;教師出示練習(xí)題,學(xué)生討論解答歸納出絕對值代數(shù)意義.

  七、教學(xué)步驟

 。ㄒ唬﹦(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入

  師:以上我們學(xué)習(xí)了數(shù)軸、相反數(shù).在練習(xí)本上畫一個數(shù)軸,并標(biāo)出表示-6, ,0及它們的相反數(shù)的點.

  學(xué)生活動:一個學(xué)生板演,其他學(xué)生在練習(xí)本上畫.

  絕對值的學(xué)習(xí)是以相反數(shù)為基礎(chǔ)的,在學(xué)生動手畫數(shù)軸的同時,把相反數(shù)的知識進(jìn)行復(fù)習(xí),同時也為絕對值概念的引入奠定了基礎(chǔ),這里老師不包辦代替,讓學(xué)生自己練習(xí).

 。ǘ┨剿餍轮瑢(dǎo)入新課

  師:同學(xué)們做得非常好。6與6是相反數(shù),它們只有符號不同,它們什么相同呢?

  學(xué)生活動:思考討論,很難得出答案.

  師:在數(shù)軸上標(biāo)出到原點距離是6個單位長度的`點.

  學(xué)生活動:一個學(xué)生板演,其他學(xué)生在練習(xí)本上做.

  師:顯然A點(表示6的點)到原點的距離是6,B點(表示-6的點)到原點距離是6個單位長嗎?

  學(xué)生活動:產(chǎn)生疑問,討論.

  師:+6與-6雖然符號不同,但表示這兩個數(shù)的點到原點的距離都是6,是相同的.我們把這個距離叫+6與-6的絕對值.

 。郯鍟2。4絕對值(1)

  針對“互為相反數(shù)的兩數(shù)只有符號不同”提出問題:“它們什么相同呢?”在學(xué)生頭腦中產(chǎn)生疑問,激發(fā)了學(xué)生探索知識的欲望,但這時學(xué)生很難回答出此問題,這時教師注意引導(dǎo)再提出要求:“找到原點距離是6個單位長度的點”這時學(xué)生就有了一個攀登的臺階,自然而然地想到表示+6,-6的點到原點的距離相同,從而引出了絕對值的概念,這樣一環(huán)緊扣一環(huán)。

絕對值教案9

  ●教學(xué)目標(biāo)

  知識與能力:借助于數(shù)軸,初步理解絕對值的概念,能求一個數(shù)的絕對值,初步學(xué)會求絕對值等于某一個正數(shù)的有理數(shù)。

  過程與方法:通過從數(shù)形兩個側(cè)面理解絕對值的意義,初步了解數(shù)形結(jié)合的思想方法。通過應(yīng)用絕對值解決實際問題,體會絕對值的意義。

  情感態(tài)度與價值觀:通過應(yīng)用絕對值解決實際問題,培養(yǎng)學(xué)生濃厚的學(xué)習(xí)興趣,使學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動,對數(shù)學(xué)有好奇心與求知欲。

  ●教學(xué)重點與難點

  教學(xué)重點:絕對值的概念和求一個數(shù)的絕對值

  教學(xué)難點:絕對值的幾何意義及求絕對值等于某一個正數(shù)的有理數(shù)。

  ●教學(xué)準(zhǔn)備

  多媒體課件

  ●教學(xué)過程

  一、創(chuàng)設(shè)問題情境

  用多媒體動畫顯示:兩只小狗從同一點O出發(fā),在一條筆直的街上跑,

  一只向右跑10米到達(dá)A點,另一只向左跑10米到達(dá)B點。若規(guī)定向右為正,則A處記做__________,B處記做__________。

  以O為原點,取適當(dāng)?shù)膯挝婚L度畫數(shù)軸,并標(biāo)出A、B的位置。

 。ㄓ蒙鷦佑腥さ膱D畫吸引學(xué)生,即復(fù)習(xí)了數(shù)軸和相反數(shù),又為下文作準(zhǔn)備)。

 。病⑦@兩只小狗在跑的過程中,有沒有共同的地方?在數(shù)軸上的A、B兩

  又有什么特征?(從形和數(shù)兩個角度去感受絕對值)。

  3、在數(shù)軸上找到-5和5的點,它們到原點的距離分別是多少?表示-和的點呢?

  小結(jié):在實際生活中,有時存在這樣的情況,無需考慮數(shù)的正負(fù)性質(zhì),比如:在計算小狗所跑的路程中,與小狗跑的方向無關(guān),這時所走的路程只需用正數(shù),這樣就必須引進(jìn)一個新的概念———絕對值。

  二、建立數(shù)學(xué)模型

  絕對值的概念

  (借助于數(shù)軸這一工具,師生共同討論,引出絕對值的概念)

  絕對值的幾何定義:一個數(shù)在數(shù)軸上對應(yīng)的點到原點的距離叫做這個數(shù)的絕對值。比如:-5到原點的距離是5,所以-5的絕對值是5,記|-5|=5;5的絕對值是5,記做|5|=5。

  注意:①與原點的關(guān)系②是個距離的概念

  練習(xí)1:請學(xué)生舉一個生活中的實際例子,說明解決有的問題只需考慮的數(shù)絕對值。

 。ㄍㄟ^應(yīng)用絕對值解決實際問題,體會絕對值的意義與作用,感受數(shù)學(xué)在生活中的價值。)

  三、應(yīng)用深化知識

  1、例題求解

  例1、求下列各數(shù)的絕對值

 。1.6, , 0, -10, +10

  解:|-1.6|=1.6 ||= |0|=0

  |-10|=10 |+10|=10

  2、練習(xí)2:填表

  相反數(shù) 絕對值 2.05 1000 0 - -1000 -2.05

 。ㄒ员砀竦男问綄⒔^對值和相反數(shù)進(jìn)行比較,為歸納絕對值的特征作準(zhǔn)備)

  3、根據(jù)上述題目,讓學(xué)生歸納總結(jié)絕對值的特點。(教師進(jìn)行補充小結(jié))

  特點:1、一個正數(shù)的絕對值是它本身

  2、一個負(fù)數(shù)的絕對值是它的`相反數(shù)

  3、零的絕對值是零

  4、互為相反數(shù)的兩個數(shù)的絕對值相等

  4、練習(xí)3:回答下列問題

 、僖粋數(shù)的絕對值是它本身,這個數(shù)是什么數(shù)?

 、谝粋數(shù)的絕對值是它的相反數(shù),這個數(shù)是什么數(shù)?

 、垡粋數(shù)的絕對值一定是正數(shù)嗎?

  ④一個數(shù)的絕對值不可能是負(fù)數(shù),對嗎?

 、萁^對值是同一個正數(shù)的數(shù)有兩個,它們互為相反數(shù),這句話對嗎?

  (由學(xué)生口答完成,進(jìn)一步鞏固絕對值的概念)

  5、例2、求絕對值等于4的數(shù)。

 。ㄗ寣W(xué)生考慮這樣的數(shù)有幾個,是怎樣得出這個結(jié)果的呢?對后一個問題由學(xué)生去討論,啟發(fā)學(xué)生從數(shù)與形兩個方面考慮,培養(yǎng)學(xué)生的發(fā)散思維能力。)

  分析:

 、購臄(shù)字上分析

  ∵|+4|=4,|-4|=4 ∴絕對值等于4的數(shù)是+4和-4畫一個數(shù)軸(如下圖)

 、趶膸缀我饬x上分析,畫一個數(shù)軸(如下圖)

  ∵數(shù)軸上到原點的距離等于4個單位長度的點有兩個,即表示+4的點P和表示-4的點M

  ∴絕對值等于4的數(shù)是+4和-4

  注意:說明符號“∵”讀作“因為”,“∴”讀作“所以”

  6、練習(xí)本:做書上16頁課內(nèi)練習(xí)3、4兩題。

  四、歸納小結(jié)

  本節(jié)課我們學(xué)習(xí)了什么知識?

  你覺得本節(jié)課有什么收獲?

  由學(xué)生自行總結(jié)在自主探究,合作學(xué)習(xí)中的體會。

  五、課后作業(yè)

  讓學(xué)生去尋找一些生活中只考慮絕對值的實際例子。

  課本16頁的作業(yè)題。

  本人在近幾屆樂清市中、小、幼教師教學(xué)論文聯(lián)評中均有獲獎,特別是論文《談數(shù)學(xué)學(xué)困生的惰性心態(tài)及教學(xué)策略》在全國數(shù)學(xué)教研第十一屆年會論文(初中組)比賽中獲三等獎;而且在近幾年的說課比賽和優(yōu)質(zhì)課評比中表現(xiàn)出色;是校青年骨干教師,名教師培養(yǎng)對象。

  樂清市虹橋鎮(zhèn)第一中學(xué) 陳楊明

  -4 -3 -2 -1 0 1 2 3 4

  4個單位長度 4個單位長度

  M

絕對值教案10

  1.2.4絕對值

  教學(xué)目標(biāo)1,掌握絕對值的概念,有理數(shù)大小比較法則.

  2,學(xué)會絕對值的計算,會比較兩個或多個有理數(shù)的大小.

  3.體驗數(shù)學(xué)的概念、法則來自于實際生活,滲透數(shù)形結(jié)合和分類思想.

  教學(xué)難點兩個負(fù)數(shù)大小的比較

  知識重點絕對值的概念

  教學(xué)過程(師生活動)設(shè)計理念

  設(shè)置情境

  引入課題星期天黃老師從學(xué)校出發(fā),開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學(xué)校、朱家尖、家在同一直線上),如果規(guī)定向東為正,①用有理數(shù)表示黃老師兩次所行的路程;②如果汽車每公里耗油0.15升,計算這天汽車共耗油多少升?

  學(xué)生思考后,教師作如下說明:

  實際生活中有些問題只關(guān)注量的具體值,而與相反

  意義無關(guān),即正負(fù)性無關(guān),如汽車的耗油量我們只關(guān)心汽車行駛的距離和汽油的價格,而與行駛的方向無關(guān);

  觀察并思考:畫一條數(shù)軸,原點表示學(xué)校,在數(shù)軸上畫出表示朱家尖和黃老師家的點,觀察圖形,說出朱家尖黃老師家與學(xué)校的距離.

  學(xué)生回答后,教師說明如下:

  數(shù)軸上表示數(shù)的點到原點的距離只與這個點離開原點的長度有關(guān),而與它所表示的數(shù)的正負(fù)性無關(guān);

  一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,記做|a|

  例如,上面的問題中|20|=20,|-10|=10顯然,|0|=0這個例子中,第一問是相反意義的量,用正負(fù)數(shù)表示,后一問的解答則與符號沒有關(guān)系,說明實際生活中有些問題,人們只需知道它們的具體數(shù)值,而并不關(guān)注它們所表示的意義.為引入絕對值概念做準(zhǔn)備.使學(xué)生體驗數(shù)學(xué)知識與生活實際的聯(lián)系.

  因為絕對值概念的幾何意義是數(shù)形轉(zhuǎn)化的典型模型,學(xué)生初次接觸較難接受,所以配置此觀察與思考,為建立絕對值概念作準(zhǔn)備.

  合作交流

  探究規(guī)律例1求下列各數(shù)的絕對值,并歸納求有理數(shù)a的絕對

  有什么規(guī)律?、

  -3,5,0,+58,0.6

  要求小組討論,合作學(xué)習(xí).

  教師引導(dǎo)學(xué)生利用絕對值的意義先求出答案,然后觀察原數(shù)與它的絕對值這兩個數(shù)據(jù)的.特征,并結(jié)合相反數(shù)的意義,最后總結(jié)得出求絕對值法則(見教科書第15頁).

  鞏固練習(xí):教科書第15頁練習(xí).

  其中第1題按法則直接寫出答案,是求絕對值的基本訓(xùn)練;第2題是對相反數(shù)和絕對值概念進(jìn)行辨別,對學(xué)生的分析、判斷能力有較高要求,要注意思考的周密性,要讓學(xué)生體會出不同說法之間的區(qū)別.求一個數(shù)的絕時值的法則,可看做是絕對值概念的一個應(yīng)用,所以安排此例.學(xué)生能做的盡量讓學(xué)生完成,教師在教學(xué)過程中只是組織者.本著這個理念,設(shè)計這個討論.

  結(jié)合實際發(fā)現(xiàn)新知引導(dǎo)學(xué)生看教科書第16頁的圖,并回答相關(guān)問題:

  把14個氣溫從低到高排列;

  把這14個數(shù)用數(shù)軸上的點表示出來;

  觀察并思考:觀察這些點在數(shù)軸上的位置,并思考它們與溫度的高低之間的關(guān)系,由此你覺得兩個有理數(shù)可以比較大小嗎?

  應(yīng)怎樣比較兩個數(shù)的大小呢?

  學(xué)生交流后,教師總結(jié):

  14個數(shù)從左到右的順序就是溫度從低到高的順序:

  在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù).

  在上面14個數(shù)中,選兩個數(shù)比較,再選兩個數(shù)試試,通過比較,歸納得出有理數(shù)大小比較法則

  想象練習(xí):想象頭腦中有一條數(shù)軸,其上有兩個點,分別表示數(shù)一100和一90,體會這兩個點到原點的距離(即它們的絕對值)以及這兩個數(shù)的大小之間的關(guān)系.

  要求學(xué)生在頭腦中有清晰的圖形.讓學(xué)生體會到數(shù)學(xué)的規(guī)定都來源于生活,每一種規(guī)定都有它的合理性。

  數(shù)在大小比較法則第2點學(xué)生較難掌握,要從絕對值的意義和數(shù)軸上的數(shù)左小右大這方面結(jié)合起來來了解,所以配置想象練習(xí),加強數(shù)與形的想象。

  課堂練習(xí)例2,比較下列各數(shù)的大小(教科書第17頁例)

  比較大小的過程要緊扣法則進(jìn)行,注意書寫格式

  練習(xí):第18頁練習(xí)

  小結(jié)與作業(yè)

  課堂小結(jié)怎樣求一個數(shù)的絕對值,怎樣比較有理數(shù)的大小?

  本課作業(yè)1,必做題:教產(chǎn)書第19頁習(xí)題1,2,第4,5,6,10

  2,選做題:教師自行安排

  本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進(jìn)設(shè)想)

  1,情景的創(chuàng)設(shè)出于如下考慮:①體現(xiàn)數(shù)學(xué)知識與生活實際的緊密聯(lián)系,讓學(xué)生在這些熟悉的日常生活情境中獲得數(shù)學(xué)體驗,不僅加深對絕對值的理解,更感受到學(xué)習(xí)絕對值概念的必要性和激發(fā)學(xué)習(xí)的興趣.②教材中數(shù)的絕對值概念是根據(jù)幾何意義來定義的(其本質(zhì)是將數(shù)轉(zhuǎn)化為形來解釋,是難點),然后通過練習(xí)歸納出求有理數(shù)的絕對值的規(guī)律,如果直接給出絕對值的概念,灌輸知識的味道很濃,且太抽象,學(xué)生不易接受.

  2,一個數(shù)絕對值的法則,實際上是絕對值概念的直接應(yīng)用,也體現(xiàn)著分類的數(shù)學(xué)思想,所以直接通過例1歸納得出,顯得非常緊湊,是教學(xué)重點;從知識的發(fā)展和學(xué)生的能力培養(yǎng)角度來看,教師應(yīng)更重視學(xué)生的自主學(xué)習(xí)和探究的過程,關(guān)注學(xué)生的思維,做好教學(xué)的組織和引導(dǎo),留給學(xué)生足夠的空間。

  3,有理數(shù)大小的比較法則是大小規(guī)定的直接歸納,其中第(2)條學(xué)生較難理解,教學(xué)中要結(jié)合絕對值的意義和規(guī)定:“在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序”,幫助學(xué)生建立“數(shù)軸上越左邊的點到原點的距離越大,所以表示的數(shù)越小”這個數(shù)形結(jié)合的模型.為此設(shè)置了想象練習(xí).

  4,本節(jié)課的內(nèi)容包括絕對值的概念和數(shù)的絕對值的求法、有理數(shù)大小比較的法則,教學(xué)內(nèi)容很多,學(xué)生接受起來可能會有困難,建議把有理數(shù)的大小比較移到下節(jié)課教學(xué)。

  附板書:

  1.2.4絕對值

絕對值教案11

  【學(xué)習(xí)目標(biāo)】

  1.使學(xué)生能說出相反數(shù)的意義

  2.使學(xué)生能求出已知數(shù)的相反數(shù)

  3.使學(xué)生能根據(jù)相反數(shù)的意思進(jìn)行化簡

  【學(xué)習(xí)過程】

  【情景創(chuàng)設(shè)】

  回憶上節(jié)課的情境,小明從學(xué)校出發(fā)沿東西大街走了0.5千米,在數(shù)軸上表示出他的位置。點A,點B即是小明到達(dá)的位置。

  觀察A,B兩點位置及共到原點的距離,你有什么發(fā)現(xiàn)嗎?

  《數(shù)軸》專題練習(xí)

  1.(4)班在一次聯(lián)歡活動中,把全班分成5個隊參加活動,游戲結(jié)束后,5個隊的得分如下:

  A隊:-50分;B隊:150分;C隊:-300分;D隊:0分;E隊:100分.

  (1)將5個隊按由低分到高分的順序排序;

  (2)把每個隊的得分標(biāo)在數(shù)軸上,并標(biāo)上代表該隊的字母;

  (3)從數(shù)軸上看A隊與B隊相差多少分?C隊與E隊呢?

  《2.4數(shù)軸》同步測試

  1下列說法中錯誤的是(  )

  A.一個正數(shù)的.絕對值一定是正數(shù)

  B.任何數(shù)的絕對值都是正數(shù)

  C.一個負(fù)數(shù)的絕對值一定是正數(shù)

  D.任何數(shù)的絕對值都不是負(fù)數(shù)

  22017·海安縣期中絕對值大于2且不大于5的整數(shù)有________個.

  3某檢修小組乘坐一輛汽車沿公路檢修供電線路,約定前進(jìn)為正,后退為負(fù),他們從出發(fā)到收工返回時,走過的路程記錄如下(單位:km):+5,-3,+7,-1,-4,+8,-12.求他們從出發(fā)到收工返回時,總共行駛的路程.

絕對值教案12

  一、學(xué)習(xí)與導(dǎo)學(xué)目標(biāo):

  知識與技能:會求出一個數(shù)的絕對值,能利用數(shù)軸及絕對值的知識,比較兩個有理數(shù)的大小;

  過程與方法:經(jīng)歷絕對值概念的形成,初步體會數(shù)形結(jié)合的思想方法,豐富解決問題的策略;

  情感態(tài)度:通過創(chuàng)設(shè)情境,初步感悟?qū)W習(xí)絕對值的必要性,促進(jìn)責(zé)任心的形成。

  二、學(xué)程與導(dǎo)程活動:

  A、創(chuàng)設(shè)情境(幻燈片或掛圖)

  1、兩輛汽車,其一向東行駛10km,另一向西行駛8km。為了區(qū)別,可規(guī)定向東行駛為正,則分別記作+10km和-8km。但在計算出租車收費,汽車行駛所耗的汽油,起主要作用的是汽車行駛的路程,而不是行駛的方向。此時,行駛路程則分別記作10km和8km。

  再如測量誤差問題、排球重量誰更接近標(biāo)準(zhǔn)問題

  2、在討論數(shù)軸上的'點與原點的距離時,只需要觀察它與原點相隔多少個單位長度,與位于原點何方無關(guān)。

  B、學(xué)習(xí)概念:

  1、我們把在數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolute value),記作︱a︱(幻燈片)。因此,上述+10,-8的絕對值分別是10,8。

  如在數(shù)軸上表示數(shù)-6的點和表示數(shù)6的點與原點的距離都是6,所以,-6和6的絕對值都是6,記作︱-6︱=6,︱6︱=6。(互為相反數(shù)的兩個數(shù)的絕對值相同)

  2、嘗試回答(1)︱+2︱= ,︱1/5︱= ,︱+8.2︱= ;

  (2)︱-3︱= ,︱-0.2︱= ,︱-8.2︱= ;

  (3)︱0︱= 。(幻燈片)

  思考:你能從中發(fā)現(xiàn)什么規(guī)律?引導(dǎo)學(xué)生得出:(幻燈片)

  性質(zhì):一個正數(shù)的絕對值是它本身;

  一個負(fù)數(shù)的絕對值是它的相反數(shù);

  零的絕對值是零。

  如果用字母a表示有理數(shù),上述性質(zhì)可表述為:

  當(dāng)a是正數(shù)時,︱a︱=a;

  當(dāng)a是負(fù)數(shù)時,︱a︱=-a;

  當(dāng)a=0時,︱a︱=0。

  解答課本P19/7及P15練習(xí),由P19/7體會絕對值在實際中的應(yīng)用,由練習(xí)1體會上面的三個等式,由練習(xí)2中提到的絕對值大小、數(shù)軸,引出問題:

  在引入負(fù)數(shù)以后,如何比較兩個數(shù)的大小,尤其是兩個負(fù)數(shù)的大小?

  3、讓我們?nèi)匀换氐綄嶋H中去看看有怎樣的啟發(fā),引導(dǎo)閱讀P16(幻燈片)。

  顯然,結(jié)合問題的實際意義不難得到:-4-202。

  因此,在數(shù)軸上你有何發(fā)現(xiàn)?生討論后發(fā)現(xiàn):從左往右表示的數(shù)越來越大。

  再找?guī)讉量試試是否如此?這些數(shù)的絕對值的大小如何?(可利用P19/6,8為素材)

  通過以上探究活動得到:正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù);

  兩個負(fù)數(shù),絕對值大的反而小。

  4、師生活動比較下列各對數(shù)的大。篜17例,P18練習(xí)。

  5、師生小結(jié)歸納(幻燈片)

  三、筆記與板書提綱:

  1、 幻燈片

  2、 師生板演練習(xí)P15/1

  四、練習(xí)與拓展選題:

  P19/4,5,9,10

絕對值教案13

  學(xué)習(xí)目標(biāo):

  1、能借助數(shù)軸初步理解絕對值的概念,會求一個數(shù)的絕對值。

  2、正確理解絕對值的代數(shù)意義和幾何意義,滲透數(shù)形結(jié)合與分類討論思想。重點和難點:理解絕對值的概念,能求一個數(shù)的絕對值。

  學(xué)習(xí)過程:

  任務(wù)一、復(fù)習(xí)舊知:

  1、什么叫互為相反數(shù)?在數(shù)軸上表示互為相反數(shù)的兩點和原點的位置關(guān)系怎樣?

  2、數(shù)軸上與原點的距離是2的點表示的數(shù)有_____個,他們表示的數(shù)是_____;與原點的距離是5的點有____個、任務(wù)二、新知理解:

  1、自讀課本p11-p12,體會絕對值的意義。

  絕對值的幾何意義:____________________________________、

  a的絕對值記作_______,如5的絕對值記作______,結(jié)果是_____、

  試一試:(1)|+6|=______,|0、2|=________,|+8、2|=_______

 。2)|0|=_______;

  (3)|-3|=_____,|-0、2|=_____,|-8、2|=________、

  絕對值的代數(shù)意義:(1)一個正數(shù)的絕對值是__________;

  (2)一個負(fù)數(shù)的絕對值是___________ (3)0的絕對值是___________。

  上述可以用式子表示為:(1)當(dāng)a是正數(shù)時, |a|=_______,

  ( 2 )當(dāng)a是負(fù)數(shù)時, |a|=_______,(2)當(dāng)a=0時, |a|=________,

  任務(wù)三:鞏固練習(xí)

  1、求下列各數(shù)的絕對值:?7

  12,?

  110

  ,?4、75,10、5

  2.計算|-2|+ |+8||34|?|?815

  ||-20|?|?45|

  3、絕對值是3的數(shù)是_______,有____個絕對值是1、5的數(shù)?4、判斷:(1)有理數(shù)的絕對值一定是正數(shù);

 。2)如果一個數(shù)是正數(shù),那么這個數(shù)的絕對值是它本身;(3)如果一個數(shù)的'絕對值是它本身,那么這個數(shù)是正數(shù)(4)一個數(shù)的絕對值越大,表示它的點在數(shù)軸上越靠右。歸納:(1)不論有理數(shù)a取何值,它的絕對值總是______。

  (2)兩個互為相反數(shù)的絕對值____。能力提升:

  (1) |-35、6|=________;|a|=_____(a<0);若|x|=5,則x=______(2)絕對值小于4的整數(shù)有________;絕對值大于2小于5的整數(shù)有________;

 。3)絕對值等于本身的數(shù)是_______,絕對值等于它的相反數(shù)的數(shù)是_________,絕對值最小的有理數(shù)是_______、(

  4)若|a-2|=3,則a=______

  歸納總結(jié):

  略

絕對值教案14

  教學(xué)目標(biāo)

  1.知識與技能

 、倌芨鶕(jù)一個數(shù)的絕對值表示距離,初步理解絕對值的概念,能求一個數(shù)的絕對值.

 、谕ㄟ^應(yīng)用絕對值解決實際問題,體會絕對值的意義和作用.

  2.過程與方法

  經(jīng)歷絕對值的代數(shù)定義轉(zhuǎn)化成數(shù)學(xué)式子的過程中,培養(yǎng)學(xué)生運用數(shù)學(xué)轉(zhuǎn)化思想指導(dǎo)思維活動的能力.

  3.情感、態(tài)度與價值觀

 、偻ㄟ^解釋絕對值的幾何意義,滲透數(shù)形結(jié)合的思想.

 、隗w驗運用直觀知識解決數(shù)學(xué)問題的成功.

  教學(xué)重點難點

  重點:給出一個數(shù),會求它的絕對值.

  難點:絕對值的幾何意義、代數(shù)定義的導(dǎo)出.

  教與學(xué)互動設(shè)計

  (一)創(chuàng)設(shè)情境,導(dǎo)入新課

  活動 請兩同學(xué)到講臺前,分別向左、向右行3米.

  交流 ①他們所走的路線相同嗎?

 、谌粝蛴覟檎,分別可怎樣表示他們的.位置? ③他們所走的路程的遠(yuǎn)近是多少?

  (二)合作交流,解讀探究

  觀察 出示一組數(shù)6與-6,3.5與-3.5,1和-1,它們是一對互為________,它們的__________不同,__________相同.

  總結(jié): 例如6和-6兩個數(shù)在數(shù)軸上的兩點雖然分布在原點的兩邊,但它們到原點的距離相等,如果我們不考慮兩點在原點的哪一邊,只考慮它們離開原點的距離,這個距離都是6,我們就把這個距離叫做6和-6的絕對值.

  絕對值:在數(shù)軸上表示數(shù)a的點與原點的距離叫做a的絕對值,記作│a│.

  想一想 -3的絕對值是什么?

絕對值教案15

  一、知識與技能

  (1)借助數(shù)軸初步理解絕對值的概念,能求一個數(shù)的絕對值。

  (2)通過應(yīng)用絕對值解決實際問題,體會絕對值的意義和作用。

  二、過程與方法

  通過觀察實例及絕對值的幾何意義,探索一個數(shù)的絕對值與這個數(shù)之間的關(guān)系,培養(yǎng)學(xué)生語言描述能力。

  三、情感態(tài)度與價值觀

  培養(yǎng)學(xué)生積極參與探索活動,體會數(shù)形結(jié)合的方法。

  教學(xué)重、難點與關(guān)鍵

  1.重點:正確理解絕對值的概念,能求一個數(shù)的絕對值。

  2.難點:正確理解絕對值的幾何意義和代數(shù)意義。

  3.關(guān)鍵:借助數(shù)軸理解絕對值的幾何意義,根據(jù)絕對值定義和相反數(shù)的概念,理解絕對值的代數(shù)意義。

  四、教學(xué)過程

  1.復(fù)習(xí)提問,新課引入

  2.什么叫互為相反數(shù)?

  3.在數(shù)軸上表示互為相反數(shù)的兩個點和原點的'位置關(guān)系怎樣?

  五、新授

  在一些量的計算中,有時并不注意其方向,例如,為了計算汽車行駛所耗的油量,起作用的是汽車行駛的路程而不是行駛的方向。

  1.觀察課本第11頁圖1.2-5,回答:

  (1)兩輛汽車行駛的路線相同嗎?

  (2)它們行駛路程的遠(yuǎn)近相同嗎?

   這兩輛車行駛的路線不同(方向相反),但行駛的路程的遠(yuǎn)近相同,都是10km.

  課本圖1.2-5中表示-10的點B和表示10的點A離開原點的距離都是10,我們就把這個距離10叫做數(shù)-10、10的絕對值。

  一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,記作│a│。

  這里的數(shù)a可以是正數(shù)、負(fù)數(shù)和0.

【絕對值教案】相關(guān)文章:

《絕對值》教案02-26

絕對值教案15篇11-12

教案教案及反思04-18

教案中班教案02-23

小班教案小班教案03-10

小班教案安全教案03-16

教案幼兒中班教案02-15

小班美術(shù)教案羊毛教案06-08

語言類教案中班教案02-27