數(shù)學(xué)集合教學(xué)計(jì)劃
時(shí)光飛逝,時(shí)間在慢慢推演,又將迎來新的工作,新的挑戰(zhàn),是時(shí)候開始寫計(jì)劃了。計(jì)劃怎么寫才能發(fā)揮它最大的作用呢?以下是小編收集整理的數(shù)學(xué)集合教學(xué)計(jì)劃,僅供參考,希望能夠幫助到大家。
數(shù)學(xué)集合教學(xué)計(jì)劃1
一、指導(dǎo)思想
使學(xué)生學(xué)好從事社會(huì)主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代科學(xué)技術(shù)所必需的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力和空間想象能力,以逐步形成運(yùn)用數(shù)學(xué)知識(shí)來分析和解決實(shí)際問題的能力。要培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的興趣,激勵(lì)學(xué)生為實(shí)現(xiàn)四個(gè)現(xiàn)代化學(xué)好數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的科學(xué)態(tài)度和辨證唯物主義的觀點(diǎn)。
二、基本情況分析
1、4班共人,男生人,女生人。本班相對(duì)而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約人,差生約人。
5班共人,男生人,女生人。本班相對(duì)而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約人,差生約人。
2、4班在初中升入高中的升學(xué)考試中,數(shù)學(xué)成績?cè)?00’及以上的有人,80’—99’有人,60’—79’有人,40’—59’有人,40’以下有人,其中最高分為,最低分為。
5班在初中升入高中的升學(xué)考試中,數(shù)學(xué)成績?cè)?00’及以上的有人,80’—99’有人,60’—79’有人,40’—59’有人,40’以下有人,其中最高分為,最低分為。
3、4/5班分別為高一年級(jí)9個(gè)班中編排一個(gè)普高班和一個(gè)普高班之后的體育班,整體分析的結(jié)果是
三、教材分析
1、教材內(nèi)容集合、一元二次不等式、簡易邏輯、映射與函數(shù)、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)、數(shù)列、等差數(shù)列、等比數(shù)列。
2、集合概念及其基本理論,是近代數(shù)學(xué)最基本的內(nèi)容之一。函數(shù)是中學(xué)數(shù)學(xué)中最重要的基本概念之一。數(shù)列有著廣泛的應(yīng)用,是進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。
3、教材重點(diǎn)幾種函數(shù)的圖像與性質(zhì)、不等式的解法、數(shù)列的概念、等差數(shù)列與等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和的公式。
4、教材難點(diǎn)關(guān)于集合的各個(gè)基本概念的涵義及其相互之間的區(qū)別和聯(lián)系、映射的概念以及用映射來刻畫函數(shù)概念、反函數(shù)、一些代數(shù)命題的證明、
5、教材關(guān)鍵理解概念,熟練、牢固掌握函數(shù)的圖像與性質(zhì)。
6、采用了由淺入深、減緩坡度、分散難點(diǎn),逐步展開教材內(nèi)容的做法,符合從有限到無限的認(rèn)識(shí)規(guī)律,體現(xiàn)了從量變到質(zhì)變和對(duì)立統(tǒng)一的辯證規(guī)律。每階段的內(nèi)容相對(duì)獨(dú)立,方法比較單一,有助于掌握每一階段內(nèi)容。
7、各部分知識(shí)之間的聯(lián)系較強(qiáng),每一階段的知識(shí)都是以前一階段為基礎(chǔ),同時(shí)為下階段的學(xué)習(xí)作準(zhǔn)備。
8、全期教材重要的內(nèi)容是集合運(yùn)算、不等式解法、函數(shù)的奇偶性與單調(diào)性、等差與等比數(shù)列的通項(xiàng)和前n項(xiàng)和。
四、教學(xué)要求
1、理解集合、子集、交集、并集、補(bǔ)集的概念。了解空集和全集的意義,了解屬于、包含、相等關(guān)系的意義,能掌握有關(guān)的術(shù)語和符號(hào),能正確地表示一些簡單的集合。
2、掌握一元二次不等式的解法和絕對(duì)值不等式的解法,并能熟練求解。
3、了解命題的概念、邏輯聯(lián)結(jié)詞的含義,掌握四種命題及其關(guān)系,掌握充分、必要、充要條件,初步掌握反證法。
4、了解映射的概念,在此基礎(chǔ)上理解函數(shù)及其有關(guān)的概念,掌握互為反函數(shù)的函數(shù)圖象間的關(guān)系。
5、理解函數(shù)的單調(diào)性和奇偶性的概念,并能判斷一些簡單函數(shù)的單調(diào)性和奇偶性,能利用函數(shù)的奇偶性與圖象的對(duì)稱性的關(guān)系描繪圖象。
6、掌握指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的概念及其圖象和性質(zhì),并會(huì)解簡單的函數(shù)應(yīng)用問題。
7、使學(xué)生理解數(shù)列的有關(guān)概念,掌握等差數(shù)列與等比數(shù)列的概念、通項(xiàng)公式、前n項(xiàng)和的公式,并能夠運(yùn)用這些知識(shí)解決一些問題。
五、教學(xué)措施
1、激發(fā)學(xué)生的.學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、注意從實(shí)例出發(fā),從感性提高到理性。注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念。注意結(jié)合直觀圖形,說明抽象的知識(shí)。注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系。加強(qiáng)復(fù)習(xí)檢查工作。抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對(duì)不同的教材內(nèi)容選擇不同教法。
六、教學(xué)進(jìn)度安排
九月份集合(2)、子集、全集、補(bǔ)集(2)、交集、并集(2)、集合習(xí)題(1)
邏輯聯(lián)結(jié)詞(1)、四種命題(1)、充要條件(1)、習(xí)題(1)、
十月份映射(1)、函數(shù)(2)、單調(diào)性奇偶性(3)、反函數(shù)(2)、習(xí)題(1)
指數(shù)(1)、指數(shù)函數(shù)(3)、對(duì)數(shù)(2)、對(duì)數(shù)函數(shù)(3)、習(xí)題(1)
十一月份期中復(fù)習(xí)與考試(8)、數(shù)列(2)、
等比數(shù)列(2)、等比數(shù)列的前n項(xiàng)和(2)、
附高一數(shù)學(xué)教學(xué)的幾點(diǎn)具體措施
1、作業(yè)方面
①課堂作業(yè)設(shè)置一本。提倡用鋼筆書寫,一律要求用鉛筆、尺規(guī)作圖,書寫規(guī)范。墨跡、錯(cuò)誤用橡皮擦擦干凈,保持作業(yè)本整潔。當(dāng)天布置,當(dāng)天第二節(jié)晚自習(xí)之前交(若無晚自習(xí),則第二天早讀之前交)。批閱用“?”號(hào)代表錯(cuò)誤,一般點(diǎn)在錯(cuò)誤開始處,自覺完成更正。
、诿看巫鳂I(yè)按a、b、c、d四個(gè)等級(jí)評(píng)定,分別得分5、4、3、2,每本作業(yè)本完成后自行統(tǒng)計(jì)得分并上交科代表審核、教師評(píng)定等級(jí),得分90%~98%為優(yōu)良等級(jí),98%及以上為優(yōu)秀等級(jí)。(來源:)
、邸锻絻(yōu)化設(shè)計(jì)》及時(shí)完成,按進(jìn)度交閱,自覺訂正。
2、考試方面
①控制考試次數(shù),一般為月考2次,期中期末統(tǒng)考各1次,期末復(fù)習(xí)小考2次。
、谥坪迷嚲恚泻蠈(shí)際,難易適中,目標(biāo)高考。
、劢M織好考試,嚴(yán)格考試紀(jì)律。
3、興趣方面
①組織一次活動(dòng)、一次競賽。
、诙嗌弦恍┒嗝襟w課、優(yōu)質(zhì)課。
、勖績芍馨才乓还(jié)課時(shí),由課代表組織4個(gè)學(xué)生講課,每人10分鐘左右,主要講解《同步優(yōu)化設(shè)計(jì)》上的難題。
4、成績總評(píng)
①每期總評(píng)成績150分,分為三大項(xiàng),分值為考試成績125分(2次月考各5’、期中15’、期末100’)、平時(shí)成績24分(作業(yè)10’、練習(xí)8’、2次小考各3’)、自評(píng)1分。
、谔岢珳(zhǔn)備筆記本、考試錯(cuò)題更正本,并檢查后給予加分5’、2’,其它特別表現(xiàn)給予加分3’。
5、抓好學(xué)習(xí)常規(guī),提高學(xué)習(xí)成績。
數(shù)學(xué)集合教學(xué)計(jì)劃2
一.教學(xué)目標(biāo)
1. 知識(shí)與技能
(1)通過實(shí)例了解集合的含義,體會(huì)元素與集合的“屬于”關(guān)系,體會(huì)用集合語言表達(dá)數(shù)學(xué)內(nèi)容的簡潔性、準(zhǔn)確性,學(xué)會(huì)用集合語言表示有關(guān)的數(shù)學(xué)對(duì)象;
(2)初步了解有限集、無限集的意義;
(3)掌握常用數(shù)集及集合表示的符號(hào),能用集合語言(集合的表示符號(hào))描述一些具體的數(shù)學(xué)問題,感受集合語言的作用。
2.過程與方法
(1)通過學(xué)習(xí)集合的含義,從中體會(huì)集合中蘊(yùn)涵的分類思想;
(2)通過對(duì)集合表示法的學(xué)習(xí),認(rèn)識(shí)到列舉法與描述法不同的適用范圍。
3.情感、態(tài)度與價(jià)值觀
通過集合的教學(xué),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生積極的學(xué)習(xí)態(tài)度,體會(huì)數(shù)學(xué)學(xué)習(xí)的意義。
二.教材分析
集合語言是現(xiàn)代數(shù)學(xué)的基本語言,使用集合語言可以簡潔、準(zhǔn)確地表達(dá)數(shù)學(xué)的一些內(nèi)容。課本從生活實(shí)際出發(fā),通過對(duì)我國湖泊分類,讓學(xué)生初步感受集合的概念,再從學(xué)生熟悉的集合(自然數(shù)集合、有理數(shù)集合等)出發(fā),進(jìn)一步理解集合的含義,符合學(xué)生的認(rèn)知規(guī)律。
三.重點(diǎn)和難點(diǎn)
、.本節(jié)的重點(diǎn):集合的基本概念與表示方法。
、.本節(jié)的難點(diǎn):運(yùn)用集合的'兩種常用的表示方法--------列舉法與描述法,正確表示一些簡單的集合。
四.學(xué)法指導(dǎo)
由于集合的概念較難理解,因此建議采用漸進(jìn)式學(xué)習(xí)。
五.教學(xué)過程
(一)情景導(dǎo)入:
大家剛剛軍訓(xùn),經(jīng)常聽到的一句話是“x營x連集合”,顯然,這里的集合是動(dòng)詞,含義為把某些特定對(duì)象集中起來.數(shù)學(xué)里,集合變?yōu)槊~,某些特定對(duì)象的全體叫集合.
(二)新課講授:
1、集合:某些特定對(duì)象的全體.通常用大寫英文字母來標(biāo)記,比如A、B ‥‥
2、元素:集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素.通常用小寫字母a、b ‥‥ x、y … b標(biāo)記;
3、元素與集合的關(guān)系:如果a是集合A的元素,就說a屬于A,記作a∈A; 如果a不是集合A的元素,就說a不屬于A,記作
4、集合的表示:
、.列舉法:把集合中的元素一一列舉出來,寫在大括號(hào)內(nèi)表示集合的方法.
例如,由方程x2-1=0的所有解組成的集合,表示為{-1,1}.
這里的大括號(hào)表示“全體”、 “都”的意思.
再如,四大洋表示的集合:{太平洋,大西洋,印度洋,北冰洋}.
②.描述法:(對(duì)于某些集合用列舉法就不方便了,比如:X-3>0的解集)
{ X | X >3 } ——— 分析描述法的結(jié)構(gòu)
↓ ↓
元素 屬性
象這種用集合所含元素的共同屬性表示集合的方法.
舉例: {y|y=2 x2,x∈R} ; {x|y=2x2};{(x ,y)| y=2 x2,x∈R}.
注:在不致混淆的情況下,可以省去豎線及左邊部分,如 {x|x是直角三角形},可以表示為 {直角三角形}.
、.韋恩圖:用一條封閉的曲線的內(nèi)部來表示集合的方法.
比較各種表示法的優(yōu)、缺點(diǎn):
列舉法:元素個(gè)數(shù)較少時(shí);
描述法:共同屬性明確;
韋恩圖:形象直觀.
5、集合中元素的特性通過上述表示方法,可以發(fā)現(xiàn)集合中元素的特性:
確定性、互異性、無序性.
6、集合的分類: 有限集、無限集、空集.
7、常見數(shù)集的記法:
(1).自然數(shù)集,記作 N ;
(2).正整數(shù)集,記作 N*或者N+;
(3).整數(shù)集, 記作Z;
(4).有理數(shù)集,記作Q;
(5).實(shí)數(shù)集, 記作R.
(三)知識(shí)運(yùn)用:
例1、下面表示是否正確?
(1).Z={全體整數(shù)} (2).{(1,2)}與{1,2}是同一個(gè)集合
(3).{0}= (4). x2-2x+3=0的解集為{1}
例2、已知:A={x|x= n2+1,n∈Z},a= k2-4k+5,k∈Z
試判斷a的集合與A的關(guān)系.
解: a= k2-4k+5=(k-2)2+1 ,且k-2∈Z
∴ a∈A
例3、已知集合A={x∈R|mx2-2x+3=0,m∈R},若A中的元素至多只有一個(gè),求m的取值范圍.
(四)課堂小結(jié):
(1).集合的表示方法有哪些?
(2).集合中的元素有何性質(zhì)?
(五)課后作業(yè):
習(xí)題1—1 A組 4、5 B組 1、2
數(shù)學(xué)集合教學(xué)計(jì)劃3
教學(xué)目的:
(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法
(2)使學(xué)生初步了解“屬于”關(guān)系的意義
(3)使學(xué)生初步了解有限集、無限集、空集的意義
教學(xué)重點(diǎn):集合的基本概念及表示方法
教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合
授課類型:新授課
課時(shí)安排:1課時(shí)
教 具:多媒體、實(shí)物投影儀
內(nèi)容分析:
1.集合是中學(xué)數(shù)學(xué)的一個(gè)重要的基本概念 在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語言表述一些問題 例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集 至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對(duì)邏輯知識(shí)的掌握和運(yùn)用,基本的邏輯知識(shí)在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識(shí)問題、研究問題不可缺少的工具 這些可以幫助學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)
把集合的初步知識(shí)與簡易邏輯知識(shí)安排在高中數(shù)學(xué)的最開始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ) 例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯
本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子
這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念 學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義 本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念
集合是集合論中的原始的、不定義的概念 在開始接觸集合的概念時(shí),主要還是通過實(shí)例,對(duì)概念有一個(gè)初步認(rèn)識(shí) 教科書給出的“一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡稱集 ”這句話,只是對(duì)集合概念的描述性說明
教學(xué)過程:
一、復(fù)習(xí)引入:
1.簡介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);
2.教材中的章頭引言;
3.集合論的創(chuàng)始人——康托爾(德國數(shù)學(xué)家)(見附錄);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)
二、講解新課:
閱讀教材第一部分,問題如下:
(1)有那些概念?是如何定義的?
(2)有那些符號(hào)?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有關(guān)概念:
由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對(duì)象的全體形成一個(gè)集合,或者說,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡稱集.集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素.
定義:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合.
1、集合的概念
(1)集合:某些指定的對(duì)象集在一起就形成一個(gè)集合(簡稱集)
(2)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素
2、常用數(shù)集及記法
(1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合 記作N,
(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集 記作N*或N+
(3)整數(shù)集:全體整數(shù)的集合 記作Z ,
(4)有理數(shù)集:全體有理數(shù)的集合 記作Q ,
(5)實(shí)數(shù)集:全體實(shí)數(shù)的集合 記作R
注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0 (2)非負(fù)整數(shù)集內(nèi)排除0的集 記作N*或N+ Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*
3、元素對(duì)于集合的隸屬關(guān)系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作
4、集合中元素的特性
(1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里, 或者不在,不能模棱兩可
(2)互異性:集合中的元素沒有重復(fù)
(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗?
5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小寫的拉丁字母表示,如a、b、c、p、q…… ⑵“∈”的開口方向,不能把a(bǔ)∈A顛倒過來寫
三、練習(xí)題:
1、教材P5練習(xí)1、2
2、下列各組對(duì)象能確定一個(gè)集合嗎?
(1)所有很大的實(shí)數(shù) (不確定)
(2)好心的人 (不確定)
(3)1,2,2,3,4,5.(有重復(fù))
3、設(shè)a,b是非零實(shí)數(shù),那么 可能取的值組成集合的元素是_-2,0,2__
4、由實(shí)數(shù)x,-x,|x|, 所組成的集合,最多含( A )
(A)2個(gè)元素 (B)3個(gè)元素 (C)4個(gè)元素 (D)5個(gè)元素
5、設(shè)集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數(shù),求證:
(1) 當(dāng)x∈N時(shí), x∈G;
(2) 若x∈G,y∈G,則x+y∈G,而 不一定屬于集合G
證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,
則x= x+0* = a+b ∈G,即x∈G
證明(2):∵x∈G,y∈G,
∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈Z, b∈Z,c∈Z, d∈Z
∴(a+c) ∈Z, (b+d) ∈Z
∴x+y =(a+c)+(b+d) ∈G,
又∵ =
且 不一定都是整數(shù),
∴ = 不一定屬于集合G
四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.集合的有關(guān)概念:(集合、元素、屬于、不屬于)
2.集合元素的.性質(zhì):確定性,互異性,無序性
3.常用數(shù)集的定義及記法
五、課后作業(yè):
六、板書設(shè)計(jì)(略)
七、課后記:
八、附錄:康托爾簡介
發(fā)瘋了的數(shù)學(xué)家康托爾(Georg Cantor,1845-1918)是德國數(shù)學(xué)家,集合論的創(chuàng)始者 1845年3月3日生于圣彼得堡,1918年1月6日病逝于哈雷 康托爾11歲時(shí)移居德國,在德國讀中學(xué).1862年17歲時(shí)入瑞士蘇黎世大學(xué),翌年入柏林大學(xué),主修數(shù)學(xué),1866年曾去格丁根學(xué)習(xí)一學(xué)期.1867年以數(shù)論方面的論文獲博士學(xué)位.1869年在哈雷大學(xué)通過講師資格考試,后在該大學(xué)任講師,1872年任副教授,1879年任教授.由于研究無窮時(shí)往往推出一些合乎邏輯的但又荒謬的結(jié)果(稱為“悖論”),許多大數(shù)學(xué)家唯恐陷進(jìn)去而采取退避三舍的態(tài)度.在1874—1876年期間,不到30歲的年輕德國數(shù)學(xué)家康托爾向神秘的無窮宣戰(zhàn).他靠著辛勤的汗水,成功地證明了一條直線上的點(diǎn)能夠和一個(gè)平面上的點(diǎn)一一對(duì)應(yīng),也能和空間中的點(diǎn)一一對(duì)應(yīng).這樣看起來,1厘米長的線段內(nèi)的點(diǎn)與太平洋面上的點(diǎn),以及整個(gè)地球內(nèi)部的點(diǎn)都“一樣多”,后來幾年,康托爾對(duì)這類“無窮集合”問題發(fā)表了一系列文章,通過嚴(yán)格證明得出了許多驚人的結(jié)論.
康托爾的創(chuàng)造性工作與傳統(tǒng)的數(shù)學(xué)觀念發(fā)生了尖銳沖突,遭到一些人的反對(duì)、攻擊甚至謾罵.有人說,康托爾的集合論是一種“疾病”,康托爾的概念是“霧中之霧”,甚至說康托爾是“瘋子”.來自數(shù)學(xué)權(quán)威們的巨大精神壓力終于摧垮了康托爾,使他心力交瘁,患了精神分裂癥,被送進(jìn)精神病醫(yī)院.
真金不怕火煉,康托爾的思想終于大放光彩.1897年舉行的第一次國際數(shù)學(xué)家會(huì)議上,他的成就得到承認(rèn),偉大的哲學(xué)家、數(shù)學(xué)家羅素稱贊康托爾的工作“可能是這個(gè)時(shí)代所能夸耀的最巨大的工作”可是這時(shí)康托爾仍然神志恍惚,不能從人們的崇敬中得到安慰和喜悅.1918年1月6日,康托爾在一家精神病院去世.
集合論是現(xiàn)代數(shù)學(xué)的基礎(chǔ),康托爾在研究函數(shù)論時(shí)產(chǎn)生了探索無窮集和超窮數(shù)的興趣.康托爾肯定了無窮數(shù)的存在,并對(duì)無窮問題進(jìn)行了哲學(xué)的討論,最終建立了較完善的集合理論,為現(xiàn)代數(shù)學(xué)的發(fā)展打下了堅(jiān)實(shí)的基礎(chǔ)
康托爾創(chuàng)立了集合論作為實(shí)數(shù)理論,以至整個(gè)微積分理論體系的基礎(chǔ). 從而解決17世紀(jì)牛頓(I.Newton,1642-1727)與萊布尼茨(G.W.Leibniz,1646-1716)創(chuàng)立微積分理論體系之后,在近一二百年時(shí)間里,微積分理論所缺乏的邏輯基礎(chǔ)和從19世紀(jì)開始,柯西(A.L.Cauchy,1789-1857)、魏爾斯特拉斯(K.Weierstrass,1815-1897)等人進(jìn)行的微積分理論嚴(yán)格化所建立的極限理論
克隆尼克(L.Kronecker,1823-1891),康托爾的老師,對(duì)康托爾表現(xiàn)了無微不至的關(guān)懷.他用各種用得上的尖刻語言,粗暴地、連續(xù)不斷地攻擊康托爾達(dá)十年之久.他甚至在柏林大學(xué)的學(xué)生面前公開攻擊康托爾
橫加阻撓康托爾在柏林得到一個(gè)薪金較高、聲望更大的教授職位.使得康托爾想在柏林得到職位而改善其地位的任何努力都遭到挫折.法國數(shù)學(xué)家彭加勒(H.Poi-ncare,1854-1912):我個(gè)人,而且還不只我一人,認(rèn)為重要之點(diǎn)在于,切勿引進(jìn)一些不能用有限個(gè)文字去完全定義好的東西.集合論是一個(gè)有趣的“病理學(xué)的情形”,后一代將把(Cantor)集合論當(dāng)作一種疾病,而人們已經(jīng)從中恢復(fù)過來了.德國數(shù)學(xué)家魏爾(C.H.Her-mann Wey1,1885-1955)認(rèn)為,康托爾關(guān)于基數(shù)的等級(jí)觀點(diǎn)是霧上之霧.菲利克斯.克萊因(F.Klein,1849-1925)不贊成集合論的思想.數(shù)學(xué)家H.A.施瓦茲,康托爾的好友,由于反對(duì)集合論而同康托爾斷交.從1884年春天起,康托爾患了嚴(yán)重的憂郁癥,極度沮喪,神態(tài)不安,精神病時(shí)時(shí)發(fā)作,不得不經(jīng)常住到精神病院的療養(yǎng)所去,變得很自卑,甚至懷疑自己的工作是否可靠,他請(qǐng)求哈勒大學(xué)當(dāng)局把他的數(shù)學(xué)教授職位改為哲學(xué)教授職位,健康狀況逐漸惡化,1918年,他在哈勒大學(xué)附屬精神病院去世.流星埃.
伽羅華(E.Galois,1811-1832),法國數(shù)學(xué)家伽羅華17歲時(shí),就著手研究數(shù)學(xué)中最困難的問題之一一般π次方程求解問題.許多數(shù)學(xué)家為之耗去許多精力,但都失敗了.直到1770年,法國數(shù)學(xué)家拉格朗日對(duì)上述問題的研究才算邁出重要的一步 伽羅華在前人研究成果的基礎(chǔ)上,利用群論的方法從系統(tǒng)結(jié)構(gòu)的整體上徹底解決了根式解的難題 他從拉格朗日那里學(xué)習(xí)和繼承了問題轉(zhuǎn)化的思想,即把預(yù)解式的構(gòu)成同置換群聯(lián)系起來,并在阿貝爾研究的基礎(chǔ)上,進(jìn)一步發(fā)展了他的思想,把全部問題轉(zhuǎn)化成或者歸結(jié)為置換群及其子群結(jié)構(gòu)的分析上 同時(shí)創(chuàng)立了具有劃時(shí)代意義的數(shù)學(xué)分支——群論,數(shù)學(xué)發(fā)展史上作出了重大貢獻(xiàn) 1829年,他把關(guān)于群論研究所初步結(jié)果的第一批論文提交給法國科學(xué)院 科學(xué)院委托當(dāng)時(shí)法國最杰出的數(shù)學(xué)家柯西作為這些論文的鑒定人 在1830年1月18日柯西曾計(jì)劃對(duì)伽羅華的研究成果在科學(xué)院舉行一次全面的意見聽取會(huì) 然而,第二周當(dāng)柯西向科學(xué)院宣讀他自己的一篇論文時(shí),并未介紹伽羅華的著作 1830年2月,伽羅華將他的研究成果比較詳細(xì)地寫成論文交上去了 以參加科學(xué)院的數(shù)學(xué)大獎(jiǎng)評(píng)選,論文寄給當(dāng)時(shí)科學(xué)院終身秘書J.B.傅立葉,但傅立葉在當(dāng)年5月就去世了,在他的遺物中未能發(fā)現(xiàn)伽羅華的手稿 1831年1月伽羅華在尋求確定方程的可解性這個(gè)問題上,又得到一個(gè)結(jié)論,他寫成論文提交給法國科學(xué)院 這篇論文是伽羅華關(guān)于群論的重要著作 當(dāng)時(shí)的數(shù)學(xué)家S.K.泊松為了理解這篇論文絞盡了腦汁 盡管借助于拉格朗日已證明的一個(gè)結(jié)果可以表明伽羅華所要證明的論斷是正確的,但最后他還是建議科學(xué)院否定它 1832年5月30日,臨死的前一夜,他把他的重大科研成果匆忙寫成后,委托他的朋友薛伐里葉保存下來,從而使他的勞動(dòng)結(jié)晶流傳后世,造福人類 1832年5月31日離開了人間 死因參加無意義的決斗受重傷 1846年,他死后14年,法國數(shù)學(xué)家劉維爾著手整理伽羅華的重大創(chuàng)作后,首次發(fā)表于劉維爾主編的《數(shù)學(xué)雜志》上
數(shù)學(xué)集合教學(xué)計(jì)劃4
一、教材簡析
這一冊(cè)教材包括下面一些內(nèi)容:測(cè)量、萬以內(nèi)的加法和減法、四邊形、有余數(shù)的除法、時(shí)分秒、多位數(shù)成一位數(shù)、分?jǐn)?shù)的初步認(rèn)識(shí)、可能性,數(shù)學(xué)廣角和數(shù)學(xué)實(shí)踐活動(dòng)等。
萬以內(nèi)的加法和減法、四邊形、有余數(shù)的除法、時(shí)分秒、多位數(shù)成一位數(shù)、分?jǐn)?shù)的初步認(rèn)識(shí)是本冊(cè)教材的重點(diǎn)教學(xué)內(nèi)容。
在數(shù)與計(jì)算方面,這一冊(cè)教材安排了萬以內(nèi)的加法和減法、有余數(shù)的除法、時(shí)分秒、多位數(shù)乘一位數(shù)、分?jǐn)?shù)的初步認(rèn)識(shí)、這部分加減法計(jì)算仍然是小學(xué)生應(yīng)該掌握和形成的基礎(chǔ)知識(shí)和基本技能,是進(jìn)一步學(xué)習(xí)計(jì)算的重要基礎(chǔ)。例如,用多位數(shù)乘一位數(shù),求每一道乘法計(jì)算的步驟與用兩位數(shù)乘一位數(shù)積的步驟基本相同;
從本冊(cè)開始引入分?jǐn)?shù)的初步認(rèn)識(shí),內(nèi)容比較簡單。此時(shí)學(xué)生在日常生活中經(jīng)常遇到或用到有關(guān)分?jǐn)?shù)的知識(shí)和問題,這部分知識(shí)的學(xué)習(xí),可以擴(kuò)大用數(shù)學(xué)解決實(shí)際問題的范圍,提高學(xué)生解決問題的能力;同時(shí)也使學(xué)生初步學(xué)會(huì)用簡單的分?jǐn)?shù)進(jìn)行表達(dá)和交流,進(jìn)一步發(fā)展數(shù)感,并為進(jìn)一步系統(tǒng)學(xué)習(xí)分?jǐn)?shù)及分?jǐn)?shù)四則運(yùn)算做好鋪墊。
在空間與圖形方面,這一冊(cè)教材安排了四邊形這個(gè)單元,這是這冊(cè)教材的另一個(gè)重點(diǎn)教學(xué)內(nèi)容,為發(fā)展學(xué)生的空間觀念提供了豐富的素材。通過這些內(nèi)容的學(xué)習(xí),讓學(xué)生初步形成空間圖形、表達(dá)與交流物體性質(zhì)特征的能力等。通過現(xiàn)實(shí)的數(shù)學(xué)活動(dòng),讓學(xué)生獲得探究學(xué)習(xí)的經(jīng)歷,探索并體會(huì)認(rèn)識(shí)四邊形特點(diǎn)、四邊形周長單位、掌握估量等知識(shí),進(jìn)一步促進(jìn)學(xué)生空間觀念的.發(fā)展。
在量的計(jì)量方面,這一冊(cè)進(jìn)一步擴(kuò)大計(jì)量知識(shí)的范圍,除了周長的計(jì)算外,還安排了認(rèn)識(shí)的時(shí)間單位時(shí)、分、秒及三者之間的大小關(guān)系。這些內(nèi)容的教學(xué)可以進(jìn)一步發(fā)展學(xué)生的空間觀念和時(shí)間觀念,并通過實(shí)際操作與具體體驗(yàn),培養(yǎng)學(xué)生估計(jì)周長大小和時(shí)間長短的意識(shí)和能力。
在統(tǒng)計(jì)知識(shí)方面,本冊(cè)教材讓學(xué)生初步學(xué)習(xí)簡單的可能性。教材向?qū)W生介紹了,讓學(xué)生利用已有的知識(shí),學(xué)習(xí)哪些是可能的、哪些是不可能的和哪些是一定的知識(shí),初步學(xué)會(huì)簡單的分析;通過學(xué)習(xí)可能性的含義和簡單的的方法,初步理解平均數(shù)的意義和實(shí)際應(yīng)用,一步體會(huì)統(tǒng)計(jì)在現(xiàn)實(shí)生活中的作用。
在用數(shù)學(xué)解決問題方面,教材一方面安排了一個(gè)單元,專門教學(xué)用所學(xué)的有余數(shù)的除法計(jì)算知識(shí)解決生活中的簡單問題;另一方面,安排了"數(shù)學(xué)廣角"的教學(xué)內(nèi)容,引導(dǎo)學(xué)生通過觀察、猜測(cè)、實(shí)驗(yàn)、推理等活動(dòng)學(xué)習(xí)簡單的推理思想和想象能力,并能應(yīng)用肯能性的思想方法解決一些簡單的問題,培養(yǎng)學(xué)生觀察、分析及推理的能力,培養(yǎng)他們探索數(shù)學(xué)問題的興趣和發(fā)現(xiàn)欣賞數(shù)學(xué)美的意識(shí)。
本冊(cè)教材根據(jù)學(xué)生所學(xué)習(xí)的數(shù)學(xué)知識(shí)和生活經(jīng)驗(yàn),安排了兩個(gè)數(shù)學(xué)實(shí)踐活動(dòng),讓學(xué)生通過小組合作的探究活動(dòng)或有現(xiàn)實(shí)背景的活動(dòng),運(yùn)用所學(xué)知識(shí)解決問題,體會(huì)探索的樂趣和數(shù)學(xué)的實(shí)際應(yīng)用,感受用數(shù)學(xué)的愉悅,培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí)和實(shí)踐能力。
二、教學(xué)目標(biāo):
1.會(huì)筆算多位數(shù)乘一位數(shù)的乘法、萬以內(nèi)的加法和減法,會(huì)進(jìn)行相應(yīng)的乘法估算和驗(yàn)算。
2.會(huì)口算一位數(shù)乘整十、整百、整千的數(shù),整十、整百數(shù)乘整十?dāng)?shù),兩位數(shù)乘整十、整百數(shù)(每位乘積不滿十)。
3.初步認(rèn)識(shí)簡單的分?jǐn)?shù),初步知道分?jǐn)?shù)是平均分的含義,會(huì)讀、寫分?jǐn)?shù),初步認(rèn)識(shí)分?jǐn)?shù)的大小,會(huì)計(jì)算一些分?jǐn)?shù)的加減法。
4.認(rèn)識(shí)時(shí)、分、秒三個(gè)時(shí)間名詞,能夠很準(zhǔn)確的說出三者之間的進(jìn)制關(guān)系及三者之間的大小關(guān)系。
5.認(rèn)識(shí)周長的含義,會(huì)計(jì)算四邊形的周長,提醒學(xué)生注意漏寫周長的單位名稱。
6.認(rèn)識(shí)時(shí)間單位時(shí)、分、秒,了解它們之間的關(guān)系;知道每小時(shí)是多少分鐘、每分鐘是多少秒組成的;并學(xué)會(huì)準(zhǔn)確認(rèn)識(shí)時(shí)間。
7.了解不同形式的可能性,知道哪些事情發(fā)生是一定的、可能的還是不可能的,進(jìn)一步體會(huì)可能性在現(xiàn)實(shí)生活中的作用。
8.經(jīng)歷從實(shí)際生活中發(fā)現(xiàn)問題、提出問題、解決問題的過程,體會(huì)數(shù)學(xué)在日常生活中的作用,初步形成綜合運(yùn)用數(shù)學(xué)知識(shí)解決問題的能力。
9.初步了解的思想,形成發(fā)現(xiàn)生活中的數(shù)學(xué)的意識(shí),初步形成觀察、分析及推理的能力。
10.讓學(xué)生體會(huì)學(xué)習(xí)數(shù)學(xué)的樂趣,提高學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
11.養(yǎng)成認(rèn)真、按時(shí)、按質(zhì)完成作業(yè)、書寫整潔的良好習(xí)慣。
三、教材的編寫特點(diǎn)
1.計(jì)算教學(xué)內(nèi)容的編排體現(xiàn)改革的理念,注重培養(yǎng)學(xué)生靈活的計(jì)算能力,發(fā)展學(xué)生的數(shù)感。
2.提供豐富的空間與圖形的教學(xué)內(nèi)容,注重實(shí)踐與探索,促進(jìn)學(xué)生空間觀念的發(fā)展。
3.結(jié)合現(xiàn)實(shí)問題教學(xué)簡單的數(shù)據(jù)分析和平均數(shù),加深學(xué)生對(duì)統(tǒng)計(jì)作用的認(rèn)識(shí),逐步形成統(tǒng)計(jì)觀念。
4.加強(qiáng)解決問題能力的教學(xué),培養(yǎng)學(xué)生綜合運(yùn)用數(shù)學(xué)知識(shí)解決問題的能力。
5.有步驟地滲透數(shù)學(xué)思想方法,培養(yǎng)學(xué)生數(shù)學(xué)思維能力。
6.情感、態(tài)度、價(jià)值觀的培養(yǎng)滲透于數(shù)學(xué)教學(xué)中,用數(shù)學(xué)的魅力和學(xué)習(xí)的收獲激發(fā)學(xué)生的學(xué)習(xí)興趣與內(nèi)在動(dòng)機(jī)。
四、教學(xué)中需要準(zhǔn)備的教具和學(xué)具
1、直尺
2.時(shí)鐘盤
3.四邊形模型
4、圓形
五、課時(shí)安排
一、測(cè)量(課時(shí))
二、萬以內(nèi)的加法和減法(2)……………………………………9課時(shí)左右
三、四邊形
四、有余數(shù)的除法
五、時(shí)、分、秒
六、多位數(shù)成一位數(shù)
七、分?jǐn)?shù)的初步認(rèn)識(shí)
八、可能性
九、數(shù)學(xué)廣角
十、整理和復(fù)習(xí)……………………………………………1課時(shí)
數(shù)學(xué)集合教學(xué)計(jì)劃5
整體設(shè)計(jì)
教學(xué)分析
課本從學(xué)生熟悉的集合出發(fā),結(jié)合實(shí)例,通過類比實(shí)數(shù)加法運(yùn)算引入集合間的運(yùn)算,同時(shí),結(jié)合相關(guān)內(nèi)容介紹子集和全集等概念.在安排這部分內(nèi)容時(shí),課本繼續(xù)注重體現(xiàn)邏輯思考的方法,如類比等.
值得注意的問題:在全集和補(bǔ)集的教學(xué)中,應(yīng)注意利用圖形的直觀作用,幫助學(xué)生理解補(bǔ)集的概念,并能夠用直觀圖進(jìn)行求補(bǔ)集的運(yùn)算.
三維目標(biāo)
1.理解兩個(gè)集合的并集與交集、全集的含義,掌握求兩個(gè)簡單集合的交集與并集的方法,會(huì)求給定子集的補(bǔ)集,感受集合作為一種語言,在表示數(shù)學(xué)內(nèi)容時(shí)的簡潔和準(zhǔn)確,進(jìn)一步提高類比的能力.
2.通過觀察和類比,借助Venn圖理解集合的基本運(yùn)算.體會(huì)直觀圖示對(duì)理解抽象概念的作用,培養(yǎng)數(shù)形結(jié)合的思想.
重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn):交集與并集、全集與補(bǔ)集的概念.
教學(xué)難點(diǎn):理解交集與并集的概念,以及符號(hào)之間的區(qū)別與聯(lián)系.
課時(shí)安排
2課時(shí)
教學(xué)過程
第1課時(shí)
作者:尚大志
導(dǎo)入新課
思路1.我們知道,實(shí)數(shù)有加法運(yùn)算,兩個(gè)實(shí)數(shù)可以相加,例如5+3=8.類比實(shí)數(shù)的加法運(yùn)算,集合是否也可以“相加”呢?教師直接點(diǎn)出課題.
思路2.請(qǐng)同學(xué)們考察下列各個(gè)集合,你能說出集合C與集合A,B之間的關(guān)系嗎?
(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};
(2)A={x|x是有理數(shù)},B={x|x是無理數(shù)},C={x|x是實(shí)數(shù)}.
引導(dǎo)學(xué)生通過觀察、類比、思考和交流,得出結(jié)論.教師強(qiáng)調(diào)集合也有運(yùn)算,這就是我們本節(jié)課所要學(xué)習(xí)的內(nèi)容.
思路3.(1)①如圖1甲和乙所示,觀察兩個(gè)圖的陰影部分,它們分別同集合A、集合B有什么關(guān)系?
圖1
、谟^察集合A,B與集合C={1,2,3,4}之間的關(guān)系.
學(xué)生思考交流并回答,教師直接指出這就是本節(jié)課學(xué)習(xí)的課題:集合的基本運(yùn)算.
(2)①已知集合A={1,2,3},B={2,3,4},寫出由集合A,B中的所有元素組成的集合C.
、谝阎螦={x|x>1},B={x|x<0},在數(shù)軸上表示出集合A與B,并寫出由集合A與B中的所有元素組成的集合C.
推進(jìn)新課
新知探究
提出問題
(1)通過上述問題中集合A,B與集合C之間的關(guān)系,類比實(shí)數(shù)的加法運(yùn)算,你發(fā)現(xiàn)了什么?
(2)用文字語言來敘述上述問題中,集合A,B與集合C之間的關(guān)系.
(3)用數(shù)學(xué)符號(hào)來敘述上述問題中,集合A,B與集合C之間的關(guān)系.
(4)試用Venn圖表示A∪B=C.
(5)請(qǐng)給出集合的并集定義.
(6)求集合的并集是集合間的一種運(yùn)算,那么,集合間還有其他運(yùn)算嗎?
請(qǐng)同學(xué)們考察下面的問題,集合A,B與集合C之間有什么關(guān)系?
、貯={2,4,6,8,10},B={3,5,8,12},C={8};
、贏={x|x是國興中學(xué)20xx年9月入學(xué)的高一年級(jí)女同學(xué)},B={x|x是國興中學(xué)20xx年9月入學(xué)的高一年級(jí)男同學(xué)},C={x|x是國興中學(xué)20xx年9月入學(xué)的高一年級(jí)同學(xué)}.
(7)類比集合的并集,請(qǐng)給出集合的交集定義,并分別用三種不同的語言形式來表達(dá).
活動(dòng):先讓學(xué)生思考或討論問題,然后再回答,經(jīng)教師提示、點(diǎn)撥,并對(duì)回答正確的學(xué)生及時(shí)表揚(yáng),對(duì)回答不準(zhǔn)確的學(xué)生提示引導(dǎo)考慮問題的思路,主要引導(dǎo)學(xué)生發(fā)現(xiàn)集合的并集和交集運(yùn)算并能用數(shù)學(xué)符號(hào)來刻畫,用Venn圖來表示.
討論結(jié)果:(1)集合之間也可以相加,也可以進(jìn)行運(yùn)算,但是為了不和實(shí)數(shù)的運(yùn)算相混淆,規(guī)定這種運(yùn)算不叫集合的加法,而是叫做求集合的并集.集合C叫集合A與B的并集.記為A∪B=C,讀作A并B.
(2)所有屬于集合A或?qū)儆诩螧的元素組成了集合C.
(3)C={x|x∈A,或x∈B}.
(4)如圖1所示.
(5)一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱為集合A與B的并集.其含義用符號(hào)表示為A∪B={x|x∈A,或x∈B},用Venn圖表示,如圖1所示.
(6)集合之間還可以求它們的公共元素組成的集合,這種運(yùn)算叫求集合的交集,記作A∩B,讀作A交B.①A∩B=C,②A∪B=C.
(7)一般地,由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集.
其含義用符號(hào)表示為:
A∩B={x|x∈A,且x∈B}.
用Venn圖表示,如圖2所示.
圖2
應(yīng)用示例
例1 集合A={x|x<5 b="{x|x">0},C={x|x≥10},則A∩B,B∪C,A∩B∩C分別是什么?
變式訓(xùn)練
1.設(shè)集合A={x|x=2n,n∈N*},B={x|x=2n,n∈N},求A∩B,A∪B.
解:對(duì)任意m∈A,則有m=2n=2?2n-1,n∈N*,因n∈N*,故n-1∈N,有2n-1∈N,那么m∈B,即對(duì)任意m∈A有m∈B,所以A?B.
而10∈B但10 A,即A B,那么A∩B=A,A∪B=B.
2.求滿足{1,2}∪B={1,2,3}的`集合B的個(gè)數(shù).
解:滿足{1,2}∪B={1,2,3}的集合B一定含有元素3,B={3};還可含1或2其中一個(gè),有{1,3},{2,3};還可含1和2,即{1,2,3},那么共有4個(gè)滿足條件的集合B.
3.設(shè)集合A={-4,2,a-1,a2},B={9,a-5,1-a},已知A∩B={9},求a.
解:∵A∩B={9},則9∈A,a-1=9或a2=9.
∴a=10或a=±3.
當(dāng)a=10時(shí),a-5=5 ,1-a=-9;
當(dāng)a=3時(shí),a-1=2不合題意;
當(dāng)a=-3時(shí),a-1=-4不合題意.
故a=10.此時(shí)A={-4,2,9,100},B={9,5,-9},滿足A∩B={9}.
4.設(shè)集合A={x|2x+1<3},B={x|-3
A.{x|-3
C.{x|x>-3} D.{x|x<1}
解析:集合A={x|2x+1<3}={x|x<1},
觀察或由數(shù)軸得A∩B={x|-3
答案:A
例2 設(shè)集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0,a∈R},若A∩B=B,求a的值.
活動(dòng):明確集合A,B中的元素,教師和學(xué)生共同探討滿足A∩B=B的集合A,B的關(guān)系.集 合A是方程x2+4x=0的解組成的集合,可以發(fā)現(xiàn),B?A,通過分類討論集合B是否為空集來求a的值.利用集合的表示 法來認(rèn)識(shí)集合A,B均是方程的解集,通過畫Venn圖發(fā)現(xiàn)集合A,B的關(guān)系,從數(shù)軸上分析求得a的值.
解:由題意得A={-4,0}.
∵A∩B=B,∴B?A.
∴B= 或B≠ .
當(dāng)B= 時(shí),即關(guān)于x的方程x2+2(a+1)x+a2-1=0無實(shí)數(shù)解,
則Δ=4(a+1)2-4(a2-1)<0,解得a<-1.
當(dāng)B≠ 時(shí),若集合B僅含有一個(gè)元素,則Δ=4(a+1)2-4(a2-1)=0,解得a=-1,
此時(shí),B={x|x2=0}={0}?A,即a=-1符合題意.
若集合B含有兩個(gè)元素,則這兩個(gè)元素是-4,0,
即關(guān)于x的方程x2+2(a+1)x+a2-1=0的解是-4,0.
則有-4+0=-2(a+1),-4×0=a2-1.
解得a=1,則a=1符合題意.
綜上所得,a=1或a≤-1.
數(shù)學(xué)集合教學(xué)計(jì)劃6
教學(xué)分析
課本從學(xué)生熟悉的集合(自然數(shù)的集合、有理數(shù)的集合等)出發(fā),通過類比實(shí)數(shù)間的大小關(guān)系引入集合間的關(guān)系,同時(shí),結(jié)合相關(guān)內(nèi)容介紹子集等概念.在安排這部分內(nèi)容時(shí),課本注重體現(xiàn)邏輯思考的方法,如類比等.
值得注意的問題:在集合間的關(guān)系教學(xué)中,建議重視使用Venn圖,這有助于學(xué)生通過體會(huì)直觀圖示來理解抽象概念;隨著學(xué)習(xí)的深入,集合符號(hào)越來越多,建議教學(xué)時(shí)引導(dǎo)學(xué)生區(qū)分一些容易混淆的關(guān)系和符號(hào),例如∈與?的區(qū)別.
三維目標(biāo)
1.理解集合之間包含與相等的含義,能識(shí)別給定集合的子集,能判斷給定集合間的關(guān)系,提高利用類比發(fā)現(xiàn)新結(jié)論的能力.
2.在具體情境中,了解空集的含義,掌握并能使用Venn圖表達(dá)集合的關(guān)系,加強(qiáng)學(xué)生從具體到抽象的思維能力,樹立數(shù)形結(jié)合的思想.
重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn):理解集合間包含與相等的含義.
教學(xué)難點(diǎn):理解空集的含義.
課時(shí)安排
1課時(shí)
教學(xué)過程
導(dǎo)入新課
思路1.實(shí)數(shù)有相等、大小關(guān)系,如5=5,5<7 5="">3等等,類比實(shí)數(shù)之間的關(guān)系,你會(huì)想到集合之間有什么關(guān)系呢?(讓學(xué)生自由發(fā)言,教師不要急于作出判斷,而是繼續(xù)引導(dǎo)學(xué)生)