亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

范文資料網>反思報告>教案大全>《《比例的意義》教案

《比例的意義》教案

時間:2022-12-02 15:32:24 教案大全 我要投稿

《比例的意義》教案

  作為一名人民教師,往往需要進行教案編寫工作,教案是教學藍圖,可以有效提高教學效率。來參考自己需要的教案吧!下面是小編精心整理的《比例的意義》教案,僅供參考,歡迎大家閱讀。

《比例的意義》教案

《比例的意義》教案1

  素質教育目標

 。ㄒ唬┲R教學點

  1.使學生理解正比例的意義。

  2.能根據(jù)正比例的意義判斷兩種量是不是成正比例。

 。ǘ┠芰τ柧汓c

  1.培養(yǎng)學生用發(fā)展變化的觀點來分析問題的能力。

  2.培養(yǎng)學生抽象概括能力和分析判斷能力。

  (三)德育滲透點

  1.通過引導學生用發(fā)展變化的觀點來分析問題,使學生進一步受到辯證唯物主義觀點的啟蒙教育。

  2.進一步滲透函數(shù)思想。

  教學重點:使學生理解正比例的意義。

  教學難點:引導學生通過觀察、思考發(fā)現(xiàn)兩種相關聯(lián)的量的變化規(guī)律,即它們相對應的數(shù)的比值一定,從而概括出正比例關系的概念。

  教具學具準備:投影儀、投影片、小黑板。

  教學步驟

  一、鋪墊孕伏

  用投影逐一出示下列題目,請同學回答:

  1.已知路程和時間,怎樣求速度?

  2.已知總價和數(shù)量,怎樣求單價?

  3.已知工作總量和工作時間,怎樣求工作效率?

  二、探究新知

  1.導入新課:這些都是我們已經學過的常見的數(shù)量關系。這節(jié)課,我們繼續(xù)研究這些數(shù)量關系中的一些特征。

  2.教學例1

  (1)投影出示:一列火車1小時行駛60千米,2小時行駛120千米,3小時行駛180千米,4小時行駛240千米,5小時行駛300千米,6小時行駛360千米,7小時行駛420千米,8小時行駛480千米……

  (2)出示下表,并根據(jù)上述內容填表。

  一列火車行駛的時間和所行的路程如下表

 。3)邊填表邊思考:在填表過程中,你發(fā)現(xiàn)了什么?

  學生交流時,使之明確。

 、俦碇杏袝r間和路程兩種量。

 、诋敃r間是1小時,路程則是60千米,時間是2小時,路程是120千米……時間變化,路程也隨著變化,時間擴大,路程隨著擴大;時間縮小,路程也隨著縮小。

  教師點撥:

  像這樣,時間變化,路程也隨著變化,我們就說,時間和路程是兩種相關聯(lián)的量。(板書:兩種相關聯(lián)的量)

 、廴绻麑W生沒有問題,教師提示:請每位同學任選一組相對應的數(shù)據(jù),計算出路程與時間的比的比值。

  教師問:根據(jù)計算,你發(fā)現(xiàn)了什么?

  引導學生得出:相對應的兩個數(shù)的比值都是60或都一樣,固定不變等。

  教師指出:相對應的兩個數(shù)的比的比值都一樣或固定不變,在數(shù)學上叫做“一定”。(板書:相對應的兩個數(shù)的比值一定)

 、鼙戎60,實際就是火車的速度。用式子表示它們的關系就是:

 。4)教師小結:

  剛才同學們通過填表、交流,我們知道時間和路程是兩種相關聯(lián)的量,路程隨著時間的變化而變化。時間擴大,路程隨著擴大;時間縮小,路程也隨著縮小。它們擴大、縮小的規(guī)律是:路程和時間的比的比值總是一定的。

  3.教學例2

 。1)出示例2:在一間布店的柜臺上,有一張寫著某種花布的米數(shù)和總價的表。

  (2)觀察上表,引導學生明確:

 、俦碇杏袛(shù)量(米數(shù))和總價這兩種量,它們是兩種相關聯(lián)的量。

  ②總價隨米數(shù)的變化情況是:

  米數(shù)擴大,總價隨著擴大;米數(shù)縮小,總價也隨著縮小。

 、巯鄬目們r和米數(shù)的比的比值是一定的。

 、鼙戎3.1,實際就是這種花布的單價。用式子表示它們的關系就是:

 。3)師生小結:通過剛才的觀察和分析,我們知道總價和米數(shù)也是兩種什么樣的量?(兩種相關聯(lián)的量)為什么?(總價隨著米數(shù)的變化而變化。)怎樣變化?(米數(shù)擴大,總價隨著擴大;米數(shù)縮小,總價隨著縮小。)它們擴大、縮小的規(guī)律是怎樣的?(總價和米數(shù)的比的比值總是一定的`。)

  4.抽象概括正比例的意義。

  (1)比較例1、例2,思考并討論,這兩個例子有什么共同點?

 。2)學生初步交流時引導學生明確:

 、倮1中有路程和時間兩種量;例2中有米數(shù)和總價兩種量。即它們都有兩種相關聯(lián)的量;

 、诶1中時間變化,路程就隨著變化;例2中米數(shù)變化,總價也隨著變化。

  教師點撥:像這樣,我們就可以說:一種量變化,另一種量也隨著變化。(板書)

 、劾1中路程與時間的比的比值一定:例2中總價與米數(shù)的比的比值一定。概括地講就是:兩種量中相對應的兩個數(shù)的比值(也就是商)一定。

  (學生答不出來時,教師引導、點撥,并補充板書:兩種量中)

 。3)引導學生抽象概括出兩例的共同點:

  兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,這兩種量中相對應的兩個數(shù)的比值(也就是商)一定。

 。4)教師指明:兩種相關聯(lián)的量,一種變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。

  (補充板書:如果這成正比例的量正比例關系)

  這就是我們這節(jié)課學習的“正比例的意義”(板書課題)

  (5)看書19、20頁的內容,進一步理解正比例的意義。

  (6)教師說明:在例1中,路程隨著時間的變化而變化,它們的比的比值(速度)保持一定,所以路程和時間是成正比例的量。

  (7)想一想:在例2中,有哪兩種相關聯(lián)的量?它們是不是成正比例的量?為什么?

 。8)教師提出:如果字母x和y表示兩種相關聯(lián)的量,用k表示它們的比值(一定),正比例關系怎樣用字母表示出來?

  (9)教師提出:根據(jù)正比例的意義以及表示正比例關系的式子想一想:構成正比例關系的兩種量必須具備哪些條件?

  5.教學例3

  (1)出示例3:每袋面粉的重量一定,面粉的總重量和袋數(shù)是不是成正比例?

  (2)根據(jù)正比例的意義,由學生討論解答。

 。3)匯報判斷結果,并說明判斷的根據(jù)。

  教師板書:

  面粉的總重量和袋數(shù)是兩種相關聯(lián)的量。

  所以面粉的總重量和袋數(shù)成正比例。

  6.反饋練習

  讓學生試做第21頁的做一做,并訂正。

  三、鞏固發(fā)展

  1.完成練習三第1題。

  先想一想成正比例的量要滿足哪幾個條件?再算出各表相對應數(shù)的比的比值。如果相等,列關系式判斷。第(3)題不成比例,訂正時要學生說明為什么?

  2.完成練習三第2題的(1)-(9)

  先讓學生自己判斷,再訂正。

  四、全課小結(師生共同進行)

  通過這節(jié)課的學習,你都知道了什么?怎樣判斷兩種量是否成正比例?

《比例的意義》教案2

  教學目標:

  1、理解比例的意義,認識比例各部分名稱,能通過觀察、猜想、驗證等方法得出分數(shù)的基本性質。

  2、能根據(jù)比例的意義和基本性質,正確判斷兩個比能否組成比例。

  3、培養(yǎng)學生猜想與驗證、觀察與概括的能力。

  4、讓學生經經歷探究的過程,體驗成功的快樂,收獲數(shù)學學習的興趣和信心。

  教學重點:理解比例的意義和基本性質,能正確判斷兩個比能否組成比例。

  教學難點:自主探究比例的基本性質。

  教學準備:投影片、練習紙

  三案設計:

  學案

  一、自學質疑

  [探究任務一] 比例的意義

  1、投影出示幾組比,讓學生寫出各組的比值,

  二、比例的基本性質

  教案

  一、回顧舊知、孕伏新知:

  1、談話:同學們,我們已經學過了比的許多知識,說說你已經知道了比的哪些知識?

  (生答:比的意義、各部分名稱、基本性質等。)

  還記得怎樣求比值嗎?能很快算出下面每組中兩個比的比值嗎?

  2、 師板書題目:

 。1)4:5 20:25 (2)0.6:0.3 1.8:0.9

 。3)1/4: 5/8 3:7.5 (4)3:8 9:27

  [評析:開門見山,從學生已有的知識經驗入手,方便快捷,循序漸進,為新課做好準備。因為這些題目還要用到,所以不惜費時板書——有效的呈現(xiàn)方式]

  二、絲絲入扣,深挖比例的意義

 。ㄒ唬┱J識意義

  1、 指名口答每組中兩個比的比值,在比例下方寫上比值。

  師問:你們有什么發(fā)現(xiàn)嗎?(三組比值相等,一組不等)

  2、是啊,這種現(xiàn)象早就引起了人們的重視和研究。人們把比值相等的兩個比用等號連起來,寫成一種新的式子,如:4:5=20:25

  師:最后一組能用等號連接嗎?為什么?

  數(shù)學中規(guī)定,像這樣的一些式子就叫做比例,今天這節(jié)課我們就一起來研究比例(板書:比例)

  [評析:通過口算求比值,不經意間學生就有了發(fā)現(xiàn),有三組式子比值相等,一組不等,如行云流水般引出比例。有效的課堂教學,就需要像這樣做好新舊知識的完美銜接。]

  3、同學們想研究比例的哪些內容呢?

 。ㄉ穑合胙芯勘壤囊饬x,學比例有什么用?比例有什么特點……)

  4、那好,我們就先來研究比例的意義,到底什么是比例呢?觀察黑板上這些式子,你能說出什么叫比例嗎?

  (根據(jù)學生的回答,教師抓住關鍵點板書:兩個比 比值相等)

  同學們說的比例的意義都正確,不過數(shù)學中還可以說得更簡潔些。

  板演:表示兩個比相等的式子叫做比例。

  學生議一議,明確:有兩個比,且比值相等,就能組成比例;反之,如果是比例,就一定有兩個比,且比值相等。

  5、質疑:有三個比,他們的比值相等,能組成比例嗎?

  [評析:比例的意義其實是一種規(guī)定,學生只要搞清它“是什么”,而不需要知道“為什么”。本環(huán)節(jié)讓學生先觀察,再用自己的話說說什么是比例,學生都能說出比例意義的關鍵所在——兩個比且比值相等,教師再精簡語句,得出概念,注重了對學生語言概括能力的培養(yǎng)。在總結得出概念之后,教師沒有嘎然而止,而是繼續(xù)引導學生議一議,從正反兩方面進一步認識比例,加深了學生對比例的內涵的理解。讓學生像一個數(shù)學家一樣真正經歷知識探索和形成的全過程,無時無刻不享受成功的快樂!]

 。ǘ┚毩

  1、投影出示例1,根據(jù)下表,先分別寫出兩次買練習本的錢數(shù)和本數(shù)的比,再判斷這兩個比能否組成比例。

 。1)學生獨立完成。

  (2)集體交流,明確:根據(jù)比例的意義可以判斷兩個比能否組成比例。

  2、完成練習紙第1題。

  一輛汽車上午4小時行駛了200千米,下午3小時行駛了150千米。

  (1)分別寫出上、下午行駛的路程和時間的比,這兩個比能組成比例嗎?為什么?

  (2)分別寫出上、下午行駛的`路程的比和時間的比,這兩個比能組成比例嗎?為什么?

  [評析:這兩道練習題既幫助學生鞏固了比例的意義,學會根據(jù)比例的意義判斷兩個比能否組成比例;又讓學生進一步體驗到比例在生活中的應用。這一環(huán)節(jié),一學生對于“為什么”設計到了正反比例的知識,教師也不失時機予以評價,不但使該生興致勃勃,也引得其他學生投來艷羨的目光,生成地精彩!]

  3、剛才我們先寫出了比,然后再寫出了比例,你覺得比和比例一樣嗎?有什么區(qū)別?

 。ㄒ龑W生歸納出:比例由兩個比組成,有四個數(shù);比是一個比,有兩個數(shù))

  4、認識比例各部分的名稱

 。1)板書出示: 4 : 5

  前項 后項

  (2)板書出示:4 : 5 = 20 : 25

  (3)如果把比例寫成分數(shù)的形式,你能指出它的內、外項嗎?

  課件出示:4/5=20/25

  [評析:由練習題中先寫比、再寫比例,自然引出比和比例的的區(qū)別,再由比的各部分名稱到比例的各部分名稱,環(huán)環(huán)相扣、自然流暢、一氣呵成。]

  5、小結、過渡:

  剛才我們已經研究了比例的意義及其各部分名稱,也知道了比例在生活中有很多的應用,接下來我們一起來研究比例是否也有什么規(guī)律或者性質,大家有興趣嗎?

  三、探究比例的基本性質

  1、投影出示:

  你能運用3、5、10、6這四個數(shù),組成幾個等式嗎?(等號兩邊各兩個數(shù))

  2、 獨立思考,并在作業(yè)本上寫一寫。

  學生組成的等式可能有:10÷5=6÷3

  或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……

  根據(jù)學生回答,師相機引導并板書: 3×10=5×6 3:5=6:10

  3:6=5:10

  5:3=10:6

  6: 3=10:5……

  3、 引導發(fā)現(xiàn)規(guī)律

  (1)還有不同的乘法算式嗎?(沒有,交換因數(shù)的位置還是一樣)

  乘法算式只能寫一個,比例卻寫了這么多,這些比例一樣嗎?(不一樣,因為比值各不相同)

 。2)那么,這些比例式中,有沒有什么相同的特點或規(guī)律呢?仔細觀察,你能發(fā)現(xiàn)比例的性質或規(guī)律嗎?

  (3)學生先獨立思考,再小組交流,探究規(guī)律。

  (板書:兩個外項的積等于兩個內項的積。)

  [評析:“運用這四個數(shù),你能組成幾個等式”,不同的學生寫出的算式各不相同,也會有多少之別,這里充分發(fā)揮交流的作用,讓每一個學生的思考都變成有用的教學資源。考慮到直接探究比例的基本性質學生會有困難,教師作了適當?shù)囊龑,通過乘法算式和比例式的橫向聯(lián)系,讓學生在變中尋不變,從而探究出性質。]

  4、驗證猜想:

  師:這是你的猜想,有了猜想還必須驗證。

 。1)請看黑板上這幾個比例的內項的積與外項的積是不是相等?(學生進行驗證,紛紛表示內項積等于外項積)

 。2)學生任意寫一個比例并驗證。師巡視指導。

  師:有一位同學也寫了一個比例,他認為這個比例的內項積與外項積是不相等的,大家看看是什么原因?

  板書:1/2 ∶1/8 = 2∶ 8

  眾生沉思片刻,紛紛發(fā)現(xiàn)等式不成立。

  生:1/2∶1/8 = 4,而 2∶8 =1/4,這兩個比不能組成比例。

  師:看來剛才發(fā)現(xiàn)的規(guī)律前要加一個條件——在比例里(板書),這個規(guī)律叫做比例的基本性質。

  [評析:給學生提供大量的事例,要求他們多方面驗證,從個別推廣到一般,讓學生學會科學地、實事求是地研究問題。]

  5、思考4/5=20/25是那些數(shù)的乘積相等。課件顯示:交叉相乘。

  6、小結:剛才我們是怎樣發(fā)現(xiàn)比例的基本性質的?(寫了一些比例式,觀察比較,發(fā)現(xiàn)規(guī)律,再驗證)

  [及時總結評價,不但可以幫助學生理清知識脈絡,而且可以讓他們感受創(chuàng)造的快樂,樹立學習的信心。尤其是教師的評價:科學家也是這樣研究問題的!更給了學生無上的榮耀!]

  四、反饋提升

  完成練習紙2、3、4

  附練習紙:2、下面每組中的兩個比能組成比例嗎?把組成的比例寫下來,并說說判斷的理由。

  14 :21 和 6 :9 1.4 :2 和 5 :10

  讓學生明確可以通過比例的意義和基本性質兩個途徑判斷兩個比能否組成比例。

  3、判斷下面哪一個比能與 1/5:4組成比例。

 、5:4 ②20:1

 、1:20 ④5:1/4

  4、在( )里填上合適的數(shù)。

 、1.5:3=( ):4

  12:( )=( ):5

  [評析:習題的安排旨在對比例的意義和基本性質進行進一步的鞏固和應用,第4題中第②題屬于開放題,答案不唯一,意在進一步讓學生體驗和感悟數(shù)學的“變”與“不變”的美妙與統(tǒng)一。]

  五、課后留白

  同一時間、同一地點,人高1.5米,影長2米;樹高3米,影長4米。

 。1)人高和影長的比是( )

  樹高和影長的比是( )

 。2)人高和樹高的比是( )

  人影長和樹影長的比是( )

  你有什么發(fā)現(xiàn)?

  為什么同一時間、同一地點兩個不同物體高度與其影長的比可以組成比例?請大家課后查找有關資料。

  [設計意圖:數(shù)學服務于生活,在生活中能更好地檢驗數(shù)學學習的成色!“帶著問題離開教室”是新課程的理念,沒有完美的課堂,缺憾不失為一種美!]

  六、全課總結:這節(jié)課你有什么收獲?

  (最后的機會仍然給學生,學生通過清晰的板書總結的很到位)

《比例的意義》教案3

  教學目標

  1.使學生理解并掌握比例的意義和基本性質.

  2.認識比例的各部分的名稱.

  教學重點

  比例的意義和基本性質.

  教學難點

  應用比例的意義或基本性質判斷兩個比能否組成比例,并能正確地組成比例.

  教學過程

  一、復習準備.

  (一)教師提問復習.

  1.什么叫做比?

  2.什么叫做比值?

  (二)求下面各比的比值.

  12∶16 4.5∶2.7 10∶6

  教師提問:上面哪些比的比值相等?

  (三)教師小結

  4.5∶2.7和10∶6這兩個比的比值相等,也就是說兩個比是相等的,因此它們可以

  用等號連接.

  教師板書:4.5∶2.7=10∶6

  二、新授教學.

  (一)比例的意義(課件演示:比例的意義)

  例1.一輛汽車第一次2小時行駛80千米,第二次5小時行駛200千米.列表如下:

  時間(時)

  2

  5

  路程(千米)

  80

  200

  1.教師提問:從上表中可以看到,這輛汽車,

  第一次所行駛的路程和時間的比是幾比幾?

  第二次所行駛的路程和時間的比是幾比幾?

  這兩個比的比值各是多少?它們有什么關系?(兩個比的比值都是40,相等)

  2.教師明確:兩個比的比值都是40,所以這兩個比相等.因此可以寫成這樣的等式

  80∶2=200∶5或 .

  3.揭示意義:像4.5∶2.7=10∶6、80∶2=200∶5這樣的等式,都是表示兩個比相等的式子,我們把它叫做比例.(板書課題:比例的意義)

  教師提問:什么叫做比例?組成比例的關鍵是什么?

  板書:表示兩個比相等的式子叫做比例.

  關鍵:兩個比相等

  4.練習

  下面哪組中的兩個比可以組成比例?把組成的`比例寫出來.

 。1)6∶10和9∶15 (2)20∶5和1∶4

 。3) 和 (4)0.6∶0.2和

  5.填空

 。1)如果兩個比的比值相等,那么這兩個比就( )比例.

  (2)一個比例,等號左邊的比和等號右邊的比一定是( )的.

  (二)比例的基本性質(課件演示:比例的基本性質)

  1.教師以80∶2=200∶5為例說明:組成比例的四個數(shù),叫做比例的項.兩端的兩項叫做比例的外項,中間的兩項叫做比例的內項.(板書)

  2.練習:指出下面比例的外項和內項.

  4.5∶2.7=10∶6 6∶10=9∶15

  3.計算上面每一個比例中的外項積和內項積,并討論它們存在什么關系?

  以80∶2=200∶5為例,指名來說明.

  外項積是:80×5=400

  內項積是:2×200=400

  80×5=2×200

  4.學生自己任選兩三個比例,計算出它的外項積和內項積.

  5.教師明確:在比例里,兩個外項的積等于兩個內項的積.這叫做比例的基本性質

  板書課題:加上“和基本性質”,使課題完整.

  6.思考:如果把比例寫成分數(shù)形式,等號兩端的分子和分母分別交叉相乘的積有什么關系?為什么?

  教師板書:

  7.練習

  應用比例的基本性質,判斷下面哪一組中的兩個比可以組成比例.

  6∶3和8∶5 0.2∶2.5和4∶50

  三、課堂小結.

  這節(jié)課我們學習了比例的意義和基本性質,并學會了應用比例的意義和基本性質組成比例.

  四、鞏固練習.

  (一)說一說比和比例有什么區(qū)別.

  (二)填空.

  在6∶5=30∶25這個比例中,外項是( )和( ),內項是( )和( ).

  根據(jù)比例的基本性質可以寫成( )×( )=( )×( ).

  (三)根據(jù)比例的意義或者基本性質,判斷下面哪組中的兩個比可以組成比例.

  1.6∶9和9∶12 2.1.4∶2和7∶10

  3.0.5∶0.2和 4. 和7.5∶1

 。ㄋ模┫旅娴乃膫數(shù)可以組成比例嗎?把組成的比例寫出來.(能組幾個就組幾個)

  2、3、4和6

  五、課后作業(yè).

  根據(jù)3×4=2×6寫出比例.

  六、板書設計.

  省略

《比例的意義》教案4

  教學目標

  知識目標:理解比例的意義,掌握組成比例的關鍵條件。

  能力目標:能正確的判斷兩個比能否組成比例。

  情感目標:通過動手、動腦、觀察、計算、討論等方式,使學生自主獲取知識,全面參與教學活動。

  重點解比例的意義,掌握組成比例的關鍵條件。

  難點正確的判斷兩個比能否組成比例。

  教學過程教學預設個性修改。

  目標導學復習激趣目標導學自主合作匯報交流變式訓練。

  創(chuàng)境激疑

  一、創(chuàng)設情境,導入新課

  師:同學們,每周一的早上我們學校都要舉行莊嚴的升國旗儀式,那么,你們對國旗都有哪些了解呢?(生自由回答)

  師:同學們都說出了自己的想法,說明你們都很熱愛我們的國家,希望你們以后一定要好好學習,做一個有用的人,把我們的國家建設的更加美好!五星紅旗是莊嚴而美麗的,并且它與我們數(shù)學也有著密切的聯(lián)系,這也就是我們今天所要研究的內容:比例(板書課題:比例)

  合作探究

  二、新授(課件出示不同大小的國旗圖案)

  師:畫面上出現(xiàn)了四幅不同大小的國旗,請同學們任選兩面國旗來算一算它們各自長與寬的比值是多少?然后觀察結果,你能發(fā)現(xiàn)什么?

 。ò逖,觀察到比值相等,教師板書:兩個比相等)

  師:那我們就可以將這兩個比用等號連接。(教師板書生匯報的兩個相等的比)

  教師邊指著這組相等的比一邊說:好,像這樣表示兩個比相等的式子就叫做比例。(把定義補充完整)。這就是比例的意義(把課題板書完整)請同學們齊讀。

  請同學們再默讀一遍比例的意義,思考:想要組成比例必須要具備哪些條件?(生回答,等式;有兩個相等的.比)

  (教師再強調:一定是比值相等的兩個比才能組成比例。)

  師:你還能從四面國旗中找出哪些比例?

 。▽懺诰毩暠旧,然后匯報。教師板書)

  師:我們在學習比的時候,可以把比寫成分數(shù)的形式,比如:60:40=60/40,那比例也能寫成分數(shù)的形式嗎?怎么寫?(口答)

  師:我們剛才一直在強調比和比例的聯(lián)系,那么比就是比例嗎?

  從形式上區(qū)分:比由兩個數(shù)組成;比例由四個數(shù)組成。

  從意義上區(qū)分:比表示兩個數(shù)之間的倍數(shù)關系;比例表示兩個比相等的式子。

  拓展應用下面哪些組的兩個比可以組成比例?如果能,在()打對號。

  10:2和35:42()0.6:0.2和):4和3:():和12:8()

  總結小強3分鐘走了180米,小剛1小時走了3.6千米。小強說他們各自所走的路程和時間的比能組成比例,小剛說不能組成比例。請問:誰說的對?

  作業(yè)布置做一做。

  板書設計比例的意義

  2.4:1.6=60:40=

  2.4:1.6=60:40

 。ɑ颍=

《比例的意義》教案5

  教學目標:

  1、 理解比例的意義,認識比例各部分名稱,初步了解比和比例的區(qū)別;理解比例的基本性質。

  2、 能根據(jù)比例的意義和基本性質,正確判斷兩個比能否組成比例。

  3、 在自主探究、觀察比較中,培養(yǎng)學生分析、概括能力和勇于探索的精神。

  4、 通過自主學習,讓學生經經歷探究的過程,體驗成功的快樂。

  教學重、難點:

  重點:理解比例的意義和基本性質,能正確判斷兩個比能否組成比例。

  難點:自主探究比例的基本性質。

  教學準備:CAI課件

  教學過程:

  一、復習、導入

  1、 談話:同學們,我們已經學過了比的有關知識,說說你對比已經有了哪些了解?(生答:比的意義、各部分名稱、基本性質等。)

  還記得怎樣求比值嗎?

  2、 課件顯示:算出下面每組中兩個比的比值

 、 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9

 、 5/8:1/4 7.5:3 ⑷ 2:8 9:27

  [評析:從學生已有的知識經驗入手,方便快捷,為新課做好準備。]

  二、認識比例的意義

 。ㄒ唬┱J識意義

  1、 指名口答上題每組中兩個比的比值,課件依次顯示答案。

  師問:口算完了,你們有什么發(fā)現(xiàn)嗎?(3組比值相等,1組不等)

  2、是啊,生活中確實有很多像這樣的比值相等的例子,這種現(xiàn)象早就引起了人們的重視和研究。人們把比值相等的兩個比用等號連起來,寫成一種新的式子,如:3:5=18:30 。

 。ㄕn件顯示:“3:5”與“18:30”先同時閃爍,接著兩個比下面的比值隱去,再用等號連接)

  最后一組能用等號連接嗎?為什么?(課件顯示:最后一組數(shù)據(jù)隱去)

  數(shù)學中規(guī)定,像這樣的一些式子就叫做比例。(板書:比例)

  [評析:通過口算求比值,發(fā)現(xiàn)有3組比值相等,1組不等,自然流暢地引出比例。有效的課堂教學,就需要像這樣做好已有經驗與新知識的銜接。]

  3、今天這節(jié)課我們就一起來研究比例,你想研究哪些內容呢?

 。ㄉ穑合胙芯勘壤囊饬x,學比例有什么用?比例有什么特點……)

  5、 那好,我們就先來研究比例的意義,到底什么是比例呢?觀察這些式子,你能說出什么叫比例嗎?

 。ǜ鶕(jù)學生的回答,教師抓住關鍵點板書:兩個比 比值相等)

  同學們說的比例的意義都正確,不過數(shù)學中還可以說得更簡潔些。

  課件顯示:表示兩個比相等的式子叫做比例。

  學生讀一讀,明確:有兩個比,且比值相等,就能組成比例;反之,如果是比例,就一定有兩個比,且比值相等。

  [評析:比例的意義其實是一種規(guī)定,學生只要搞清它“是什么”,而不需要知道“為什么”。本環(huán)節(jié)讓學生先觀察,再用自己的話說說什么是比例,學生都能說出比例意義的關鍵所在——兩個比且比值相等,教師再精簡語句,得出概念,注重了對學生語言概括能力的培養(yǎng)。在總結得出概念之后,教師沒有嘎然而止,而是繼續(xù)引導學生讀一讀,從正反兩方面進一步認識比例,加深了學生對比例的內涵的理解。]

 。ǘ┚毩

  1、 出示例1 根據(jù)下表,先分別寫出兩次買練習本的錢數(shù)和本數(shù)的比,再判斷這兩個比能否組成比例。

  第一次

  第二次

  買練習本的錢數(shù)(元)

  1.2

  2

  買的本數(shù)

  3

  5

 。1)學生獨立完成。

 。2)集體交流,明確:根據(jù)比例的意義可以判斷兩個比能否組成比例。

  2、完成練習紙第一題。

  一輛汽車上午4小時行駛了200千米,下午3小時行駛了150千米。

  ⑴分別寫出上、下午行駛的路程和時間的比,這兩個比能組成比例嗎?為什么?

 、品謩e寫出上、下午行駛的路程的比和時間的比,這兩個比能組成比例嗎?為什么?

  [評析:這兩道練習題既幫助學生鞏固了比例的意義,學會根據(jù)比例的意義判斷兩個比能否組成比例;又讓學生進一步體驗到比例在生活中的應用。練習1其實是對例題的巧妙補充。]

  3、剛才我們先寫出了比,然后再寫出了比例,你覺得比和比例一樣嗎?有什么區(qū)別?

 。ㄒ龑W生歸納出:比例由兩個比組成,有四個數(shù);比是一個比,有兩個數(shù))

  4、教學比例各部分的名稱

 。1) 課件出示: 3 : 5

  前項 后項

  (2) 課件出示:3 : 5 = 18 : 30

  內項

  外項

 。3) 如果把比例寫成分數(shù)的形式,你能指出它的內、外項嗎?

  課件出示:3/5=18/30

  [評析:由練習題中先寫比、再寫比例,自然引出比和比例的的區(qū)別,再由比的各部分名稱到比例的各部分名稱,環(huán)環(huán)相扣、自然流暢、一氣呵成。]

  5、小結、過渡:

  剛才我們已經研究了比例的意義、各部分名稱,也知道了比例在生活中有很多的應用,接下來我們一起來研究比例是否也有什么規(guī)律或者性質,有興趣嗎?

  三、探究比例的基本性質

  1、課件先出示一組數(shù):3、5、10、6

  再出示:運用這四個數(shù),你能組成幾個等式?(等號兩邊各兩個數(shù))

  2、 獨立思考,并在作業(yè)本上寫一寫。

  學生組成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……

  根據(jù)學生回答板書: 3×10=5×6 3:5=6:10

  3:6=5:10

  5:3=10:6

  6:3=10:5

  3、 引導發(fā)現(xiàn)規(guī)律

  (1)還有不同的乘法算式嗎?(沒有,交換因數(shù)的位置還是一樣)

  乘法算式只能寫一個,比例卻寫了這么多,這些比例一樣嗎?(不同,因為比值各不相同)

  (2)那么,這些比例式中,有沒有什么相同的特點或規(guī)律呢?仔細觀察,你能發(fā)現(xiàn)比例的性質或規(guī)律嗎?

  (3)學生先獨立思考,再小組交流,探究規(guī)律。

 。ò鍟簝蓚外項的積等于兩個內項的積。)

  [評析:“運用這四個數(shù),你能組成幾個等式”,不同的學生寫出的算式各不相同,也會有多少之別,這里充分發(fā)揮交流的作用,讓每一個學生的思考都變成有用的教學資源?紤]到直接探究比例的'基本性質學生會有困難,教師作了適當?shù)囊龑,通過乘法算式和比例式的橫向聯(lián)系,讓學生在變中尋不變,從而探究出性質。]

  4、驗證:是不是任意一個比例都有這樣的規(guī)律?

 、耪n件顯示復習題(4組),學生驗證。

 、茖W生任意寫一個比例并驗證。

 、峭暾鍟涸诒壤,兩個外項的積等于兩個內項的積。這就是比例的基本性質。

  [評析:給學生提供大量的事例,要求他們多方面驗證,從個別推廣到一般,讓學生學會科學地、實事求是地研究問題。]

  5、思考3/5=18/30是那些數(shù)的乘積相等。課件顯示:交叉相乘。

  6、小結:剛才我們是怎樣發(fā)現(xiàn)比例的基本性質的?(寫了一些比例式,觀察比較,發(fā)現(xiàn)規(guī)律,再驗證)

  四、 綜合練習

  完成練習紙2、3、4

  附練習紙:2、下面每組中的兩個比能組成比例嗎?把組成的比例寫下來,并說說判斷的理由。

  14 :21 和 6 :9

  1.4 :2 和 5 :10

  3、判斷下面哪一個比能與 1/5:4組成比例。

 、5:4 ② 20:1

 、1:20 ④5:1/4

  4、在( )里填上合適的數(shù)。

  1.5:3=( ):4

  =

  12:( )=( ):5

  [評析:習題的安排旨在對比例的意義和基本性質進行進一步的鞏固和應用,最后一道開放題答案不唯一,意在進一步讓學生體驗和感悟數(shù)學的“變”與“不變”的美妙與統(tǒng)一。]

  五、全課總結(略)

《比例的意義》教案6

  教學目標

  1.使學生理解,能夠初步判斷兩種相關聯(lián)的量是否成比例,成什么比例.

  2.通過觀察、比較、歸納,提高學生綜合概括推理的能力.

  3.滲透辯證唯物主義的觀點,進行“運用變化觀點”的啟蒙教育.

  教學重點

  理解正反比例的意義,掌握正反比例的變化的規(guī)律.

  教學難點

  理解正反比例的意義,掌握正反比例的變化的規(guī)律.

  教學過程

  一、導入新課

  (一)昨天老師買了一些蘋果,吃了一部分,你能想到什么?

 。ǘ┙處熖釂

  1.你為什么馬上能想到還剩多少呢?

  2.是不是因為吃了的和剩下的是兩種相關聯(lián)的量?

  教師板書:兩種相關聯(lián)的量

 。ㄈ┙處熣勗

  在實際生活中兩種相關的量是很多的,例如總價和單價是兩種相關聯(lián)的量,總價和

  數(shù)量也是兩種相關聯(lián)的量.你還能舉出一些例子嗎?

  二、新授教學

  (一)成正比例的量

  例1.一列火車行駛的時間和所行的路程如下表:

時間(時)




1




2




3




4




5




6




7




8




……




路程(千米)




90




180




270




360




450




540




630




720




……




  1.寫出路程和時間的比并計算比值.

  (1)

 。2) 2表示什么?180呢?比值呢?

 。3) 這個比值表示什么意義?

 。4) 360比5可以嗎?為什么?

  2.思考

  (1)180千米對應的時間是多少?4小時對應的路程又是多少?

 。2)在這一組題中上邊的一列數(shù)表示什么?下邊一列數(shù)表示什么?所求出的比值呢?

  教師板書:時間、路程、速度

 。3)速度是怎樣得到的?

  教師板書:

 。4)路程比時間得到了速度,速度也就是比值,比值相當于除法中的什么?

 。5)在這組題中誰與誰是兩種相關聯(lián)的量?它們是如何相關聯(lián)的?舉例說明變化規(guī)律.

  3.小結:有什么規(guī)律?

  教師板書:商不變

  (二)成反比例的量

  1.華豐機械廠加工一批機器零件,每小時加工的數(shù)量和所需的加工時間如下表.

工效(個)




10




20




30




40




50




60




……
時間(時)

60




30




20




15




12




10




……




  2.教師提問

 。1)計算工效和時間的乘積.

 。2)這一組題中涉及了幾種量?誰與誰是相關聯(lián)的量?

 。3)請你舉例說明誰與誰是相對應的兩個數(shù)?

 。4)在這一組題中兩種相關聯(lián)的量是如何變化的?(舉例說明)

  3.小結:有什么規(guī)律?(板書:積不變)

  (三)不成比例的量

  1.出示表格

運走的噸數(shù)




10




20




30




40




剩下的噸數(shù)




90




80




70




60




總噸數(shù)(和不變)




100




100




100




100




  2.教師提問

 。1)總噸數(shù)是怎樣得到的?

 。2)誰與誰是兩種相關聯(lián)的量?

 。3)它們又是怎樣變化的?變化的規(guī)律是什么?

  運走的噸數(shù)少,剩下的噸數(shù)多;運走的噸數(shù)多,剩下的噸數(shù)少;總和不變

  (四)結合三組題觀察、討論、總結變化規(guī)律.

  討論題:

  1.這三組題每組題中誰與誰是兩種相關聯(lián)的量?

  2.在變化過程當中,它們的異同點是什么?

  共同點:都有兩種相關聯(lián)的量,一種量變化,另一量也隨著變化

  不同點:第一組商不變,第二組積不變,第三組和不變.

  總結:

  3.分別概括

  4.強調第三組題中兩種相關聯(lián)的量叫做不成比例

  5.教師提問

 。1)兩種量成正比例必須具備什么條件?

  (2)兩種量成反比例必須具備什么條件?

 。ㄎ澹┳帜戈P系式

  三、鞏固練習

  判斷下面各題是否成比例?成什么比例?

  1.一種圓珠筆

總價(元)




1。2




2。4




3。6




4。8




6




7。2




支數(shù)




1




2




3




4




5




6




單價(元)




1




2




4




5




10




支數(shù)




100




50




25




20




10




  (1)表中有哪兩種相關聯(lián)的量?

  (2)說出幾組這兩種量中相對應的兩個數(shù)的比

 。3)每組等式說明了什么?

 。4)兩種相關的量是否成比例?成什么比例?

  2.當速度一定,時間路程成什么比例?

  當時間一定,路程和速度成什么比例?

  當路程一定,速度和時間成什么比例?

  3.長方形的面一定,長和寬

  4.修一條路,已修的米數(shù)和剩下的米數(shù).

  四、課堂總結

  今天這節(jié)課我們初步了解了正反比例的意義,并能運用正反比例的意義判斷一些簡單的問題.通過正反比例意義的對比,使我們進一步認識到,要判斷兩種相關聯(lián)的量是成正比例關系還是反比例的關系,要抓住兩種相關聯(lián)的.量的變化規(guī)律,這是本質.

  五、課后作業(yè)

  (一)判斷下面每題中的兩種量是不是成正比例,并說明理由.

  1.蘋果的單價一定,購買蘋果的數(shù)量和總價.

  2.輪船行駛的速度一定,行駛的路程和時間.

  3.每小時織布米數(shù)一定,織布總米數(shù)和時間.

  4.長方形的寬一定,它的面積和長.

 。ǘ┡袛嘞旅婷款}中的兩種量是不是成反比例,并說明理由.

  1.煤的總量一定,每天的燒煤量和能夠燒的天數(shù).

  2.種子的總量一定,每公頃的播種量和播種的公頃數(shù).

  3.李叔叔從家到工廠,騎自行車的速度和所需時間.

  4.華容做12道數(shù)學題,做完的題和沒有做的題.

  六、板書設計

《比例的意義》教案7

  教學目標:

  (1)通過計算、觀察、比較,讓學生概括、理解比例的意義和比例的基本性質。

  (2)認識比例的各部分名稱。

  (3)學會用比例的意義或比例的基本性質,判斷兩個比能不能組成比例,并寫出比例。

  教學重點難點:

  理解比例的意義和基本性質,會用比例的意義和基本性質判斷兩個比能不能組成比例,并寫出比例。

  教具學具準備:幻燈片、學習卡。

  教學過程:

  一、創(chuàng)設情景,引入新課。

  出示三幅場景圖。

 。1)圖上描述的是什么情景?這幾幅圖都與什么有關?

 。2)這三面國旗有什么相同和不同的地方?(形狀相同,大小不同)

 。3)你們有見過這樣的國旗嗎?或者這樣的?

  我們的國旗,不論大小,之所以形狀相同,是因為它們都是按照一定的比例來制作的,從今天開始,我們將要學習有關比例的知識。板書課題

  二、自主探究,明確意義

  1、提問:你們知道每一幅圖中國旗的長和寬分別是多少嗎?

  2、談話:在制作國旗的過程中存在著有趣的比。請同學們拿出第一張自主學習卡,算一算這三幅國旗的長、寬之比,求出比值,并同桌互相說一說你有什么發(fā)現(xiàn)?

  3、學生匯報。

  4、我們以操場上和教室里的國旗為例,2.4:1.6= ,60:40= ,這兩個比的比值相等,中間可以用等號連接起來,寫成2.4:1.6=60:40,因為比還可以寫成分數(shù)形式,所以還可以寫成=。

  像這樣表示兩個比相等的式子叫做比例。(板書)

  5、在上圖的三面國旗的尺寸中,還有哪些比可以組成比例?

  6、深入探討:

 。1)比例有幾個比組成?

 。2)是不是任意兩個比都能組成比例?

 。3)判斷兩個比能不能組成比例,關鍵要看什么?

  7、完成“做一做”。

  三、探究比例的基本性質。

  1、學習比例各部分的名稱。

  教師:我們知道組成比的兩個數(shù)分別叫前項和后項,組成比例的四個數(shù)也有自己的名字,你們知道它們分別叫什么嗎?(課件出示)

  (1)指名讀一讀有關知識。

  (2)誰來介紹一下在2.4:1.6=60:40中,內項和外項分別是誰?

  隨著學生的回答教師出示:

  2.4: 1.6 = 60: 40 (外項)(內項)

  └-內項-┘ =

  └------外項-------┘ (內項)(外項)

  (3)如果把比例寫成分數(shù)形式,你能找出它的內項和外項嗎?

 。4)任意選擇一個比例式,標出內項、外項,同桌兩人互相檢查。

  2、研究比例的基本性質。

 。1)活動探究,總結性質。

  談話:比有基本性質,比例表示兩個比相等的.式子,也有它特有的性質,請同學們拿出2號自主學習卡,小組討論一下,寫一寫,算一算,解決以下問題。

 、儆嬎阆旅姹壤袃蓚外項的積和兩個內項的積,比較一下,你能發(fā)現(xiàn)什么?

  2.4:1.6=60:40 =

 、谀隳芘e一個例子,驗證你的發(fā)現(xiàn)嗎?

 、勰隳艿贸鍪裁唇Y論?

 、苣隳苡米帜副硎具@個性質嗎?

 。2)運用性質。

 、偬釂枺簩W了比例的基本性質,你覺得運用它能解決什么問題?

 、谶\用比例的基本性質,判斷下面哪組中的兩個比可以組成比例。

  (1) 6:3和8:5 (2) 0.2:2.5 和 4:50

  (3) :和 : (4) 1.2: 和 :5

  四、鞏固練習。

  1、填空

  (1)在a:7=9:b中,( )是內項,( )是外項,a×b=( )。

 。2)一個比例的兩個內項分別是3和8,則兩個外項的積是( ),兩個外項可能是( )和( )。

  (3)在一個比例里,兩個外項互為倒數(shù),那么兩個內項的積是( ),如果一個外項是 ,另一個外項是( )。

 。4)在比例里,兩個內項的積是18,其中一個外項是2,另一個外項是( )。

  (5)如果5a=3b,那么, = , = 。

  2、判斷。

 。1)在比例中,兩個外項的積減去兩個內項的積,差是0。( )

  (2)18:30和3:5可以組成比例。( )

  (3)如果4X=3Y,(X和Y均不為0),那么4:X=3:Y。( )

  (4)因為3×10=5×6,所以3:5=10:6。( )

  3、把下面的等式改寫成比例:(能寫幾個寫幾個)

  16 × 3 = 4 × 12

  四、總結歸納

  1、這節(jié)課我們學習了什么知識?你有什么收獲?

  2、判斷兩個比能不能組成比例,有幾種方法?

  比例在生活中有著廣泛的應用,比如:警察可以根據(jù)腳印的長短判斷罪犯的大致身高,根據(jù)影子的長度可以算出一棵大樹的高度等,都與比例有關,我們只要認真學好比例,就一定能幫助我們了解其中的奧秘。

  板書設計

  比例的意義和基本性質

  表示兩個比相等的式子叫做比例。

  2.4: 1.6 = 60: 40 (外項)(內項)

  └-內項-┘ 或 =

  └------外項-------┘ (外項)(內項)

  在比例里,兩個外項的積等于兩個內項的積。

  A:B=C → AD=BC

《比例的意義》教案8

  教學目標:

  1、 使學生理解并掌握比例的意義,認識比例的各部分名稱,探究比例的基本性質,學會應用比例的意義和基本性質判斷兩個比是否能組成比例,并能正確的組成比例。

  2、 培養(yǎng)學生的觀察能力、判斷能力。

  教學重點:

  比例的意義和基本性質

  學法:

  自主、合作、探究

  教學準備:

  課件

  教學過程:

  一:創(chuàng)設情境,導入新課

  1、 談話,播放課件,引出主題圖

  師:這節(jié)課我們上一節(jié)數(shù)學課,這節(jié)數(shù)學課有很多有趣的知識等待著同學們去探索和發(fā)現(xiàn)呢!同學們你們有信心接受挑戰(zhàn)嗎?

  (播放視頻,生觀察,并說看到的內容)

  師:看到這些畫面你的心情怎么樣?(激動、興奮、驕傲、自豪……)

  師:是啊,老師和你們一樣,每當聽到雄壯的國歌聲,看見鮮艷的五星紅旗,老師的心情也十分激動,國旗是我們偉大祖國的象征,是神圣的。

  問:畫面上這幾面國旗有什么不同?(大小不一樣)

  師:雖然這幾面國旗大小不一樣,但是長和寬的比值都是一樣的,這節(jié)課我們就來研究有關比例的知識。(板書:比例)

  (課件出示主題圖,讓學生說出長和寬各是多少)

  問:你能根據(jù)這些國旗的長和寬的尺寸,寫出長與寬的比,并求出比值嗎?請同學們先寫出學校內兩面國旗長與寬的比,并求出比值。(生動手寫比、求比值)

  二、引導探究,學習新知

  1、比例的意義

  (生匯報求比值的過程)

  師:請同學們觀察你求出的學校內兩面國旗的比值,你有什么發(fā)現(xiàn)?(這兩個比的比值相等)

  師:這兩個比的比值相等,我用“=”把這兩個比連起來,可以嗎?(可以)

  師:從圖上四面國旗才尺寸中你還能找出哪些比求出比值,也寫成這樣的等式呢?請同學們自己動筆試一試(生動手寫比,求比值,寫等式,并匯報)

  師:指學生匯報的等式小結,像這樣由比值相等的兩個比組成的等式就是比例,誰能概括出比例的意義?(板書課題,生匯報,是板書意義)

  問:判斷兩個比是否能組成比例,關鍵看什么?(關鍵看它們的比值是否相等)

  (小練習,課件出示)

  2探究比例的基本性質

  (1)自學比例的名稱

  師:小結通過剛才的學習,我們理解了比例的意義,那么在比例中各部分名稱是怎樣的,各部分名稱與各項在比例中的位置又有什么關系呢?打開書34頁,自學34也上半部分,比例各部分的名稱。(生自學名稱,匯報,師板書名稱)

  (2)合作探究比例的'基本性質

  師:同學們,你們知道嗎?在比例的內項和外項之間還存在著一個有趣的特性呢!你們想去發(fā)現(xiàn)這個特性嗎?接下來就請同學們以小組為單位合作探究比例的基本性質。(板書:比例的基本性質) 課件出示小組合作學習提示,指名讀

  各小組派一名代表匯報合作學習發(fā)現(xiàn)的規(guī)律。

  師:是不是所有的比例都具有這樣的特性呢?分組驗證課前寫出的比例式。

  師:問想一想,判斷兩個比能不能組成比例除了根據(jù)比例的意義去判斷外還可以根據(jù)什么去判斷?(生回答:根據(jù)比例的基本性質)

  師:如果把比例改寫成分數(shù)形式是什么樣的?生回答。根據(jù)比例的基本性質,等號兩邊的分子和分母之間又有什么關系呢?生回答,師板書

  三、鞏固練習(見課件)

  四、匯報學習收獲

《比例的意義》教案9

  教學內容:教材第42~44頁例4~例6,“練一練”,練習八第4—7題。

  教學要求:

  1.使學生認識反比例關系的意義,理解、掌握成反比例量的變化規(guī)律及其特征,能依據(jù)反比例的意義判斷兩種量成不成反比例關系。

  2.進一步培養(yǎng)學生觀察、分析、綜合和概括等能力,讓學生掌握判斷兩種相關聯(lián)的量成不成反比例的方法,培養(yǎng)學生判斷、推理的能力。

  教學重點:認識反比例關系的意義。

  教學難點:掌握成反比例量的變化規(guī)律及其特征。

  教學過程:

  一、復習舊知

  1.正比例關系的意義是什么?怎樣用字母表示這種關系?

  判斷兩種相關聯(lián)量成不成正比例的關鍵是什么?

  2.下面哪兩種量成正比例關系?為什么?

  (1)時間一定,行駛的速度和路程。

  (2)數(shù)量一定,單價和總價。

  3.說一說工作效率、工作時間和工作總量之間的數(shù)量關系。(學生回答后老師板書)在什么條件下,其中兩種量成正比例?

  4.引入新課。

  如果工作總量一定,工作效率和工作時間之間會怎樣變化呢,變化又有什么規(guī)律呢?這兩種量又成什么關系呢?這就是今天要學習的反比例關系。(板書課題)

  二、教學新課

  1.教學例4。

  出示例4。讓學生計算,在課本上填表,并觀察思考能發(fā)現(xiàn)什么?指名口答,老師板書填表。讓學生按學習正比例的方法觀察表里內容,相互之間討論,發(fā)現(xiàn)了什么。

  指名學生口答討論的結果,得出:

  (1)每天運的噸數(shù)和需要的天數(shù)是兩種相關聯(lián)的量,(板書:兩種相關聯(lián)的量)需要的天數(shù)隨著每天運的噸數(shù)的變化而變化。

  (2)每天運的噸數(shù)縮小,需要的天數(shù)反而擴大,每天運的噸數(shù)擴大,需要的天數(shù)反而縮小。

  (3)可以看出它們的變化規(guī)律是:每天運的噸數(shù)和天數(shù)的積總是一定的。(板書:每天運的噸數(shù)和天數(shù)的積一定)因為每天運的噸數(shù)和天數(shù)的積都是240。提問:這里的240是什么數(shù)量?誰能說出這里的數(shù)量關系式?想一想,這個式子表示的是什么意思?(把上面的板書補充成:運的總噸數(shù)一定時,每天運的噸數(shù)和天數(shù)的積一定)

  2.教學例5。

  出示例5。

  請同學們按照剛才學習例4的方法,自己學習例5,仔細想想你發(fā)現(xiàn)了些什么?學生觀察思考后,指名學生口答從表里發(fā)現(xiàn)了些什么,再提問:這兩種相關聯(lián)量變化的規(guī)律是什么?(板書:每袋重量和袋數(shù)的積一定)乘積8000是什么數(shù)量,這種數(shù)量關系用式子怎樣表示?[板書:每袋重量×袋數(shù)=糖果總重量(一定)]這個式子表示什么意思?(把上面板書補充成:糖果總重量一定時,每袋重量和袋數(shù)的積一定)

  3.概括反比例的意義。

  (1)綜合例4、例5的共同點。

  提問:請你比較一下例4和例5,說一說,這兩個例題有什么共同的地方?

  (2)概括反比例意義。

  例4、例5里兩種相關聯(lián)的量,它們是什么關系的量呢?請同學們看第43頁倒數(shù)第二節(jié)。說明:像例4、例5里這樣兩種相關聯(lián)的量,一種量變化,另一種量也隨著變,變化時兩種量中相對應的兩個數(shù)的積一定。這樣兩種相關聯(lián)的量就叫做成反比例的'量,它們之間的關系叫做反比例關系。迫問:兩種相關聯(lián)的量成不成反比例的關鍵是什么?(乘積是不是一定)提問:如果用x和y表示兩種相關聯(lián)的量,用k表示它們的乘積,那么上面這種關系式可以怎樣寫呢?【板書:x×y=k(一定)】指出:這個式子表示兩種相關聯(lián)的量x和y,y隨著x的變化而變化,它們的乘積k是一定的。這時就說x和y成反比例關系。所以,兩種量成反比例關系,我們就用x×y=k(一定)來表示。

  4.具體認識。

  (1)提問:例4里有哪兩種相關聯(lián)的量?這兩種量成反比例關系嗎?為什么,

  例5里的兩種量成反比例關系嗎?為什么?

  (2)提問:看兩種相關聯(lián)的量成不成反比例,關鍵要看什么?

  (3)做練習八第4題。

  讓學生讀題思考。指名依次口答題里的問題。[結合板書;每天裝配的臺數(shù)×天數(shù)=一批計算機的總臺數(shù)(一定)]

  (4)判斷。

  現(xiàn)在回過來看開始寫的關系式:工作效率×工作時間=工作總量,當工作總量一定時,工作效率和工作時間成什么關系?為什么?指出:根據(jù)上面所說的反比例的意義,要知道兩個量成不成反比例關系,只要先看這兩種量是不是相關聯(lián)的量,再看兩種量變化時乘積是不是一定。如果兩種相關聯(lián)的量變化時乘積一定,它們就是成反比例的量,相互之間的關系就是反比例關系。

  5.教學例6。

  出示例6,學生讀題、思考。提問:怎樣判斷成不成反比例?哪位同學說說每本的頁數(shù)和裝訂的本數(shù)成不成反比例?為什么?【板書;每本的頁數(shù)×本數(shù)=紙的總頁數(shù)(一定)】請同學們看書上例6是怎樣判斷的,看看我們說得對不對。追問:判斷兩種量成不成反比例要怎樣想?其中關鍵是看什么?

  三、鞏固練習

  用剛才我們說的判斷方法來做幾道題。

  1.做“練一練”第l題。

  指名學生口答,說明理由。(可以寫出數(shù)量關系式看一看)

  2.做“練一練”第2題。

  指名口答,說說理由。思考時可以引導看數(shù)量關系式。

  3.做練習八第5題。

  讓學生先在書上判斷。指名口答,要求說出數(shù)量關系式判斷。

  4.下題兩種相關聯(lián)量成不成反比例?為什么?

  一根鐵絲,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。

  5.做練習八第6題。

  各人先在書上寫各成什么比例。指名口答,要求說明理由。

  6.做練習八第7題。

  先讓學生默讀題目。提問:題里有怎樣的關系式?(板書:圓柱底面積×高=體積)指名學生口答.

  四、課堂小結

  這節(jié)課學習的是什么內容?反比例關系的意義是什么?用怎樣的式子表示x和y這兩種相關聯(lián)的量成反比例?判斷兩種量是不是成反比例,關鍵是什么?

  五、課堂作業(yè)

  練習八第7題。

《比例的意義》教案10

  教學過程:

  一、復習鋪墊

  1、下面兩種量是不是成正比例?為什么?

  購買練習本的價錢0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。

  2、成正比例的量有什么特征?

  二、探究新知

  1、導入新課:這節(jié)課我們繼續(xù)學習常見的數(shù)量關系中的另一種特征成反比例的量。

  2、教學P42例3。

  (1)引導學生觀察上表內數(shù)據(jù),然后回答下面問題:

  A、表中有哪兩種量?這兩種量相關聯(lián)嗎?為什么?

  B、水的高度是否隨著底面積的變化而變化?怎樣變化的?

  C、表中兩個相對應的數(shù)的比值各是多少?一定嗎?兩個相對應的數(shù)的積各是多少?你能從中發(fā)現(xiàn)什么規(guī)律嗎?

  D、這個積表示什么?寫出表示它們之間的.數(shù)量關系式

 。2)從中你發(fā)現(xiàn)了什么?這與復習題相比有什么不同?

  A、學生討論交流。

  B、引導學生回答:

 。3)教師引導學生明確:因為水的體積一定,所以水的高度隨著底面積的變化面變化。底面積增加,高度反而降低,底面積減少,高度反而升高,而且高度和底面積的乘積一定,我們就說高度和底面積成反比例關系,高度和底面積叫做成反比例的量。

  (4)如果用字母x和y表示兩種相關的量,用k表示它們的積一定,反比例可以用一個什么樣的式子表示?板書:xy=k(一定)

  三、鞏固練習

  1、想一想:成反比例的量應具備什么條件?

  2、判斷下面每題中的兩個量是不是成反比例,并說明理由。

 。1)路程一定,速度和時間。

 。2)小明從家到學校,每分走的速度和所需時間。

 。3)平行四邊形面積一定,底和高。

 。4)小林做10道數(shù)學題,已做的題和沒有做的題。

 。5)小明拿一些錢買鉛筆,單價和購買的數(shù)量。

  (6)你能舉一個反比例的例子嗎?

  四、全課小節(jié)

  這節(jié)課我們學習了成反比例的量,知道了什么樣的兩個量是成反比例的兩個量,也學會了怎樣判斷兩種量是不是成反比例。

  五、課堂練習

  P45~46練習七第6~11題。

  教學目的:

  1、理解反比例的意義,能根據(jù)反比例的意義,正確的判斷兩種量是否成反比例。

  2、通過引導學生討論探究,分析合作,使學生進一步認識事物之間的聯(lián)系和發(fā)展變化的規(guī)律。

  3、初步滲透函數(shù)思想。

  教學重點:引導學生總結出成反比例的量,是相關的兩種量中相對應的兩個數(shù)積一定,進而抽象概括出成反比例的關系式。

  教學難點:利用反比例的意義,正確判斷兩個量是否成反比例。

《比例的意義》教案11

  教學內容

  教科書第48~50頁例1、例2,課堂活動及練習十一1,2題。

  教學目標

  1.理解比例的意義,認識比例各部分的名稱。

  2.讓學生經歷探討兩內項之積等于兩外項之積的過程,使之更好理解并掌握比例的基本性質。并能運用比例的意義和比例的基本性質,判斷兩個比能否組成比例,會組比例。

  3.培養(yǎng)學生自主參與的意識、主動探究的精神;培養(yǎng)學生進行初步的觀察、分析、比較、判斷、概括的能力,發(fā)展學生思維,能夠在解決問題的過程中體驗到學習數(shù)學的愉悅。

  教學重點

  理解比例的意義和基本性質。

  教學難點

  應用比例的意義和基本性質判斷兩個比能否組成比例,并能正確地組成比例。

  教學準備

  課件,撲克牌10張(2~10以及A),圓規(guī)一個。

  教學過程

  一、復習準備

  (1)一輛汽車4時行160 km,路程和時間的比是多少?這個比表示什么?

 。2)求下面各比的比值,你發(fā)現(xiàn)了什么?

  12∶16 34∶18 4.5∶2.7 10∶6

  教師:同學們發(fā)現(xiàn)4.5∶2.7和10∶6的結果是一樣的,說明了什么?(這兩個比相等。)這兩個比你能用等號連接起來嗎?(能。)請同學們用等號把這兩個比用等號連接起來。

  二、探究新知

  1.提出問題

  這節(jié)課我們在比的知識基礎上,進一步學習新知識。

  揭示課題--比例的意義和基本性質。板書:比例的意義和基本性質

  2.探究比例的意義

  課件出示例1:兩組同學同時在操場探討竹竿長與影子長之間的規(guī)律。列表如下:

  竹竿長26

  影子長39

  教師:觀察上表,你能寫出多少個有意義的比?并求出比值。把這些比都寫出來。

  學生討論并寫出比,完成后抽幾個學生的作業(yè)在視頻展示臺上展示,教師選幾個有代表性的比在黑板上板書。

  教師:觀察這些比,哪些能用等號連接?把能用等號連接的比用等號連接起來。

  學生口答,教師板書:3∶2=9∶6,6∶2=9∶332=96,62=93

  教師:這些都是比例。你能用自己的語言說一說什么是比例嗎?

  引導學生用自己的語言歸納比例的意義。(板書:比例的意義)

  教師:2∶9和3∶6能組成比例嗎?你是怎么知道的?

  指導學生說出判斷兩個比能不能組成比例,要看他們的比值是否相等。再判斷2∶5和80∶200能否組成比例?并說明理由。

  組織并指導學生完成書上第50頁的課堂活動。

  3.認識比例的各部分

  教師:在一個比例里,有四個數(shù),這四個數(shù)分別叫什么名字?同學們看看書就明白了。

  指導學生看書后匯報。

  教師:請同學們分別找出3∶2=9∶6和6/2=9/3的內項和外項。

  學生找出后,隨學生的匯報教師板書:

  要求學生找出剛才自己說的幾個比例的內項和外項,然后引導學生分析歸納出:在比例里,靠近等號的兩個數(shù)是內項,剩下的.兩個數(shù)是外項;如果寫成分數(shù)形式,那么可以用交叉的方法找出比例的內項和外項。

  4.教學比例的基本性質

  教師:前面我們已經探究發(fā)現(xiàn)了比例的一個秘密,就是組成比例的兩個比的比值相等,比例還有一個秘密,你們愿意去尋找嗎?(愿意)你們任意找一個比例,把它們的內項和外項分別乘起來,又可以發(fā)現(xiàn)什么?

  學生初步發(fā)現(xiàn)兩個內項的積等于兩個外項的積后,教師提醒學生:是不是每個比例都有這個規(guī)律,多找?guī)讉比例試一試,如果把這個比例寫成分數(shù)形式,它是不是也有這樣的規(guī)律呢?

  教師:同學們通過多個比例的探究,發(fā)現(xiàn)它們都有這個規(guī)律。你能用你自己的語言歸納這個規(guī)律嗎?

  指導學生歸納后,教師板書:在比例里,兩個內項的積等于兩個外項的積,并且告訴學生,這就是比例的基本性質。

  5.運用比例的基本性質判斷兩個比是否能組成比例

  教師:用比例的基本性質,也可以判斷兩個比能不能組成比例。請同學們用比例的基本性質判斷一下,0.4∶25能否和1.2∶75組成比例?為什么?

  學生討論后回答:因為0.475=251.2,所以0.4∶25和1.2∶75能組成比例。

  三、鞏固提高

  (1)說一說比和比例有什么區(qū)別。

  討論后指名說:比是表示兩個數(shù)相除的關系,有兩項;比例是一個等式,表示兩個比相等的關系,有四項。

  (2)在6∶5=30∶25這個比例中,外項是()和(),內項是()和()。根據(jù)比例的基本性質可以寫成()()=()()。

 。3)下面的四個數(shù)可以組成比例嗎?把組成的比例寫出來(能組幾個就組幾個)。2,3,4和6

  四、全課總結

  先讓學生總結本課所學內容,談感想說收獲,教師再進行全課總結。

  五、課堂作業(yè)

  (1)指導學生完成練習十一的第1題。

  要求:第(1)小題用比的意義來判斷,第(2)小題用比例的基本性質判斷,第(3),(4)小題學生自由選擇方法判斷。

 。2)學生獨立完成練習十一的第2題,教師訂正。

《比例的意義》教案12

  教學內容

  教科書第52頁例1,第55頁課堂活動第1題及練習十二1,2,3題。

  教學目標

  1.使學生通過具體問題情境認識成正比例的量,理解其意義,并能判斷兩種量是否成正比例關系,能找到生活中成正比例的實例,并進行交流。

  2.通過探索正比例意義的教學活動,使學生感受事物中充滿著運動、變化的思想,并且特定的事物發(fā)展、變化是有規(guī)律的。

  3.通過觀察、交流、歸納、推斷等教學活動,感受數(shù)學思維過程的合理性,培養(yǎng)學生的觀察能力、推理能力、歸納能力和靈活應用知識的能力。

  教學重點

  認識成正比例的量,理解其意義,并能判斷兩種量是否成正比例關系。

  教學難點

  理解正比例的意義,感受事物中充滿著運動、變化的思想,并且特定的事物發(fā)展、變化是有規(guī)律的。

  教學準備

  教具:多媒體課件。

  學具:作業(yè)本,數(shù)學書。

  教學過程

  一、聯(lián)系生活,復習引入

 。1)下面是居委會張阿姨負責的小區(qū)水費收繳情況,用這個表中的數(shù)能寫成多少個有意義的比?哪些比能組成比例?把能組成的比例都寫出來。

  (2)揭示課題。

  教師:在上面的表中,有哪兩種量?(水費和用水量、總價和數(shù)量)在我們平時的生活中,除了這兩種量,我們還要遇到哪些數(shù)量呢?

  教師:這些數(shù)量之間藏著不少的知識,今天這節(jié)課我們就來研究這些數(shù)量間的一些規(guī)律和特征。

  二、自主探索,學習新知

  1.教學例1

  用課件在剛才準備題的表格中增加幾列數(shù)據(jù),變成表。

  教師:請同學們觀察這張表,先獨立思考后再討論、交流:從這張表中你發(fā)現(xiàn)了什么規(guī)律?并根據(jù)這種規(guī)律幫助張阿姨把表格填寫完整。

  教師根據(jù)學生的回答將表格完善,并作必要的板書。

  教師:同學們發(fā)現(xiàn)表格中的水費隨著用水量的增加也在不斷增加,像這樣水費隨著用水量的變化而變化,我們就說水費和用水量是相互關聯(lián)的。

  板書:相關聯(lián)

  教師:你們還發(fā)現(xiàn)哪些規(guī)律?

  學生在這里主要體會水費除以用水量得到的每噸水單價始終是不變的,教師可根據(jù)學生的回答板書出來,便于其他學生觀察:

  教師:水費除以用水量得到的單價相等也可以說是水費與用水量的比值相等,也就是一個固定的數(shù)。

  板書:

  2.教學試一試

  教師:我們再來研究一個問題。

  課件出示第52頁下面的試一試。

  學生先獨立完成。

  教師:你能用剛才我們研究例1的方法,自己分析這個表格中的數(shù)據(jù)嗎?

  教師根據(jù)學生的回答歸納如下:

  表中的路程和時間是相關聯(lián)的量,路程隨著時間的變化而變化。

  時間擴大若干倍,路程也擴大相同的倍數(shù);時間縮小若干倍,路程縮小相同的倍數(shù)。

  路程與時間的比值是一定的,速度是每時80 km,它們之間的關系可以寫成路程時間=速度(一定)

  3.教學議一議

  教師:我們研究了上面生活中的兩個問題,誰能發(fā)現(xiàn)它們之間的共同點呢?

  引導學生歸納出這兩個問題中都有相關聯(lián)的'量,一種量擴大或縮小若干倍,另一種量也隨著擴大或縮小相同的倍數(shù),所以它們的比值始終是一定的。

  教師:像上面這樣的兩種量,叫做成正比例的量,它們的關系叫做成正比例關系。

  4.教學課堂活動

  教師:請大家說一說生活中還有哪些是成正比例的量。

  三、夯實基礎,鞏固提高

 。1)完成練習十二的第1題。

  教師:請同學們用所學知識判斷一下,下面表中的兩種量成正比例關系嗎?為什么?

  學生獨立思考,先小組內交流再集體交流。

 。2)完成練習十二的第2題。

  四、全課小結

  教師:這節(jié)課你們學到了哪些知識?用了哪些學習方法?還有哪些不懂的問題?

《比例的意義》教案13

  教學內容:

  《反比例的意義》是六年制小學數(shù)學(北師版)第十二冊第二單元中的內容。是在學過“正比例的意義”的基礎上,讓學生理解反比例的意義,并會判斷兩個量是否成反比例關系,加深對比例的理解。

  學生分析:

  在此之前,他們學習了正比例的意義,對“相關聯(lián)的量”、“成正比例的兩個量的變化規(guī)律”、“如何判斷兩個量是否成正比例”已經有了認識,這為學習《反比例的意義》奠定了基礎。

  教學目標:

  1、知識與技能目標:使學生認識成反比例的量,理解反比例的意義,并學會判斷兩種相關聯(lián)的量是否成反比例。進一步培養(yǎng)學生觀察、學析、綜合和概括等能力。初步滲透函數(shù)思想。

  2、過程與方法:為學生營造一個經歷知識產生過程的情境。

  3、情感與態(tài)度目標:使學生在自主探索與合作交流中體驗成功的樂趣,進一步增強學好數(shù)學的信心。

  教學重點:理解反比例的意義。

  教學難點:兩種相關聯(lián)的量的變化規(guī)律。

  教學準備:學生準備:復習正比例關系,預習本節(jié)內容。

  教師準備:投影片3張,每張有例題一個。

  教學過程設計:

  一、談話引入,激發(fā)興趣。

  1、談話:通過最近一段時間的.觀察,我發(fā)現(xiàn)同學們越來越聰明了,會學數(shù)學了,這是因為同學們掌握了一定的數(shù)學學習的基本方法。下面請回想一下,我們是怎樣學習成正比例的量的?這節(jié)課我們用同樣的學習方法來研究比例的另外一個規(guī)律。

  2、導入:在實際生活中,存在著許多相關聯(lián)的量,這些相關聯(lián)的量之間有的是成正比例關系,有的成其他形式的關系,讓我們一起來探究下面的問題。

  二、創(chuàng)設情景引新:

 。ǔ鍪荆菏䝼小方塊)

  師:同學們,這十二個小方塊有幾種排法?

 。ㄉ鸷,老師板書下表的排列過程)

  每行個數(shù)1234612

  行數(shù)1264321

  師:請你觀察上表中每行個數(shù)與行數(shù)成正比例關系嗎?為什么?

  生:……

  師:這兩種量這間有關系嗎?有什么關系?這就是我們今天要研究的內容。

  (出示課題:反比例的意義)

  三、合作自學探知

  1、學習例4。

 。1)出示例4。

  師:請同學們在小組內互相交流,并圍繞這三個問題進行討論,再選出一位組員作代表進行匯報。

  A、表中有哪兩種量?

  B、怎樣隨著每小時加工的數(shù)量變化?

  c、每兩個相對應的數(shù)的乘積各是多少?

  學生討論……

  生反饋:……

  師:能不能舉出三個例子

  生:1020=6002030=6003020=600……

  師:這里的600是什么數(shù)量?你能說出這里的數(shù)量關系式嗎?

  生:……

  [板書出示:每小時加工數(shù)加工時間=零件總數(shù)(一定)]

  2、自學例5:

  (1)出示例5:

  師:先請同學們按要求在書上填空,并說說是怎樣算的?根據(jù)什么?

  生:……

  師:模仿例4的方法,提出三個問題自己學習例5(出示三個問題)

  生:……

  3、討論準備題:

 。1)請你根據(jù)例4的方法,四人小組內說一說。

 。2)請你舉例說明表中每行個數(shù)與行數(shù)是什么關系?為什么?

  四、比較感知特征

  綜合例4、例5、準備題的共同點師:比較一下例4、例5和準備題,請同學們在小組中討論一下,互相說說這三個題目有什么共同的特征?

  生:……

  五、引導概括意義

  1、概括反比例意義。

  學生在說相同點時老師邊引導邊說明。當學生說出三個特征后,教師板書這三個特征。

  師:請同學們根據(jù)我們上節(jié)課學的正比例的意義猜測一下,符合三個特征的二個量叫做成什么量?相互這間成什么關系?

  生:……

  師:請閱讀課本第十六頁,同桌互相說說怎樣的兩個量成反比例關系。

  學生互相練習……

  師:哪位同學來告訴大家,兩種量如果成反比例必須符合哪三個條件?

  生:……

  師:例4、例5和準備題中的兩種量成不成反比例?為什么?

  生:……(學生回答后,老師及時糾正)

  師:如果用x和y表示兩種相關聯(lián)的量,用k表示它們的乘積,那么上面這種關系式可以怎樣寫呢?

  生:……[板書出示y=k(一定)]

  2、教學例6。

  (1)課件出示例6。

 。▽W生讀題、思考)

  師:怎樣判斷兩種量成不成反比例?

  師:哪位同學說說,每天播種的公頃數(shù)和要用的天數(shù)是不是成反比例?為什么?

  生:因為每天播種的公頃數(shù)要用的天數(shù)=播種的總公頃數(shù)(一定),所以每天播種的公頃數(shù)和要用的天數(shù)是成反比例的量。

  六、小結:這節(jié)課同學們學到了哪些知識?運用了哪些學習方法?還有哪些不懂的問題?

  [案例分析]:

  通過聯(lián)系生活實際,學習成反比例的量,體會數(shù)學與生活的緊密聯(lián)系。不對研究的過程做詳細的引導和說明,只提供研究的素材和數(shù)據(jù),出示關鍵性的結論,充分發(fā)揮學生的主動性,以體現(xiàn)自主探究、合作交流的學習過程,獲得學習成功的體驗。通過引導學生觀察、分析、比較、歸納,形成良好的思維習慣和思維品質。同時加深學生對數(shù)量關系的認識,滲透函數(shù)思想,為中學的數(shù)學學習做好知識準備。學習方式的轉變是新課改的顯著特征,就是把學習過程中的分析、發(fā)現(xiàn)、探究、創(chuàng)新等認識活動凸顯出來。在設計《反比例的意義》時,根據(jù)學生的知識水平,對教學內容進行處理,克服教材的局限性,最大限度地拓寬探究學習的空間,提供自主學習的機會。

《比例的意義》教案14

  【學習目標】

  1、經歷抽象反比例函數(shù)概念的過程,體會反比例函數(shù)的含義,理解反比例函數(shù)的概念。

  2、理解反比例函數(shù)的意義,根據(jù)題目條件會求對應量的值,能用待定系數(shù)法求反比例函數(shù)關系。

  3、讓學生經歷在實際問題中探索數(shù)量關系的過程,養(yǎng)成用數(shù)學思維方式解決實際問題的習慣,體會數(shù)學在解決實際問題中的作用。

  【學習重點】

  理解反比例函數(shù)的意義,確定反比例函數(shù)的解析式。

  【學習難點】

  反比例函數(shù)的解析式的確定。

  【學法指導】

  自主、合作、探究

  教學互動設計

  【自主學習,基礎過關】

  一、自主學習:

  (一)復習鞏固

  1.在一個變化的過程中,如果有兩個變量x和y,當x在其取值范圍內任意取一個值時,y,則稱x為,y叫x的.

  2.一次函數(shù)的解析式是:;當時,稱為正比例函數(shù).

  3.一條直線經過點(2,3)、(4,7),求該直線的解析式.

  以上這種求函數(shù)解析式的方法叫:

  (二)自主探究

  提出問題:下列問題中,變量間的對應關?可用怎樣的函數(shù)關系式表示?

 

  1.如圖K-3-8,已知反比例函數(shù)的圖象經過三個點A(-4,-3),B(2m,y1),C(6m,y2),其中m>0.

  (1)當y1-y2=4時,求m的值;

  (2)過點B,C分別作x軸、y軸的'垂線,兩垂線相交于點D,點P在x軸上,若△PBD的面積是8,請寫出點P的坐標(不需要寫解答過程).

  26.1.2反比例函數(shù)的圖象和性質:課文練習

  1.下面關于反比例函數(shù)y=-3x與y=3x的說法中,不正確的是(  )

  A.其中一個函數(shù)的圖象可由另一個函數(shù)的圖象沿x軸或y軸翻折“復印”得到[

  B.它們的圖象都是軸對稱圖形

  C.它們的圖象都是中心對稱圖形

  D.當x>0時,兩個函數(shù)的函數(shù)值都隨自變量的增大而增大

《比例的意義》教案15

  教學目標

  一、知識目標

  1、使學生理解比例的意義和比例的基本性質.

  2、認識比例的各部分名稱,會組成比例.

  二、能力目標

  1、使學生學會應用比例的意義和基本性質判斷兩個比能否組成比例,并能正確組成比例.

  2、培養(yǎng)學生的觀察能力和判斷能力.

  三、情感目標

  1、對學生進一步滲透辨證唯物主義觀點的啟蒙教育.

  2、使學生感悟到美源于生活,美來自生產和時代的進步,提高審美意識

  教學重點

  比例的意義和基本性質.

  教學難點

  應用比例的意義或基本性質判斷兩個比能否組成比例,并能正確地組成比例.

  教學對象分析

  低年級學生思維的基本特點是:從以具體形象思維為主要形式過渡到以抽象邏輯思維為主要形式,針對這一特點,利用多媒體這一新穎、直觀的現(xiàn)代教學手段創(chuàng)設引人入勝的教學情境,并通過動手操作,討論探究,觀察分析,給學生充分的時間和機會,讓他們主動參與獲取知識的全過程,從而培養(yǎng)學生問題意識、策略意識及創(chuàng)新意識。

  教學策略及教法設計

  教學時有意識創(chuàng)設情境,激發(fā)學生探索問題的欲望,不斷發(fā)現(xiàn)問題,解決問題.通過動手操作,觀察演示,小組討論等活動,讓學生運用知識和能力的遷移規(guī)律,將知識結構轉化為學生的認知結構,突出學生的主體作用.

  1.多媒體教學

  運用微機精心設置問題情境,使學生自覺發(fā)現(xiàn)、意識到問題存在,可激活學生思維,促使問題意識的產生,又可以調動學生探索新知的積極性.

  2.動手操作法

  引導學生發(fā)現(xiàn)問題,提出問題,然后組織學生借助學具動手操作,尋求多種計算方法,同時運用多媒體,變靜為動,直觀形象,再結合語言表述,使學生的思維逐漸內化.

  教學步驟

  一、鋪墊孕伏

  1、什么叫做比?

  2、什么叫做比值?

  3、求下面各比的比值:

  4、教師提問:上面哪些比的比值相等?(和這兩個比的比值相等)

  教師:和這兩個比的比值相等,也就是說這兩個比是相等的,因此它們可以用等號連接.(板書:=)

  二、探究新知

 。ㄒ唬┍壤囊饬x

  例1、一輛汽車第一次2小時行駛80千米,第二次5小時行駛200千米.列表如下:

  時間(時)25

  路程(千米)

  80、200

  1、教師提問:從上表中可以看到,這輛汽車,

  第一次所行駛的路程和時間的比是幾比幾?

  第二次所行駛的路程和時間的比是幾比幾?

  這兩個比的比值各是多少?它們有什么關系?(兩個比的.比值都是40,相等)

  2、教師明確:兩個比的比值都是40,所以這兩個比相等.因此可以寫成這樣的等式

  或.

  3、揭示意義:像= 、這樣的等式,都是表示兩個比相等的式子,我們把它叫做比例.(板書課題:比例的意義)

  教師提問:什么叫做比例?組成比例的關鍵是什么?

  板書:表示兩個比相等的式子叫做比例.

  關鍵:兩個比相等

  4、練習

  下面哪組中的兩個比可以組成比例?把組成的比例寫出來.

 、俸廷诤

  ③和④和

  填空

 、偃绻麅蓚比的比值相等,那么這兩個比就()比例.

 、谝粋比例,等號左邊的比和等號右邊的比一定是()的.

  (二)比例的基本性質

  1、教師以為例說明:組成比例的四個數(shù),叫做比例的項.兩端的兩項叫做比例的外項,中間的兩項叫做比例的內項.(板書)

  2、練習:指出下面比例的外項和內項.

  3、讓學生計算上面每一個比例中的外項積和內項積,并討論它們存在什么關系?

  以為例,指名來說明.

  外項積是:80×5=400

  內項積是:2×200=400

  80×5=2×200

  4、學生自己任選兩三個比例,計算出它的外項積和內項積.

  5、教師明確:在比例里,兩個外項的積等于兩個內項的積.這叫做比例的基本性質

 。ò鍟n題:加上“和基本性質”,使課題完整.)

  6、思考:如果把比例寫成分數(shù)形式,等號兩端的分子和分母分別交叉相乘的積有什么關系?為什么?

  教師板書:

  7、練習

  應用比例的基本性質,判斷下面哪一組中的兩個比可以組成比例.

  三、課堂小結

  這節(jié)課我們學習了比例的意義和基本性質,并學會了應用比例的意義和基本性質組成比例.

  四、鞏固練習

  1、說一說比和比例有什么區(qū)別.

  比是表示兩個數(shù)相除的關系,有兩項;

  比例是一個等式,表示兩個比相等的關系,有四項.

  2、在這個比例中,外項是()和(),內項是()和().

  根據(jù)比例的基本性質可以寫成()×()=()×().

  3、根據(jù)比例的意義或者基本性質,判斷下面哪組中的兩個比可以組成比例.

 。1)和(2)和

  (3)和(4)和

  4、下面的四個數(shù)可以組成比例嗎?把組成的比例寫出來.(能組幾個就組幾個)

  2、3、4和6

  五、課后作業(yè)

  根據(jù)3×4=2×6寫出比例.

  六、板書設計

【《比例的意義》教案】相關文章:

《比例的意義》教學教案02-25

《比例的意義》教案15篇12-02

《比例的意義》教案(精選15篇)01-04

《比例的意義》教案14篇01-05

《比例的意義》教案(15篇)12-04

《正比例的意義》教案02-17

《比例的意義》教案精選15篇03-02

反比例的意義教案04-01

《比例的意義》教案(集合15篇)12-16