亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

范文資料網(wǎng)>反思報(bào)告>教案大全>《高中數(shù)學(xué)教案

高中數(shù)學(xué)教案

時(shí)間:2023-03-03 10:10:08 教案大全 我要投稿

高中數(shù)學(xué)教案(匯編15篇)

  作為一名為他人授業(yè)解惑的教育工作者,時(shí)常會(huì)需要準(zhǔn)備好教案,教案是教學(xué)活動(dòng)的總的組織綱領(lǐng)和行動(dòng)方案。教案應(yīng)該怎么寫(xiě)呢?下面是小編整理的高中數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。

高中數(shù)學(xué)教案(匯編15篇)

高中數(shù)學(xué)教案1

  教學(xué)目標(biāo):

  1、理解并掌握曲線在某一點(diǎn)處的切線的概念;

  2、理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法;

  3、理解切線概念實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問(wèn)題的能力和培養(yǎng)學(xué)生轉(zhuǎn)化

  問(wèn)題的能力及數(shù)形結(jié)合思想。

  教學(xué)重點(diǎn):

  理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法。

  教學(xué)難點(diǎn):

  用“無(wú)限逼近”、“局部以直代曲”的思想理解某一點(diǎn)處切線的斜率。

  教學(xué)過(guò)程:

  一、問(wèn)題情境

  1、問(wèn)題情境。

  如何精確地刻畫(huà)曲線上某一點(diǎn)處的變化趨勢(shì)呢?

  如果將點(diǎn)P附近的曲線放大,那么就會(huì)發(fā)現(xiàn),曲線在點(diǎn)P附近看上去有點(diǎn)像是直線。

  如果將點(diǎn)P附近的曲線再放大,那么就會(huì)發(fā)現(xiàn),曲線在點(diǎn)P附近看上去幾乎成了直線。事實(shí)上,如果繼續(xù)放大,那么曲線在點(diǎn)P附近將逼近一條確定的直線,該直線是經(jīng)過(guò)點(diǎn)P的所有直線中最逼近曲線的一條直線。

  因此,在點(diǎn)P附近我們可以用這條直線來(lái)代替曲線,也就是說(shuō),點(diǎn)P附近,曲線可以看出直線(即在很小的范圍內(nèi)以直代曲)。

  2、探究活動(dòng)。

  如圖所示,直線l1,l2為經(jīng)過(guò)曲線上一點(diǎn)P的兩條直線,

 。1)試判斷哪一條直線在點(diǎn)P附近更加逼近曲線;

 。2)在點(diǎn)P附近能作出一條比l1,l2更加逼近曲線的直線l3嗎?

 。3)在點(diǎn)P附近能作出一條比l1,l2,l3更加逼近曲線的直線嗎?

  二、建構(gòu)數(shù)學(xué)

  切線定義: 如圖,設(shè)Q為曲線C上不同于P的一點(diǎn),直線PQ稱為曲線的割線。 隨著點(diǎn)Q沿曲線C向點(diǎn)P運(yùn)動(dòng),割線PQ在點(diǎn)P附近逼近曲線C,當(dāng)點(diǎn)Q無(wú)限逼近點(diǎn)P時(shí),直線PQ最終就成為經(jīng)過(guò)點(diǎn)P處最逼近曲線的直線l,這條直線l也稱為曲線在點(diǎn)P處的切線。這種方法叫割線逼近切線。

  思考:如上圖,P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?

  三、數(shù)學(xué)運(yùn)用

  例1 試求在點(diǎn)(2,4)處的切線斜率。

  解法一 分析:設(shè)P(2,4),Q(xQ,f(xQ)),

  則割線PQ的斜率為:

  當(dāng)Q沿曲線逼近點(diǎn)P時(shí),割線PQ逼近點(diǎn)P處的切線,從而割線斜率逼近切線斜率;

  當(dāng)Q點(diǎn)橫坐標(biāo)無(wú)限趨近于P點(diǎn)橫坐標(biāo)時(shí),即xQ無(wú)限趨近于2時(shí),kPQ無(wú)限趨近于常數(shù)4。

  從而曲線f(x)=x2在點(diǎn)(2,4)處的切線斜率為4。

  解法二 設(shè)P(2,4),Q(xQ,xQ2),則割線PQ的斜率為:

  當(dāng)?x無(wú)限趨近于0時(shí),kPQ無(wú)限趨近于常數(shù)4,從而曲線f(x)=x2,在點(diǎn)(2,4)處的切線斜率為4。

  練習(xí) 試求在x=1處的切線斜率。

  解:設(shè)P(1,2),Q(1+Δx,(1+Δx)2+1),則割線PQ的斜率為:

  當(dāng)?x無(wú)限趨近于0時(shí),kPQ無(wú)限趨近于常數(shù)2,從而曲線f(x)=x2+1在x=1處的切線斜率為2。

  小結(jié) 求曲線上一點(diǎn)處的切線斜率的一般步驟:

 。1)找到定點(diǎn)P的`坐標(biāo),設(shè)出動(dòng)點(diǎn)Q的坐標(biāo);

 。2)求出割線PQ的斜率;

 。3)當(dāng)時(shí),割線逼近切線,那么割線斜率逼近切線斜率。

  思考 如上圖,P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?

  解 設(shè)

  所以,當(dāng)無(wú)限趨近于0時(shí),無(wú)限趨近于點(diǎn)處的切線的斜率。

  變式訓(xùn)練

  1。已知,求曲線在處的切線斜率和切線方程;

  2。已知,求曲線在處的切線斜率和切線方程;

  3。已知,求曲線在處的切線斜率和切線方程。

  課堂練習(xí)

  已知,求曲線在處的切線斜率和切線方程。

  四、回顧小結(jié)

  1、曲線上一點(diǎn)P處的切線是過(guò)點(diǎn)P的所有直線中最接近P點(diǎn)附近曲線的直線,則P點(diǎn)處的變化趨勢(shì)可以由該點(diǎn)處的切線反映(局部以直代曲)。

  2、根據(jù)定義,利用割線逼近切線的方法, 可以求出曲線在一點(diǎn)處的切線斜率和方程。

  五、課外作業(yè)

高中數(shù)學(xué)教案2

  教學(xué)目標(biāo):

  1。了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關(guān)系。

  2。會(huì)求一些簡(jiǎn)單函數(shù)的反函數(shù)。

  3。在嘗試、探索求反函數(shù)的過(guò)程中,深化對(duì)概念的認(rèn)識(shí),總結(jié)出求反函數(shù)的一般步驟,加深對(duì)函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學(xué)思想方法的認(rèn)識(shí)。

  4。進(jìn)一步完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維能力,用辯證的觀點(diǎn)分析問(wèn)題,培養(yǎng)抽象、概括的能力。

  教學(xué)重點(diǎn):

  求反函數(shù)的方法。

  教學(xué)難點(diǎn):

  反函數(shù)的概念。

  教學(xué)過(guò)程:

  教學(xué)活動(dòng)

  設(shè)計(jì)意圖一、創(chuàng)設(shè)情境,引入新課

  1。復(fù)習(xí)提問(wèn)

 、俸瘮(shù)的概念

 、趛=f(x)中各變量的意義

  2。同學(xué)們?cè)谖锢碚n學(xué)過(guò)勻速直線運(yùn)動(dòng)的位移和時(shí)間的函數(shù)關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時(shí)間t的函數(shù);在t=中,時(shí)間t是位移S的函數(shù)。在這種情況下,我們說(shuō)t=是函數(shù)S=vt的反函數(shù)。什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學(xué)習(xí)的內(nèi)容。

  3。板書(shū)課題

  由實(shí)際問(wèn)題引入新課,激發(fā)了學(xué)生學(xué)習(xí)興趣,展示了教學(xué)目標(biāo)。這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學(xué)生知道學(xué)習(xí)這一概念的必要性。

  二、實(shí)例分析,組織探究

  1。問(wèn)題組一:

  (用投影給出函數(shù)與;與()的圖象)

 。1)這兩組函數(shù)的圖像有什么關(guān)系?這兩組函數(shù)有什么關(guān)系?(生答:與的圖像關(guān)于直線y=x對(duì)稱;與()的圖象也關(guān)于直線y=x對(duì)稱。是求一個(gè)數(shù)立方的運(yùn)算,而是求一個(gè)數(shù)立方根的運(yùn)算,它們互為逆運(yùn)算。同樣,與()也互為逆運(yùn)算。)

 。2)由,已知y能否求x?

 。3)是否是一個(gè)函數(shù)?它與有何關(guān)系?

 。4)與有何聯(lián)系?

  2。問(wèn)題組二:

  (1)函數(shù)y=2x 1(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

 。2)函數(shù)(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

 。3)函數(shù) ()的定義域與函數(shù)()的值域有什么關(guān)系?

  3。滲透反函數(shù)的概念。

 。ń處燑c(diǎn)明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點(diǎn))

  從學(xué)生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學(xué)生的認(rèn)知特點(diǎn),有利于培養(yǎng)學(xué)生抽象、概括的'能力。

  通過(guò)這兩組問(wèn)題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識(shí),在"最近發(fā)展區(qū)"設(shè)計(jì)問(wèn)題,使學(xué)生對(duì)反函數(shù)有一個(gè)直觀的粗略印象,為進(jìn)一步抽象反函數(shù)的概念奠定基礎(chǔ)。

  三、師生互動(dòng),歸納定義

  1。(根據(jù)上述實(shí)例,教師與學(xué)生共同歸納出反函數(shù)的定義)

  函數(shù)y=f(x)(x∈A) 中,設(shè)它的值域?yàn)?C。我們根據(jù)這個(gè)函數(shù)中x,y的關(guān)系,用 y 把 x 表示出來(lái),得到 x = j (y) 。如果對(duì)于y在C中的任何一個(gè)值,通過(guò)x = j (y),x在A中都有的值和它對(duì)應(yīng),那么, x = j (y)就表示y是自變量,x是自變量 y 的函數(shù)。這樣的函數(shù) x = j (y)(y ∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù)。記作: ?紤]到"用 x表示自變量, y表示函數(shù)"的習(xí)慣,將中的x與y對(duì)調(diào)寫(xiě)成。

  2。引導(dǎo)分析:

  1)反函數(shù)也是函數(shù);

  2)對(duì)應(yīng)法則為互逆運(yùn)算;

  3)定義中的"如果"意味著對(duì)于一個(gè)任意的函數(shù)y=f(x)來(lái)說(shuō)不一定有反函數(shù);

  4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;

  5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);

  6)要理解好符號(hào)f;

  7)交換變量x、y的原因。

  3。兩次轉(zhuǎn)換x、y的對(duì)應(yīng)關(guān)系

 。ㄔ瘮(shù)中的自變量x與反函數(shù)中的函數(shù)值y 是等價(jià)的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價(jià)的)

  4。函數(shù)與其反函數(shù)的關(guān)系

  函數(shù)y=f(x)

  函數(shù)

  定義域

  A

  C

  值 域

  C

  A

  四、應(yīng)用解題,總結(jié)步驟

  1。(投影例題)

  【例1】求下列函數(shù)的反函數(shù)

 。1)y=3x—1 (2)y=x 1

  【例2】求函數(shù)的反函數(shù)。

 。ń處煱鍟(shū)例題過(guò)程后,由學(xué)生總結(jié)求反函數(shù)步驟。)

  2。總結(jié)求函數(shù)反函數(shù)的步驟:

  1° 由y=f(x)反解出x=f(y)。

  2° 把x=f(y)中 x與y互換得。

  3° 寫(xiě)出反函數(shù)的定義域。

 。ê(jiǎn)記為:反解、互換、寫(xiě)出反函數(shù)的定義域)【例3】(1)有沒(méi)有反函數(shù)?

  (2)的反函數(shù)是________。

 。3)(x<0)的反函數(shù)是__________。

  在上述探究的基礎(chǔ)上,揭示反函數(shù)的定義,學(xué)生有針對(duì)性地體會(huì)定義的特點(diǎn),進(jìn)而對(duì)定義有更深刻的認(rèn)識(shí),與自己的預(yù)設(shè)產(chǎn)生矛盾沖突,體會(huì)反函數(shù)。在剖析定義的過(guò)程中,讓學(xué)生體會(huì)函數(shù)與方程、一般到特殊的數(shù)學(xué)思想,并對(duì)數(shù)學(xué)的符號(hào)語(yǔ)言有更好的把握。

  通過(guò)動(dòng)畫(huà)演示,表格對(duì)照,使學(xué)生對(duì)反函數(shù)定義從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),從而消化理解。

  通過(guò)對(duì)具體例題的講解分析,在解題的步驟上和方法上為學(xué)生起示范作用,并及時(shí)歸納總結(jié),培養(yǎng)學(xué)生分析、思考的習(xí)慣,以及歸納總結(jié)的能力。

  題目的設(shè)計(jì)遵循了從了解到理解,從掌握到應(yīng)用的不同層次要求,由淺入深,循序漸進(jìn)。并體現(xiàn)了對(duì)定義的反思理解。學(xué)生思考練習(xí),師生共同分析糾正。

  五、鞏固強(qiáng)化,評(píng)價(jià)反饋

  1。已知函數(shù) y=f(x)存在反函數(shù),求它的反函數(shù) y =f( x)

 。1)y=—2x 3(xR) (2)y=—(xR,且x)

 。 3 ) y=(xR,且x)

  2。已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值。

  五、反思小結(jié),再度設(shè)疑

  本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟;榉春瘮(shù)的兩個(gè)函數(shù)的圖象到底有什么特點(diǎn)呢?為什么具有這樣的特點(diǎn)呢?我們將在下節(jié)研究。

 。ㄗ寣W(xué)生談一下本節(jié)課的學(xué)習(xí)體會(huì),教師適時(shí)點(diǎn)撥)

  進(jìn)一步強(qiáng)化反函數(shù)的概念,并能正確求出反函數(shù)。反饋學(xué)生對(duì)知識(shí)的掌握情況,評(píng)價(jià)學(xué)生對(duì)學(xué)習(xí)目標(biāo)的落實(shí)程度。具體實(shí)踐中可采取同學(xué)板演、分組競(jìng)賽等多種形式調(diào)動(dòng)學(xué)生的積極性。"問(wèn)題是數(shù)學(xué)的心臟"學(xué)生帶著問(wèn)題走進(jìn)課堂又帶著新的問(wèn)題走出課堂。

  六、作業(yè)

  習(xí)題2。4 第1題,第2題

  進(jìn)一步鞏固所學(xué)的知識(shí)。

  教學(xué)設(shè)計(jì)說(shuō)明

  "問(wèn)題是數(shù)學(xué)的心臟"。一個(gè)概念的形成是螺旋式上升的,一般要經(jīng)過(guò)具體到抽象,感性到理性的過(guò)程。本節(jié)教案通過(guò)一個(gè)物理學(xué)中的具體實(shí)例引入反函數(shù),進(jìn)而又通過(guò)若干函數(shù)的圖象進(jìn)一步加以誘導(dǎo)剖析,最終形成概念。

  反函數(shù)的概念是教學(xué)中的難點(diǎn),原因是其本身較為抽象,經(jīng)過(guò)兩次代換,又采用了抽象的符號(hào)。由于沒(méi)有一一映射,逆映射等概念的支撐,使學(xué)生難以從本質(zhì)上去把握反函數(shù)的概念。為此,我們大膽地使用教材,把互為反函數(shù)的兩個(gè)函數(shù)的圖象關(guān)系預(yù)先揭示,進(jìn)而探究原因,尋找規(guī)律,程序是從問(wèn)題出發(fā),研究性質(zhì),進(jìn)而得出概念,這正是數(shù)學(xué)研究的順序,符合學(xué)生認(rèn)知規(guī)律,有助于概念的建立與形成。另外,對(duì)概念的剖析以及習(xí)題的配備也很精當(dāng),通過(guò)不同層次的問(wèn)題,滿足學(xué)生多層次需要,起到評(píng)價(jià)反饋的作用。通過(guò)對(duì)函數(shù)與方程的分析,互逆探索,動(dòng)畫(huà)演示,表格對(duì)照、學(xué)生討論等多種形式的教學(xué)環(huán)節(jié),充分調(diào)動(dòng)了學(xué)生的探求欲,在探究與剖析的過(guò)程中,完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維。使學(xué)生自然成為學(xué)習(xí)的主人。

高中數(shù)學(xué)教案3

  教學(xué)目標(biāo):

  (1)理解子集、真子集、補(bǔ)集、兩個(gè)集合相等概念;

  (2)了解全集、空集的意義。

  (3)掌握有關(guān)子集、全集、補(bǔ)集的符號(hào)及表示方法,會(huì)用它們正確表示一些簡(jiǎn)單的集合,培養(yǎng)學(xué)生的符號(hào)表示的能力;

  (4)會(huì)求已知集合的子集、真子集,會(huì)求全集中子集在全集中的補(bǔ)集;

  (5)能判斷兩集合間的包含、相等關(guān)系,并會(huì)用符號(hào)及圖形(文氏圖)準(zhǔn)確地表示出來(lái),培養(yǎng)學(xué)生的數(shù)學(xué)結(jié)合的數(shù)學(xué)思想;

  (6)培養(yǎng)學(xué)生用集合的觀點(diǎn)分析問(wèn)題、解決問(wèn)題的能力。

  教學(xué)重點(diǎn):

  子集、補(bǔ)集的概念

  教學(xué)難點(diǎn):

  弄清元素與子集、屬于與包含之間的區(qū)別

  教學(xué)用具:

  幻燈機(jī)

  教學(xué)過(guò)程設(shè)計(jì)

  (一)導(dǎo)入新課

  上節(jié)課我們學(xué)習(xí)了集合、元素、集合中元素的三性、元素與集合的關(guān)系等知識(shí)。

  【提出問(wèn)題】(投影打出)

  已知xx,xx,xx,問(wèn):

  1、哪些集合表示方法是列舉法。

  2、哪些集合表示方法是描述法。

  3、將集M、集從集P用圖示法表示。

  4、分別說(shuō)出各集合中的元素。

  5、將每個(gè)集合中的元素與該集合的關(guān)系用符號(hào)表示出來(lái)、將集N中元素3與集M的關(guān)系用符號(hào)表示出來(lái)。

  6、集M中元素與集N有何關(guān)系、集M中元素與集P有何關(guān)系。

  【找學(xué)生回答】

  1、集合M和集合N;(口答)

  2、集合P;(口答)

  3、(筆練結(jié)合板演)

  4、集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1、(口答)

  5、xx,xx,xx,xx,xx,xx,xx,xx(筆練結(jié)合板演)

  6、集M中任何元素都是集N的元素、集M中任何元素都是集P的元素、(口答)

  【引入】在上面見(jiàn)到的集M與集N;集M與集P通過(guò)元素建立了某種關(guān)系,而具有這種關(guān)系的兩個(gè)集合在今后學(xué)習(xí)中會(huì)經(jīng)常出現(xiàn),本節(jié)將研究有關(guān)兩個(gè)集合間關(guān)系的問(wèn)題、

  (二)新授知識(shí)

  1、子集

  (1)子集定義:一般地,對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,我們就說(shuō)集合A包含于集合B,或集合B包含集合A。

  記作:xx讀作:A包含于B或B包含A

  當(dāng)集合A不包含于集合B,或集合B不包含集合A時(shí),則記作:AxxB或BxxA、

  性質(zhì):①xx(任何一個(gè)集合是它本身的子集)

 、趚x(空集是任何集合的子集)

  【置疑】能否把子集說(shuō)成是由原來(lái)集合中的部分元素組成的集合?

  【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合。

  因?yàn)锽的子集也包括它本身,而這個(gè)子集是由B的全體元素組成的空集也是B的子集,而這個(gè)集合中并不含有B中的元素、由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的。

  (2)集合相等:一般地,對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí)集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,記作A=B。

  例:xx,可見(jiàn),集合x(chóng)x,是指A、B的所有元素完全相同。

  (3)真子集:對(duì)于兩個(gè)集合A與B,如果xx,并且xx,我們就說(shuō)集合A是集合B的.真子集,記作:xx(或xx),讀作A真包含于B或B真包含A。

  【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個(gè)元素不屬于A,那么集合A叫做集合B的真子集!

  集合B同它的真子集A之間的關(guān)系,可用文氏圖表示,其中兩個(gè)圓的內(nèi)部分別表示集合A,B。

  【提問(wèn)】

  (1)xx寫(xiě)出數(shù)集N,Z,Q,R的包含關(guān)系,并用文氏圖表示。

  (2)xx判斷下列寫(xiě)法是否正確

 、賦xAxx②xxAxx③xx④AxxA

  性質(zhì):

  (1)空集是任何非空集合的真子集。若xxAxx,且A≠xx,則xxA;

  (2)如果xx,xx,則xx。

  例1xx寫(xiě)出集合x(chóng)x的所有子集,并指出其中哪些是它的真子集、

  解:集合x(chóng)x的所有的子集是xx,xx,xx,xx,其中xx,xx,xx是xx的真子集。

  【注意】(1)子集與真子集符號(hào)的方向。

  (2)易混符號(hào)

 、佟皒x”與“xx”:元素與集合之間是屬于關(guān)系;集合與集合之間是包含關(guān)系。如xxR,{1}xx{1,2,3}

 、趝0}與xx:{0}是含有一個(gè)元素0的集合,xx是不含任何元素的集合。

  如:xx{0}。不能寫(xiě)成xx={0},xx∈{0}

  例2xx見(jiàn)教材P8(解略)

  例3xx判斷下列說(shuō)法是否正確,如果不正確,請(qǐng)加以改正、

  (1)xx表示空集;

  (2)空集是任何集合的真子集;

  (3)xx不是xx;

  (4)xx的所有子集是xx;

  (5)如果xx且xx,那么B必是A的真子集;

  (6)xx與xx不能同時(shí)成立、

  解:(1)xx不表示空集,它表示以空集為元素的集合,所以(1)不正確;

  (2)不正確、空集是任何非空集合的真子集;

  (3)不正確、xx與xx表示同一集合;

  (4)不正確、xx的所有子集是xx;

  (5)正確

  (6)不正確、當(dāng)xx時(shí),xx與xx能同時(shí)成立、

  例4xx用適當(dāng)?shù)姆?hào)(xx,xx)填空:

  (1)xx;xx;xx;

  (2)xx;xx;

  (3)xx;

  (4)設(shè)xx,xx,xx,則AxxBxxC、

  解:(1)0xx0xx;

  (2)xx=xx,xx;

  (3)xx,xx∴xx;

  (4)A,B,C均表示所有奇數(shù)組成的集合,∴A=B=C、

  【練習(xí)】教材P9

  用適當(dāng)?shù)姆?hào)(xx,xx)填空:

  (1)xx;xx(5)xx;

  (2)xx;xx(6)xx;

  (3)xx;xx(7)xx;

  (4)xx;xx(8)xx、

  解:(1)xx;(2)xx;(3)xx;(4)xx;(5)=;(6)xx;(7)xx;(8)xx、

  提問(wèn):見(jiàn)教材P9例子

  (二)xx全集與補(bǔ)集

  1、補(bǔ)集:一般地,設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即xx),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集),記作xx,即

  、

  A在S中的補(bǔ)集xx可用右圖中陰影部分表示、

  性質(zhì):xxS(xxSA)=A

  如:(1)若S={1,2,3,4,5,6},A={1,3,5},則xxSA={2,4,6};

  (2)若A={0},則xxNA=N;

  (3)xxRQ是無(wú)理數(shù)集。

  2、全集:

  如果集合S中含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集,全集通常用xx表示。

  注:xx是對(duì)于給定的全集xx而言的,當(dāng)全集不同時(shí),補(bǔ)集也會(huì)不同。

  例如:若xx,當(dāng)xx時(shí),xx;當(dāng)xx時(shí),則xx。

  例5xx設(shè)全集xx,xx,xx,判斷xx與xx之間的關(guān)系。

  解:

  練習(xí):見(jiàn)教材P10練習(xí)

  1、填空:

  xx,xx,那么xx,xx。

  解:xx,

  2、填空:

  (1)如果全集xx,那么N的補(bǔ)集xx;

  (2)如果全集,xx,那么xx的補(bǔ)集xx(xx)=xx、

  解:(1)xx;(2)xx。

  (三)小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

  1、五個(gè)概念(子集、集合相等、真子集、補(bǔ)集、全集,其中子集、補(bǔ)集為重點(diǎn))

  2、五條性質(zhì)

  (1)空集是任何集合的子集。ΦxxA

  (2)空集是任何非空集合的真子集。ΦxxAxx(A≠Φ)

  (3)任何一個(gè)集合是它本身的子集。

  (4)如果xx,xx,則xx、

  (5)xxS(xxSA)=A

  3、兩組易混符號(hào):(1)“xx”與“xx”:(2){0}與

  (四)課后作業(yè):見(jiàn)教材P10習(xí)題1、2

高中數(shù)學(xué)教案4

  教學(xué)目標(biāo):

  1.進(jìn)一步熟練掌握比較法證明不等式;

  2.了解作商比較法證明不等式;

  3.提高學(xué)生解題時(shí)應(yīng)變能力.

  教學(xué)重點(diǎn)

  比較法的應(yīng)用

  教學(xué)難點(diǎn)

  常見(jiàn)解題技巧

  教學(xué)方法啟發(fā)引導(dǎo)式

  教學(xué)活動(dòng)

 。ㄒ唬⿲(dǎo)入新課

 。ń處熁顒(dòng))教師打出字幕(復(fù)習(xí)提問(wèn)),請(qǐng)三位同學(xué)回答問(wèn)題,教師點(diǎn)評(píng).

 。▽W(xué)生活動(dòng))思考問(wèn)題,回答.

 。圩帜唬1.比較法證明不等式的步驟是怎樣的?

  2.比較法證明不等式的步驟中,依據(jù)、手段、目的各是什么?

  3.用比較法證明不等式的步驟中,最關(guān)鍵的是哪一步?學(xué)了哪些常用的變形方法?對(duì)式子的變形還有其它方法嗎?

  [點(diǎn)評(píng)]用比較法證明不等式步驟中,關(guān)鍵是對(duì)差式的變形.在我們所學(xué)的知識(shí)中,對(duì)式子變形的常用方法除了配方、通分,還有因式分解.這節(jié)課我們將繼續(xù)學(xué)習(xí)比較法證明不等式,積累對(duì)差式變形的常用方法和比較法思想的應(yīng)用.(板書(shū)課題)

  設(shè)計(jì)意圖:復(fù)習(xí)鞏固已學(xué)知識(shí),銜接新知識(shí),引入本節(jié)課學(xué)習(xí)的內(nèi)容.

 。ǘ┬抡n講授

  【嘗試探索,建立新知】

 。ń處熁顒(dòng))提出問(wèn)題,引導(dǎo)學(xué)生研究解決問(wèn)題,并點(diǎn)評(píng).

 。▽W(xué)生活動(dòng))嘗試解決問(wèn)題.

  [問(wèn)題]

  1.化簡(jiǎn)

  2.比較與()的大。

 。▽W(xué)生解答問(wèn)題)

  [點(diǎn)評(píng)]

 、賳(wèn)題1,我們采用了因式分解的方法進(jìn)行簡(jiǎn)化.

 、谕ㄟ^(guò)學(xué)習(xí)比較法證明不等式,我們不難發(fā)現(xiàn),比較法的思想方法還可用來(lái)比較兩個(gè)式子的大。

  設(shè)計(jì)意圖:?jiǎn)l(fā)學(xué)生研究問(wèn)題,建立新知,形成新的知識(shí)體系.

  【例題示范,學(xué)會(huì)應(yīng)用】

 。ń處熁顒(dòng))教師打出字幕(例題),引導(dǎo)、啟發(fā)學(xué)生研究問(wèn)題,井點(diǎn)評(píng)解題過(guò)程.

  (學(xué)生活動(dòng))分析,研究問(wèn)題.

 。圩帜唬堇}3已知 a , b 是正數(shù),且,求證

 。鄯治觯菀李}目特點(diǎn),作差后重新組項(xiàng),采用因式分解來(lái)變形.

  證明:(見(jiàn)課本)

 。埸c(diǎn)評(píng)]因式分解也是對(duì)差式變形的一種常用方法.此例將差式變形為幾個(gè)因式的積的形式,在確定符號(hào)中,表達(dá)過(guò)程較復(fù)雜,如何書(shū)寫(xiě)證明過(guò)程,例3給出了一個(gè)好的示范.

 。埸c(diǎn)評(píng)]解這道題在判斷符號(hào)時(shí)用了分類討論,分類討論是重要的數(shù)學(xué) 思想方法.要理解為什么分類,怎樣分類.分類時(shí)要不重不漏.

 。圩帜唬堇5甲、乙兩人同時(shí)同地沿同一條路線走到同一地點(diǎn).甲有一半時(shí)間以速度 m 行走,另一半時(shí)間以速度 n 行走;有一半路程乙以速度 m 行走,另一半路程以速度 n 行走,如果,問(wèn)甲、乙兩人誰(shuí)先到達(dá)指定地點(diǎn).

  [分析]設(shè)從出發(fā)地點(diǎn)至指定地點(diǎn)的路程為,甲、乙兩人走完這段路程用的時(shí)間分別為,要回答題目中的問(wèn)題,只要比較、的大小就可以了.

  解:(見(jiàn)課本)

 。埸c(diǎn)評(píng)]此題是一個(gè)實(shí)際問(wèn)題,學(xué)習(xí)了如何利用比較法證明不等式的思想方法解決有關(guān)實(shí)際問(wèn)題.要培養(yǎng)自己學(xué)數(shù)學(xué),用數(shù)學(xué)的良好品質(zhì).

  設(shè)計(jì)意圖:鞏固比較法證明不等式的方法,掌握因式分解的變形方法和分類討論確定符號(hào)的方法.培養(yǎng)學(xué)生應(yīng)用知識(shí)解決實(shí)際問(wèn)題的'能力.

  【課堂練習(xí)】

 。ń處熁顒(dòng))教師打出字幕練習(xí),要求學(xué)生獨(dú)立思考,完成練習(xí);請(qǐng)甲、乙兩位學(xué)生板演;巡視學(xué)生的解題情況,對(duì)正確的給予肯定,對(duì)偏差及時(shí)糾正;點(diǎn)評(píng)練習(xí)中存在的問(wèn)題.

  (學(xué)生活動(dòng))在筆記本上完成練習(xí),甲、乙兩位同學(xué)板演.

 。圩帜唬菥毩(xí):1.設(shè),比較與的大。

  2.已知,求證

  設(shè)計(jì)意圖:掌握比較法證明不等式及思想方法的應(yīng)用.靈活掌握因式分解法對(duì)差式的變形和分類討論確定符號(hào).反饋信息,調(diào)節(jié)課堂教學(xué).

  【分析歸納、小結(jié)解法】

 。ń處熁顒(dòng))分析歸納例題的解題過(guò)程,小結(jié)對(duì)差式變形、確定符號(hào)的常用方法和利用不等式解決實(shí)際問(wèn)題的解題步驟.

 。▽W(xué)生活動(dòng))與教師一道小結(jié),并記錄在筆記本上.

  1.比較法不僅是證明不等式的一種基本、重要的方法,也是比較兩個(gè)式子大小的一種重要方法.

  2.對(duì)差式變形的常用方法有:配方法,通分法,因式分解法等.

  3.會(huì)用分類討論的方法確定差式的符號(hào).

  4.利用不等式解決實(shí)際問(wèn)題的解題步驟:①類比列方程解應(yīng)用題的步驟.②分析題意,設(shè)未知數(shù),找出數(shù)量關(guān)系(函數(shù)關(guān)系,相等關(guān)系或不等關(guān)系),③列出函數(shù)關(guān)系、等式或不等式,④求解,作答.

  設(shè)計(jì)意圖:培養(yǎng)學(xué)生分析歸納問(wèn)題的能力,掌握用比較法證明不等式的知識(shí)體系.

 。ㄈ┬〗Y(jié)

 。ń處熁顒(dòng))教師小結(jié)本節(jié)課所學(xué)的知識(shí)及數(shù)學(xué) 思想與方法.

 。▽W(xué)生活動(dòng))與教師一道小結(jié),并記錄筆記.

  本節(jié)課學(xué)習(xí)了對(duì)差式變形的一種常用方法因式分解法;對(duì)符號(hào)確定的分類討論法;應(yīng)用比較法的思想解決實(shí)際問(wèn)題.

  通過(guò)學(xué)習(xí)比較法證明不等式,要明確比較法證明不等式的理論依據(jù),理解轉(zhuǎn)化,使問(wèn)題簡(jiǎn)化是比較法證明不等式中所蘊(yùn)含的重要數(shù)學(xué)思想,掌握求差后對(duì)差式變形以及判斷符號(hào)的重要方法,并在以后的學(xué)習(xí)中繼續(xù)積累方法,培養(yǎng)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力.

  設(shè)計(jì)意圖:培養(yǎng)學(xué)生對(duì)所學(xué)的知識(shí)進(jìn)行概括歸納的能力,鞏固所學(xué)的知識(shí),領(lǐng)會(huì)化歸、類比、分類討論的重要數(shù)學(xué) 思想方法.

 。ㄋ模┎贾米鳂I(yè)

  1.課本作業(yè):P17 7、8。

  2,思考題:已知,求證

  3.研究性題:對(duì)于同樣的距離,船在流水中來(lái)回行駛一次的時(shí)間和船在靜水中來(lái)回行駛一次的時(shí)間是否相等?(假設(shè)船在流水中的速度和部在靜水中的速度保持不變)

  設(shè)計(jì)意圖:思考題讓學(xué)生了解商值比較法,掌握分類討論的思想.研究性題是使學(xué)生理論聯(lián)系實(shí)際,用數(shù)學(xué)解決實(shí)際問(wèn)題,提高應(yīng)用數(shù)學(xué)的能力.

 。ㄎ澹┱n后點(diǎn)評(píng)

  1.教學(xué)評(píng)價(jià)、反饋調(diào)節(jié)措施的構(gòu)想:本節(jié)課采用啟發(fā)引導(dǎo),講練結(jié)合的授課方式,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位,通過(guò)啟發(fā)誘導(dǎo)學(xué)生深入思考問(wèn)題,解決問(wèn)題,反饋學(xué)習(xí)信息,調(diào)節(jié)教學(xué)活動(dòng).

  2.教學(xué)措施的設(shè)計(jì):由于對(duì)差式變形,確定符號(hào)是掌握比較法證明不等式的關(guān)鍵,本節(jié)課在上節(jié)課的基礎(chǔ)上繼續(xù)學(xué)習(xí)差式變形的方法和符號(hào)的確定,例3和例4分別使學(xué)生掌握因式分解變形和分類討論確定符號(hào),例5使學(xué)生對(duì)所學(xué)的知識(shí)會(huì)應(yīng)用.例題設(shè)計(jì)目的在于突出重點(diǎn),突破難點(diǎn),學(xué)會(huì)應(yīng)用

高中數(shù)學(xué)教案5

  高中數(shù)學(xué)趣味競(jìng)賽題(共10題)

  1 、撒謊的有幾人

  5個(gè)高中生有,她們面對(duì)學(xué)校的新聞采訪說(shuō)了如下的話:

  愛(ài):“我還沒(méi)有談過(guò)戀愛(ài)! 靜香:“愛(ài)撒謊了!

  瑪麗:“我曾經(jīng)去過(guò)昆明! 惠美:“瑪麗在撒謊!

  千葉子:“瑪麗和惠美都在撒謊! 那么,這5個(gè)人之中到底有幾個(gè)人在撒謊呢?

  2、她們到底是誰(shuí)

  有天使、惡魔、人三者,天使時(shí)刻都說(shuō)真話,惡魔時(shí)時(shí)刻刻都說(shuō)假話,人呢,有時(shí)候說(shuō)真話,有時(shí)候說(shuō)假話。

  穿黑色衣服的女子說(shuō):“我不是天使! 穿藍(lán)色衣服的女子說(shuō):“我不是人! 穿白色衣服的女子說(shuō):“我不是惡魔!蹦敲,這三人到底分別是誰(shuí)呢?

  3、半只小貓

  聽(tīng)說(shuō)祖父家的波斯貓生了好多小貓,喜歡貓的我興高采烈地來(lái)到祖父家?墒,只剩下1只小貓了。

  “一共生了幾只小貓呀?” “猜猜看,要是猜中了,就把剩下的這只小貓給你。附近的寵物店聽(tīng)說(shuō)以后,馬上來(lái)買走了所有小貓的一半和半只! “半只?”“是啊,然后,鄰居家的老奶奶無(wú)論如何都要,所以就把剩下的一半和另外半只給了她。這就是只剩下1只小貓的原因。那么你想想看,一共生了幾只小貓呢?

  4、被蟲(chóng)子吃掉的算式

  一只愛(ài)吃墨水的蟲(chóng)子把下圖的算式中的數(shù)字全部吃掉了。當(dāng)然,沒(méi)有數(shù)字的部分它沒(méi)有吃(因?yàn)闆](méi)有墨水)。

  那么,請(qǐng)問(wèn)原來(lái)的算式是什么樣子的呢?

  5、巧動(dòng)火柴

  用16根火柴擺成5個(gè)正方形。請(qǐng)移動(dòng)2根火柴,

  使

  正形變成4。

  6、折過(guò)來(lái)的'角

  把正三角形的紙如圖那樣折過(guò)來(lái)時(shí),角?的度數(shù)是多少度?

  7、星形角之和

  求星形尖端的角度之和。

  8、!雙胞胎?

  丈夫臨死前,給有身孕的妻子留下遺言說(shuō),生的是男孩就給他財(cái)產(chǎn)的 2/3 、如果生的是女孩就給他財(cái)產(chǎn)的 2/5 、剩下的給妻子。

  結(jié)果,生出來(lái)的是孿生兄妹——雙胞胎。這可難壞了妻子,3個(gè)人怎么分財(cái)產(chǎn)好呢?

  9、贈(zèng)送和降價(jià)哪個(gè)更好?

  1罐100元的咖啡,“買5罐送1罐”和“買5罐便宜20%”這兩種促銷方法哪一種好呢?還是兩種方法一樣好?

  10、折成15度

  用折紙做成45度很簡(jiǎn)單是吧。那么,請(qǐng)折成15度,你會(huì)嗎?

高中數(shù)學(xué)教案6

  1.課題

  填寫(xiě)課題名稱(高中代數(shù)類課題)

  2.教學(xué)目標(biāo)

  (1)知識(shí)與技能:

  通過(guò)本節(jié)課的學(xué)習(xí),掌握......知識(shí),提高學(xué)生解決實(shí)際問(wèn)題的能力;

  (2)過(guò)程與方法:

  通過(guò)......(討論、發(fā)現(xiàn)、探究),提高......(分析、歸納、比較和概括)的能力;

  (3)情感態(tài)度與價(jià)值觀:

  通過(guò)本節(jié)課的學(xué)習(xí),增強(qiáng)學(xué)生的學(xué)習(xí)興趣,將數(shù)學(xué)應(yīng)用到實(shí)際生活中,增加學(xué)生數(shù)學(xué)學(xué)習(xí)的樂(lè)趣。

  3.教學(xué)重難點(diǎn)

  (1)教學(xué)重點(diǎn):本節(jié)課的知識(shí)重點(diǎn)

  (2)教學(xué)難點(diǎn):易錯(cuò)點(diǎn)、難以理解的知識(shí)點(diǎn)

  4.教學(xué)方法(一般從中選擇3個(gè)就可以了)

  (1)討論法

  (2)情景教學(xué)法

  (3)問(wèn)答法

  (4)發(fā)現(xiàn)法

  (5)講授法

  5.教學(xué)過(guò)程

  (1)導(dǎo)入

  簡(jiǎn)單敘述導(dǎo)入課題的方式和方法(例:復(fù)習(xí)、類比、情境導(dǎo)出本節(jié)課的課題)

  (2)新授課程(一般分為三個(gè)小步驟)

 、俸(jiǎn)單講解本節(jié)課基礎(chǔ)知識(shí)點(diǎn)(例:奇函數(shù)的定義)。

 、跉w納總結(jié)該課題中的重點(diǎn)知識(shí)內(nèi)容,尤其對(duì)該注意的一些情況設(shè)置易錯(cuò)點(diǎn),進(jìn)行強(qiáng)調(diào)?梢栽O(shè)計(jì)分組討論環(huán)節(jié)(分組判斷幾組函數(shù)圖像是否為奇函數(shù),并歸納奇函數(shù)圖像的特點(diǎn)。設(shè)置定義域不關(guān)于原點(diǎn)對(duì)稱的函數(shù)是否為奇函數(shù)的易錯(cuò)點(diǎn))。

 、弁卣寡由,將所學(xué)知識(shí)拓展延伸到實(shí)際題目中,去解決實(shí)際生活中的問(wèn)題。

 。ㄔ谛率谡n里面一定要表下出講課的大體流程,但是不必太過(guò)詳細(xì)。)

  (3)課堂小結(jié)

  教師提問(wèn),學(xué)生回答本節(jié)課的收獲。

  (4)作業(yè)提高

  布置作業(yè)(盡量與實(shí)際生活相聯(lián)系,有所創(chuàng)新)。

  6.教學(xué)板書(shū)

  2.高中數(shù)學(xué)教案格式

  一.課題(說(shuō)明本課名稱)

  二.教學(xué)目的(或稱教學(xué)要求,或稱教學(xué)目標(biāo),說(shuō)明本課所要完成的教學(xué)任務(wù))

  三.課型(說(shuō)明屬新授課,還是復(fù)習(xí)課)

  四.課時(shí)(說(shuō)明屬第幾課時(shí))

  五.教學(xué)重點(diǎn)(說(shuō)明本課所必須解決的關(guān)鍵性問(wèn)題)

  六.教學(xué)難點(diǎn)(說(shuō)明本課的學(xué)習(xí)時(shí)易產(chǎn)生困難和障礙的知識(shí)傳授與能力培養(yǎng)點(diǎn))

  七.教學(xué)方法要根據(jù)學(xué)生實(shí)際,注重引導(dǎo)自學(xué),注重啟發(fā)思維

  八.教學(xué)過(guò)程(或稱課堂結(jié)構(gòu),說(shuō)明教學(xué)進(jìn)行的內(nèi)容、方法步驟)

  九.作業(yè)處理(說(shuō)明如何布置書(shū)面或口頭作業(yè))

  十.板書(shū)設(shè)計(jì)(說(shuō)明上課時(shí)準(zhǔn)備寫(xiě)在黑板上的內(nèi)容)

  十一.教具(或稱教具準(zhǔn)備,說(shuō)明輔助教學(xué)手段使用的工具)

  十二.教學(xué)反思:(教者對(duì)該堂課教后的感受及學(xué)生的收獲、改進(jìn)方法)

  3.高中數(shù)學(xué)教案范文

  【教學(xué)目標(biāo)】

  1.知識(shí)與技能

  (1)理解等差數(shù)列的定義,會(huì)應(yīng)用定義判斷一個(gè)數(shù)列是否是等差數(shù)列:

  (2)賬務(wù)等差數(shù)列的通項(xiàng)公式及其推導(dǎo)過(guò)程:

  (3)會(huì)應(yīng)用等差數(shù)列通項(xiàng)公式解決簡(jiǎn)單問(wèn)題。

  2.過(guò)程與方法

  在定義的理解和通項(xiàng)公式的推導(dǎo)、應(yīng)用過(guò)程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗(yàn)從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。

  3.情感、態(tài)度與價(jià)值觀

  通過(guò)教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動(dòng),培養(yǎng)學(xué)生主動(dòng)探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問(wèn)題的過(guò)程中,使學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。

  【教學(xué)重點(diǎn)】

 、俚炔顢(shù)列的概念;

 、诘炔顢(shù)列的通項(xiàng)公式

  【教學(xué)難點(diǎn)】

 、倮斫獾炔顢(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義;

 、诘炔顢(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程.

  【學(xué)情分析】

  我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過(guò)一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時(shí)注重從具體的生活實(shí)例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。

  【設(shè)計(jì)思路】

  1、教法

 、賳l(fā)引導(dǎo)法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性.

 、诜纸M討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問(wèn)題,解決問(wèn)題,調(diào)動(dòng)學(xué)生的積極性.

 、壑v練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn).

  2、學(xué)法

  引導(dǎo)學(xué)生首先從三個(gè)現(xiàn)實(shí)問(wèn)題(數(shù)數(shù)問(wèn)題、水庫(kù)水位問(wèn)題、儲(chǔ)蓄問(wèn)題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的.概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法.

  【教學(xué)過(guò)程】

  一、創(chuàng)設(shè)情境,引入新課

  1、從0開(kāi)始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?

  2、水庫(kù)管理人員為了保證優(yōu)質(zhì)魚(yú)類有良好的生活環(huán)境,用定期放水清庫(kù)的辦法清理水庫(kù)中的雜魚(yú).如果一個(gè)水庫(kù)的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開(kāi)始放水算起,到可以進(jìn)行清理工作的那天,水庫(kù)每天的水位(單位:m)組成一個(gè)什么數(shù)列?

  3、我國(guó)現(xiàn)行儲(chǔ)蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計(jì)算下一期的利息.按照單利計(jì)算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個(gè)什么數(shù)列?

  教師:以上三個(gè)問(wèn)題中的數(shù)蘊(yùn)涵著三列數(shù).

  學(xué)生:

 、0,5,10,15,20,25,….

  ②18,15.5,13,10.5,8,5.5.

 、10072,10144,10216,10288,10360.

  (設(shè)置意圖:從實(shí)例引入,實(shí)質(zhì)是給出了等差數(shù)列的現(xiàn)實(shí)背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實(shí)生活中大量存在的數(shù)學(xué)模型.通過(guò)分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識(shí)的自主性,培養(yǎng)學(xué)生的歸納能力.

  二、觀察歸納,形成定義

 、0,5,10,15,20,25,….

 、18,15.5,13,10.5,8,5.5.

 、10072,10144,10216,10288,10360.

  思考1上述數(shù)列有什么共同特點(diǎn)?

  思考2根據(jù)上數(shù)列的共同特點(diǎn),你能給出等差數(shù)列的一般定義嗎?

  思考3你能將上述的文字語(yǔ)言轉(zhuǎn)換成數(shù)學(xué)符號(hào)語(yǔ)言嗎?

  教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.

  學(xué)生:分組討論,可能會(huì)有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.

  教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號(hào)角度理解等差數(shù)列的定義.

  (設(shè)計(jì)意圖:通過(guò)對(duì)一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會(huì)到等差數(shù)列的規(guī)律和共同特點(diǎn);一開(kāi)始抓。骸皬牡诙(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差為同一常數(shù)”,落實(shí)對(duì)等差數(shù)列概念的準(zhǔn)確表達(dá).)

  三、舉一反三,鞏固定義

  1、判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.

  (1)1,1,1,1,1;

  (2)1,0,1,0,1;

  (3)2,1,0,-1,-2;

  (4)4,7,10,13,16.

  教師出示題目,學(xué)生思考回答.教師訂正并強(qiáng)調(diào)求公差應(yīng)注意的問(wèn)題.

  注意:公差d是每一項(xiàng)(第2項(xiàng)起)與它的前一項(xiàng)的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0.

  (設(shè)計(jì)意圖:強(qiáng)化學(xué)生對(duì)等差數(shù)列“等差”特征的理解和應(yīng)用).

  2、思考4:設(shè)數(shù)列{an}的通項(xiàng)公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?

  (設(shè)計(jì)意圖:強(qiáng)化等差數(shù)列的證明定義法)

  四、利用定義,導(dǎo)出通項(xiàng)

  1、已知等差數(shù)列:8,5,2,…,求第200項(xiàng)?

  2、已知一個(gè)等差數(shù)列{an}的首項(xiàng)是a1,公差是d,如何求出它的任意項(xiàng)an呢?

  教師出示問(wèn)題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進(jìn)行具體評(píng)價(jià)、引導(dǎo),總結(jié)推導(dǎo)方法,體會(huì)歸納思想以及累加求通項(xiàng)的方法;讓學(xué)生初步嘗試處理數(shù)列問(wèn)題的常用方法.

  (設(shè)計(jì)意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過(guò)程中,可能會(huì)找到多種不同的解決辦法,教師要逐一點(diǎn)評(píng),并及時(shí)肯定、贊揚(yáng)學(xué)生善于動(dòng)腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識(shí).鼓勵(lì)學(xué)生自主解答,培養(yǎng)學(xué)生運(yùn)算能力)

  五、應(yīng)用通項(xiàng),解決問(wèn)題

  1、判斷100是不是等差數(shù)列2,9,16,…的項(xiàng)?如果是,是第幾項(xiàng)?

  2、在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.

  3、求等差數(shù)列3,7,11,…的第4項(xiàng)和第10項(xiàng)

  教師:給出問(wèn)題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.

  學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補(bǔ)充:已知等差數(shù)列的首項(xiàng)和公差就可以求出其通項(xiàng)公式

  (設(shè)計(jì)意圖:主要是熟悉公式,使學(xué)生從中體會(huì)公式與方程之間的聯(lián)系.初步認(rèn)識(shí)“基本量法”求解等差數(shù)列問(wèn)題.)

  六、反饋練習(xí):教材13頁(yè)練習(xí)1

  七、歸納總結(jié):

  1、一個(gè)定義:

  等差數(shù)列的定義及定義表達(dá)式

  2、一個(gè)公式:

  等差數(shù)列的通項(xiàng)公式

  3、二個(gè)應(yīng)用:

  定義和通項(xiàng)公式的應(yīng)用

  教師:讓學(xué)生思考整理,找?guī)讉(gè)代表發(fā)言,最后教師給出補(bǔ)充

  (設(shè)計(jì)意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個(gè)方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識(shí)和掌握基本概念,并靈活運(yùn)用基本概念.)

  【設(shè)計(jì)反思】

  本設(shè)計(jì)從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過(guò)程中,學(xué)生通過(guò)分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項(xiàng)公式,強(qiáng)化了由具體到抽象,由特殊到一般的思維過(guò)程,有助于提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問(wèn)題、學(xué)生探討解決問(wèn)題為途徑,以相互補(bǔ)充展開(kāi)教學(xué),總結(jié)科學(xué)合理的知識(shí)體系,形成師生之間的良性互動(dòng),提高課堂教學(xué)效率.

高中數(shù)學(xué)教案7

  教學(xué)目標(biāo):

  1.理解流程圖的選擇結(jié)構(gòu)這種基本邏輯結(jié)構(gòu).

  2.能識(shí)別和理解簡(jiǎn)單的框圖的功能.

  3. 能運(yùn)用三種基本邏輯結(jié)構(gòu)設(shè)計(jì)流程圖以解決簡(jiǎn)單的問(wèn)題.

  教學(xué)方法:

  1. 通過(guò)模仿、操作、探索,經(jīng)歷設(shè)計(jì)流程圖表達(dá)求解問(wèn)題的過(guò)程,加深對(duì)流程圖的感知.

  2. 在具體問(wèn)題的解決過(guò)程中,掌握基本的流程圖的畫(huà)法和流程圖的三種基本邏輯結(jié)構(gòu).

  教學(xué)過(guò)程:

  一、問(wèn)題情境

  1.情境:

  某鐵路客運(yùn)部門規(guī)定甲、乙兩地之間旅客托運(yùn)行李的費(fèi)用為

  其中(單位:)為行李的重量.

  試給出計(jì)算費(fèi)用(單位:元)的一個(gè)算法,并畫(huà)出流程圖.

  二、學(xué)生活動(dòng)

  學(xué)生討論,教師引導(dǎo)學(xué)生進(jìn)行表達(dá).

  解 算法為:

  輸入行李的重量;

  如果,那么,

  否則;

  輸出行李的重量和運(yùn)費(fèi).

  上述算法可以用流程圖表示為:

  教師邊講解邊畫(huà)出第10頁(yè)圖1-2-6.

  在上述計(jì)費(fèi)過(guò)程中,第二步進(jìn)行了判斷.

  三、建構(gòu)數(shù)學(xué)

  1.選擇結(jié)構(gòu)的.概念:

  先根據(jù)條件作出判斷,再?zèng)Q定執(zhí)行哪一種

  操作的結(jié)構(gòu)稱為選擇結(jié)構(gòu).

  如圖:虛線框內(nèi)是一個(gè)選擇結(jié)構(gòu),它包含一個(gè)判斷框,當(dāng)條件成立(或稱條件為“真”)時(shí)執(zhí)行,否則執(zhí)行.

  2.說(shuō)明:(1)有些問(wèn)題需要按給定的條件進(jìn)行分析、比較和判斷,并按判

  斷的不同情況進(jìn)行不同的操作,這類問(wèn)題的實(shí)現(xiàn)就要用到選擇結(jié)構(gòu)的設(shè)計(jì);

 。2)選擇結(jié)構(gòu)也稱為分支結(jié)構(gòu)或選取結(jié)構(gòu),它要先根據(jù)指定的條件進(jìn)行判斷,再由判斷的結(jié)果決定執(zhí)行兩條分支路徑中的某一條;

 。3)在上圖的選擇結(jié)構(gòu)中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)

  行,但或兩個(gè)框中可以有一個(gè)是空的,即不執(zhí)行任何操作;

  (4)流程圖圖框的形狀要規(guī)范,判斷框必須畫(huà)成菱形,它有一個(gè)進(jìn)入點(diǎn)和

  兩個(gè)退出點(diǎn).

  3.思考:教材第7頁(yè)圖所示的算法中,哪一步進(jìn)行了判斷?

高中數(shù)學(xué)教案8

  [學(xué)習(xí)目標(biāo)]

 。1)會(huì)用坐標(biāo)法及距離公式證明Cα+β;

  (2)會(huì)用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由Cα+β推導(dǎo)Cα—β、Sα±β、Tα±β,切實(shí)理解上述公式間的關(guān)系與相互轉(zhuǎn)化;

 。3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡(jiǎn)單的三角變換,解決求值、化簡(jiǎn)三角式、證明三角恒等式等問(wèn)題。

  [學(xué)習(xí)重點(diǎn)]

  兩角和與差的正弦、余弦、正切公式

  [學(xué)習(xí)難點(diǎn)]

  余弦和角公式的推導(dǎo)

  [知識(shí)結(jié)構(gòu)]

  1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標(biāo)法,利用三角函數(shù)定義及平面內(nèi)兩點(diǎn)間的距離公式,把兩角和α+β的.余弦,化為單角α、β的三角函數(shù)(證明過(guò)程見(jiàn)課本)

  2、通過(guò)下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

  3、當(dāng)α、β中有一個(gè)是的整數(shù)倍時(shí),應(yīng)首選誘導(dǎo)公式進(jìn)行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。

  4、關(guān)于公式的正用、逆用及變用

高中數(shù)學(xué)教案9

  教學(xué)準(zhǔn)備

  1.教學(xué)目標(biāo)

  1、知識(shí)與技能:

  函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依

  賴關(guān)系,同時(shí)還用集合與對(duì)應(yīng)的語(yǔ)言刻畫(huà)函數(shù),高中階段更注重函數(shù)模型化的思想與意識(shí).

  2、過(guò)程與方法:

  (1)通過(guò)實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用;

 。2)了解構(gòu)成函數(shù)的要素;

 。3)會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;

 。4)能夠正確使用“區(qū)間”的符號(hào)表示函數(shù)的定義域;

  3、情感態(tài)度與價(jià)值觀,使學(xué)生感受到學(xué)習(xí)函數(shù)的必要性和重要性,激發(fā)學(xué)習(xí)的積極性.

  教學(xué)重點(diǎn)/難點(diǎn)

  重點(diǎn):理解函數(shù)的模型化思想,用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù);

  難點(diǎn):符號(hào)“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;

  教學(xué)用具

  多媒體

  4.標(biāo)簽

  函數(shù)及其表示

  教學(xué)過(guò)程

 。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題

  1、復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;

  2、閱讀課本引例,體會(huì)函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:

  (1)炮彈的射高與時(shí)間的變化關(guān)系問(wèn)題;

  (2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問(wèn)題;

  (3)“八五”計(jì)劃以來(lái)我國(guó)城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系問(wèn)題.

  3、分析、歸納以上三個(gè)實(shí)例,它們有什么共同點(diǎn);

  4、引導(dǎo)學(xué)生應(yīng)用集合與對(duì)應(yīng)的語(yǔ)言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴關(guān)系;

  5、根據(jù)初中所學(xué)函數(shù)的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的關(guān)系是否是函數(shù)關(guān)系.

  (二)研探新知

  1、函數(shù)的有關(guān)概念

  (1)函數(shù)的概念:

  設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù)(function).

  記作:y=f(x),x∈A.

  其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).

  注意:

 、佟皔=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;

 、诤瘮(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x.

  (2)構(gòu)成函數(shù)的三要素是什么?

  定義域、對(duì)應(yīng)關(guān)系和值域

  (3)區(qū)間的概念

 、賲^(qū)間的分類:開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間;

 、跓o(wú)窮區(qū)間;

 、蹍^(qū)間的數(shù)軸表示.

  (4)初中學(xué)過(guò)哪些函數(shù)?它們的定義域、值域、對(duì)應(yīng)法則分別是什么?

  通過(guò)三個(gè)已知的函數(shù):y=ax+b(a≠0)

  y=ax2+bx+c(a≠0)

  y=(k≠0)比較描述性定義和集合,與對(duì)應(yīng)語(yǔ)言刻畫(huà)的定義,談?wù)勼w會(huì).

  師:歸納總結(jié)

 。ㄈ┵|(zhì)疑答辯,排難解惑,發(fā)展思維。

  1、如何求函數(shù)的定義域

  例1:已知函數(shù)f(x)=+

  (1)求函數(shù)的定義域;

  (2)求f(-3),f()的值;

  (3)當(dāng)a>0時(shí),求f(a),f(a-1)的值.

  分析:函數(shù)的定義域通常由問(wèn)題的實(shí)際背景確定,如前所述的三個(gè)實(shí)例.如果只給出解析式y(tǒng)=f(x),而沒(méi)有指明它的定義域,那么函數(shù)的定義域就是指能使這個(gè)式子有意義的實(shí)數(shù)的集合,函數(shù)的定義域、值域要寫(xiě)成集合或區(qū)間的形式.

  例2、設(shè)一個(gè)矩形周長(zhǎng)為80,其中一邊長(zhǎng)為x,求它的'面積關(guān)于x的函數(shù)的解析式,并寫(xiě)出定義域.

  分析:由題意知,另一邊長(zhǎng)為x,且邊長(zhǎng)x為正數(shù),所以0<x<40.

  所以s==(40-x)x(0<x<40)

  引導(dǎo)學(xué)生小結(jié)幾類函數(shù)的定義域:

  (1)如果f(x)是整式,那么函數(shù)的定義域是實(shí)數(shù)集R.

  2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實(shí)數(shù)的集合.

  (3)如果f(x)是二次根式,那么函數(shù)的定義域是使根號(hào)內(nèi)的式子大于或等于零的實(shí)數(shù)的集合.

  (4)如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實(shí)數(shù)集合.(即求各集合的交集)

  (5)滿足實(shí)際問(wèn)題有意義.

  鞏固練習(xí):課本P19第1

  2、如何判斷兩個(gè)函數(shù)是否為同一函數(shù)

  例3、下列函數(shù)中哪個(gè)與函數(shù)y=x相等?

  分析:

  1構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))

  2兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無(wú)關(guān)。

  解:

  課本P18例2

 。ㄋ模w納小結(jié)

  ①?gòu)木唧w實(shí)例引入了函數(shù)的概念,用集合與對(duì)應(yīng)的語(yǔ)言描述了函數(shù)的定義及其相關(guān)概念;②初步介紹了求函數(shù)定義域和判斷同一函數(shù)的基本方法,同時(shí)引出了區(qū)間的概念.

  (五)設(shè)置問(wèn)題,留下懸念

  1、課本P24習(xí)題1.2(A組)第1—7題(B組)第1題

  2、舉出生活中函數(shù)的例子(三個(gè)以上),并用集合與對(duì)應(yīng)的語(yǔ)言來(lái)描述函數(shù),同時(shí)說(shuō)出函數(shù)的定義域、值域和對(duì)應(yīng)關(guān)系.

  課堂小結(jié)

高中數(shù)學(xué)教案10

  猴子搬香蕉

  一個(gè)小猴子邊上有100根香蕉,它要走過(guò)50米才能到家,每次它最多搬50根香蕉,(多了就被壓死了),它每走1米就要吃掉一根,請(qǐng)問(wèn)它最多能把多少根香蕉搬到家里?

  解答:

  100只香蕉分兩次,一次運(yùn)50只,走1米,再回去搬另外50只,這樣走了1米的時(shí)候,前50只吃掉了兩只,后50只吃掉了1只,剩下48+49只;兩米的時(shí)候剩下46+48只;...到16米的時(shí)候剩下(50-2×16)+(50-16)=18+34只;17米的時(shí)候剩下16+33只,共49只;然后把剩下的這49只一次運(yùn)回去,要走剩下的33米,每米吃一個(gè),到家還有16個(gè)香蕉。

  河岸的距離

  兩艘輪船在同一時(shí)刻駛離河的兩岸,一艘從A駛往B,另一艘從B開(kāi)往A,其中一艘開(kāi)得比另一艘快些,因此它們?cè)诰嚯x較近的岸500公里處相遇。到達(dá)預(yù)定地點(diǎn)后,每艘船要停留15分鐘,以便讓乘客上下船,然后它們又返航。這兩艘渡輪在距另一岸100公里處重新相遇。試問(wèn)河有多寬?

  解答:

  當(dāng)兩艘渡輪在x點(diǎn)相遇時(shí),它們距A岸500公里,此時(shí)它們走過(guò)的距離總和等于河的寬度。當(dāng)它們雙方抵達(dá)對(duì)岸時(shí),走過(guò)的總長(zhǎng)度

  等于河寬的兩倍。在返航中,它們?cè)趜點(diǎn)相遇,這時(shí)兩船走過(guò)的距離之和等于河寬的三倍,所以每一艘渡輪現(xiàn)在所走的距離應(yīng)該等于它們第一次相遇時(shí)所走的距離的三倍。在兩船第一次相遇時(shí),有一艘渡輪走了500公里,所以當(dāng)它到達(dá)z點(diǎn)時(shí),已經(jīng)走了三倍的距離,即1500公里,這個(gè)距離比河的寬度多100公里。所以,河的寬度為1400公里。每艘渡輪的上、下客時(shí)間對(duì)答案毫無(wú)影響。

  變量交換

  不使用任何其他變量,交換a,b變量的值?

  分析與解答

  a = a+b

  b = a-b

  a= a-b

  步行時(shí)間

  某公司的辦公大樓在市中心,而公司總裁溫斯頓的家在郊區(qū)一個(gè)小鎮(zhèn)的附近。他每次下班以后都是乘同一次市郊火車回小鎮(zhèn)。小鎮(zhèn)車站離家還有一段距離,他的私人司機(jī)總是在同一時(shí)刻從家里開(kāi)出轎車,去小鎮(zhèn)車站接總裁回家。由于火車與轎車都十分準(zhǔn)時(shí),因此,火車與轎車每次都是在同一時(shí)刻到站。

  有一次,司機(jī)比以往遲了半個(gè)小時(shí)出發(fā)。溫斯頓到站后,找不到

  他的車子,又怕回去晚了遭老婆罵,便急匆匆沿著公路步行往家里走,途中遇到他的轎車正風(fēng)馳電掣而來(lái),立即招手示意停車,跳上車子后也顧不上罵司機(jī),命其馬上掉頭往回開(kāi);氐郊抑校怀鏊,他老婆大發(fā)雷霆:“又到哪兒鬼混去啦!你比以往足足晚回了22分鐘??”。溫斯頓步行了多長(zhǎng)時(shí)間?

  解答:

  假如溫斯頓一直在車站等候,那么由于司機(jī)比以往晚了半小時(shí)出發(fā),因此,也將晚半小時(shí)到達(dá)車站。也就是說(shuō),溫斯頓將在車站空等半小時(shí),等他的轎車到達(dá)后坐車回家,從而他將比以往晚半小時(shí)到家。而現(xiàn)在溫斯頓只比平常晚22分鐘到家,這縮短下來(lái)的8分鐘是如果總裁在火車站死等的話,司機(jī)本來(lái)要花在從現(xiàn)在遇到溫斯頓總裁的地點(diǎn)到火車站再回到這個(gè)地點(diǎn)上的時(shí)間。這意味著,如果司機(jī)開(kāi)車從現(xiàn)在遇到總裁的地點(diǎn)趕到火車站,單程所花的時(shí)間將為4分鐘。因此,如果溫斯頓等在火車站,再過(guò)4分鐘,他的轎車也到了。也就是說(shuō),他如果等在火車站,那么他也已經(jīng)等了30-4=26分鐘了。但是懼內(nèi)的溫斯頓總裁畢竟沒(méi)有等,他心急火燎地趕路,把這26分鐘全都花在步行上了。

  因此,溫斯頓步行了26分鐘。

  付清欠款

  有四個(gè)人借錢的數(shù)目分別是這樣的:阿伊庫(kù)向貝爾借了10美元;

  貝爾向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊庫(kù)借了40美元。碰巧四個(gè)人都在場(chǎng),決定結(jié)個(gè)賬,請(qǐng)問(wèn)最少只需要?jiǎng)佑枚嗌倜澜鹁涂梢詫⑺星房钜淮胃肚澹?/p>

  解答:

  貝爾、查理、迪克各自拿出10美元給阿伊庫(kù)就可解決問(wèn)題了。這樣的話只動(dòng)用了30美元。最笨的辦法就是用100美元來(lái)一一付清。

  貝爾必須拿出10美元的欠額,查理和迪克也一樣;而阿伊庫(kù)則要收回借出的30美元。再?gòu)?fù)雜的問(wèn)題只要有條理地分析就會(huì)很簡(jiǎn)單。養(yǎng)成經(jīng)常性地歸納整理、摸索實(shí)質(zhì)的'好習(xí)慣。

  一美元紙幣

  注:美國(guó)貨幣中的硬幣有1美分、5美分、10美分、25美分、50美分和1美元這幾種面值。

  一家小店剛開(kāi)始營(yíng)業(yè),店堂中只有三位男顧客和一位女店主。當(dāng)這三位男士同時(shí)站起來(lái)付帳的時(shí)候,出現(xiàn)了以下的情況:

  (1)這四個(gè)人每人都至少有一枚硬幣,但都不是面值為1美分或1美元的硬幣。

 。2)這四人中沒(méi)有一人能夠兌開(kāi)任何一枚硬幣。

 。3)一個(gè)叫盧的男士要付的賬單款額最大,一位叫莫的男士要

  付的帳單款額其次,一個(gè)叫內(nèi)德的男士要付的賬單款額最小。

  (4)每個(gè)男士無(wú)論怎樣用手中所持的硬幣付賬,女店主都無(wú)法找清零錢。

 。5)如果這三位男士相互之間等值調(diào)換一下手中的硬幣,則每個(gè)人都可以付清自己的賬單而無(wú)需找零。

  (6)當(dāng)這三位男士進(jìn)行了兩次等值調(diào)換以后,他們發(fā)現(xiàn)手中的硬幣與各人自己原先所持的硬幣沒(méi)有一枚面值相同。

 。7)隨著事情的進(jìn)一步發(fā)展,又出現(xiàn)如下的情況:

 。8)在付清了賬單而且有兩位男士離開(kāi)以后,留下的男士又買了一些糖果。這位男士本來(lái)可以用他手中剩下的硬幣付款,可是女店主卻無(wú)法用她現(xiàn)在所持的硬幣找清零錢。于是,這位男士用1美元的紙幣付了糖果錢,但是現(xiàn)在女店主不得不把她的全部硬幣都找給了他。

  現(xiàn)在,請(qǐng)你不要管那天女店主怎么會(huì)在找零上屢屢遇到麻煩,這三位男士中誰(shuí)用1美元的紙幣付了糖果錢?

  解答:

  對(duì)題意的以下兩點(diǎn)這樣理解:

  (2)中不能換開(kāi)任何一個(gè)硬幣,指的是如果任何一個(gè)人不能有2個(gè)5分,否則他能換1個(gè)10分硬幣。

  (6)中指如果A,B換過(guò),并且A,C換過(guò),這就是兩次交換。

高中數(shù)學(xué)教案11

  教學(xué)目標(biāo)

 。1)了解線性規(guī)劃的意義以及線性約束條件、線性目標(biāo)函數(shù)、線性規(guī)化問(wèn)題、可行解、可行域以及最優(yōu)解等基本概念;

  (2)了解線性規(guī)劃問(wèn)題的圖解法,并能應(yīng)用它解決一些簡(jiǎn)單的實(shí)際問(wèn)題;

 。3)培養(yǎng)學(xué)生觀察、聯(lián)想以及作圖的能力,滲透集合、化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生“建模”和解決實(shí)際問(wèn)題的能力;

  (4)結(jié)合教學(xué)內(nèi)容,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和“用數(shù)學(xué)”的意識(shí),激勵(lì)學(xué)生勇于創(chuàng)新.

  重點(diǎn)難點(diǎn)

  理解二元一次不等式表示平面區(qū)域是教學(xué)重點(diǎn)。

  如何擾實(shí)際問(wèn)題轉(zhuǎn)化為線性規(guī)劃問(wèn)題,并給出解答是教學(xué)難點(diǎn)。

  教學(xué)步驟

 。ㄒ唬┮胄抡n

  我們已研究過(guò)以二元一次不等式組為約束條件的二元線性目標(biāo)函數(shù)的.線性規(guī)劃問(wèn)題。那么是否有多個(gè)兩個(gè)變量的線性規(guī)劃問(wèn)題呢?又什么樣的問(wèn)題不用線性規(guī)劃知識(shí)來(lái)解決呢?

高中數(shù)學(xué)教案12

  本節(jié)課講述的是人教版高一數(shù)學(xué)(上)§3.2等差數(shù)列(第一課時(shí))的內(nèi)容。

  一、教材分析

  1、教材的地位和作用:

  數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對(duì)比的依據(jù)。

  2、教學(xué)目標(biāo)

  根據(jù)教學(xué)大綱的要求和學(xué)生的實(shí)際水平,確定了本次課的教學(xué)目標(biāo)

  a在知識(shí)上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及思想;初步引入“數(shù)學(xué)建模”的思想方法并能運(yùn)用。

  b在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來(lái)研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力;通過(guò)階梯性練習(xí),提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。

  c在情感上:通過(guò)對(duì)等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。

  3、教學(xué)重點(diǎn)和難點(diǎn)

  根據(jù)教學(xué)大綱的要求我確定本節(jié)課的教學(xué)重點(diǎn)為:

 、俚炔顢(shù)列的概念。

 、诘炔顢(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及應(yīng)用。

  由于學(xué)生第一次接觸不完全歸納法,對(duì)此并不熟悉因此用不完全歸納法推導(dǎo)等差數(shù)列的同項(xiàng)公式是這節(jié)課的一個(gè)難點(diǎn)。同時(shí),學(xué)生對(duì)“數(shù)學(xué)建模”的思想方法較為陌生,因此用數(shù)學(xué)思想解決實(shí)際問(wèn)題是本節(jié)課的另一個(gè)難點(diǎn)。

  二、學(xué)情教法分析:

  對(duì)于三中的高一學(xué)生,知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了教強(qiáng)的抽象思維能力和演繹推理能力,所以我在授課時(shí)注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。

  針對(duì)高中生這一思維特點(diǎn)和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過(guò)問(wèn)題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問(wèn)題。

  三、學(xué)法指導(dǎo):

  在引導(dǎo)分析時(shí),留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞中心各抒己見(jiàn),把思路方法和需要解決的問(wèn)題弄清。

  四、教學(xué)程序

  本節(jié)課的教學(xué)過(guò)程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用舉例(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個(gè)教學(xué)環(huán)節(jié)構(gòu)成。

  (一)復(fù)習(xí)引入:

  1.從函數(shù)觀點(diǎn)看,數(shù)列可看作是定義域?yàn)閤xxxx對(duì)應(yīng)的一列函數(shù)值,從而數(shù)列的通項(xiàng)公式也就是相應(yīng)函數(shù)的xxxx。(N;解析式)

  通過(guò)練習(xí)1復(fù)習(xí)上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問(wèn)題作準(zhǔn)備。

  2.小明目前會(huì)100個(gè)單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺(jué)地每天忘掉2個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92 ①

  3. 小芳只會(huì)5個(gè)單詞,他決定從今天起每天背記10個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為5,10,15,20,25 ②

  通過(guò)練習(xí)2和3引出兩個(gè)具體的等差數(shù)列,初步認(rèn)識(shí)等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識(shí)創(chuàng)設(shè)問(wèn)題情站境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個(gè)數(shù)列特點(diǎn),引出等差數(shù)列的概念,對(duì)問(wèn)題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。

  (二) 新課探究

  1、由引入自然的給出等差數(shù)列的概念:

  如果一個(gè)數(shù)列,從第二項(xiàng)開(kāi)始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列,

  這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來(lái)表示。強(qiáng)調(diào):

  ① “從第二項(xiàng)起”滿足條件;

 、诠頳一定是由后項(xiàng)減前項(xiàng)所得;

 、勖恳豁(xiàng)與它的前一項(xiàng)的差必須是同一個(gè)常數(shù)(強(qiáng)調(diào)“同一個(gè)常數(shù)” );

  在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言,歸納出數(shù)學(xué)表達(dá)式:

  an+1-an=d (n≥1)同時(shí)為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

  1. 9 ,8,7,6,5,4,……;√ d=-1

  2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

  3. 0,0,0,0,0,0,…….; √ d=0

  4. 1,2,3,2,3,4,……;×

  5. 1,0,1,0,1,……×

  其中第一個(gè)數(shù)列公差<0,>0,第三個(gè)數(shù)列公差=0

  由此強(qiáng)調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0

  2、第二個(gè)重點(diǎn)部分為等差數(shù)列的通項(xiàng)公式

  在歸納等差數(shù)列通項(xiàng)公式中,我采用討論式的教學(xué)方法。給出等差數(shù)列的首項(xiàng),公差d,由學(xué)生研究分組討論a4的通項(xiàng)公式。通過(guò)總結(jié)a4的通項(xiàng)公式由學(xué)生猜想a40的通項(xiàng)公式,進(jìn)而歸納an的'通項(xiàng)公式。整個(gè)過(guò)程由學(xué)生完成,通過(guò)互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識(shí)又化解了教學(xué)難點(diǎn)。

  若一等差數(shù)列{an }的首項(xiàng)是a1,公差是d,則據(jù)其定義可得:

  a2 - a1 =d 即: a2 =a1 +d

  a3 a2 =d 即: a3 =a2 +d = a1 +2d

  a4 a3 =d 即: a4 =a3 +d = a1 +3d

  ……

  猜想: a40 = a1 +39d,進(jìn)而歸納出等差數(shù)列的通項(xiàng)公式:

  an=a1+(n-1)d

  此時(shí)指出:這種求通項(xiàng)公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項(xiàng)公式的辦法------迭加法:

  a2 a1 =d

  a3 a2 =d

  a4 a3 =d

  ……

  an an-1=d

  將這(n-1)個(gè)等式左右兩邊分別相加,就可以得到 an a1= (n-1) d即 an= a1+(n-1) d (1)

  當(dāng)n=1時(shí),(1)也成立,

  所以對(duì)一切n∈N,上面的公式都成立

  因此它就是等差數(shù)列{an}的通項(xiàng)公式。

  在迭加法的證明過(guò)程中,我采用啟發(fā)式教學(xué)方法。

  利用等差數(shù)列概念啟發(fā)學(xué)生寫(xiě)出n-1個(gè)等式。

  對(duì)照已歸納出的通項(xiàng)公式啟發(fā)學(xué)生想出將n-1個(gè)等式相加。證出通項(xiàng)公式。

  在這里通過(guò)該知識(shí)點(diǎn)引入迭加法這一數(shù)學(xué)思想,逐步達(dá)到“注重方法,凸現(xiàn)思想” 的教學(xué)要求

  接著舉例說(shuō)明:若一個(gè)等差數(shù)列{an}的首項(xiàng)是1,公差是2,得出這個(gè)數(shù)列的通項(xiàng)公式是:an=1+(n-1)×2 ,

  即an=2n-1 以此來(lái)鞏固等差數(shù)列通項(xiàng)公式運(yùn)用

  同時(shí)要求畫(huà)出該數(shù)列圖象,由此說(shuō)明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開(kāi)的無(wú)窮多個(gè)孤立點(diǎn)。用函數(shù)的思想來(lái)研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。

 。ㄈ⿷(yīng)用舉例

  這一環(huán)節(jié)是使學(xué)生通過(guò)例題和練習(xí),增強(qiáng)對(duì)通項(xiàng)公式含義的理解以及對(duì)通項(xiàng)公式的運(yùn)用,提高解決實(shí)際問(wèn)題的能力。通過(guò)例1和例2向?qū)W生表明:要用運(yùn)動(dòng)變化的觀點(diǎn)看等差數(shù)列通項(xiàng)公式中的a1、d、n、an這4個(gè)量之間的關(guān)系。當(dāng)其中的部分量已知時(shí),可根據(jù)該公式求出另一部分量。

  例1 (1)求等差數(shù)列8,5,2,…的第20項(xiàng);第30項(xiàng);第40項(xiàng)

 。2)-401是不是等差數(shù)列-5,-9,-13,…的項(xiàng)?如果是,是第幾項(xiàng)?

  在第一問(wèn)中我添加了計(jì)算第30項(xiàng)和第40項(xiàng)以加強(qiáng)鞏固等差數(shù)列通項(xiàng)公式;第二問(wèn)實(shí)際上是求正整數(shù)解的問(wèn)題,而關(guān)鍵是求出數(shù)列的通項(xiàng)公式an.

  例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項(xiàng)a1與公差d。

  在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對(duì)通項(xiàng)公式的鞏固

  例3 是一個(gè)實(shí)際建模問(wèn)題

  建造房屋時(shí)要設(shè)計(jì)樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設(shè)計(jì)為等高的16級(jí)臺(tái)階,問(wèn)每級(jí)臺(tái)階高為多少米?

  這道題我采用啟發(fā)式和討論式相結(jié)合的教學(xué)方法。啟發(fā)學(xué)生注意每級(jí)臺(tái)階“等高”使學(xué)生想到每級(jí)臺(tái)階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)模型------等差數(shù)列:(學(xué)生討論分析,分別演板,教師評(píng)析問(wèn)題。問(wèn)題可能出現(xiàn)在:項(xiàng)數(shù)學(xué)生認(rèn)為是16項(xiàng),應(yīng)明確a1為第2層的樓底離地面的高度,a2表示第一級(jí)臺(tái)階離地面的高度而第16級(jí)臺(tái)階離地面高度為a17,可用課件展示實(shí)際樓梯圖以化解難點(diǎn))。

  設(shè)置此題的目的:1.加強(qiáng)同學(xué)們對(duì)應(yīng)用題的綜合分析能力,2.通過(guò)數(shù)學(xué)實(shí)際問(wèn)題引出等差數(shù)列問(wèn)題,激發(fā)了學(xué)生的興趣;3.再者通過(guò)數(shù)學(xué)實(shí)例展示了“從實(shí)際問(wèn)題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說(shuō)明實(shí)際問(wèn)題的“數(shù)學(xué)建模”的數(shù)學(xué)思想方法

  (四)反饋練習(xí)

  1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時(shí)間內(nèi)完成)。目的:使學(xué)生熟悉通項(xiàng)公式,對(duì)學(xué)生進(jìn)行基本技能訓(xùn)練。

  2、書(shū)上例3)梯子的最高一級(jí)寬33cm,最低一級(jí)寬110cm,中間還有10級(jí),各級(jí)的寬度成等差數(shù)列。計(jì)算中間各級(jí)的寬度。

  目的:對(duì)學(xué)生加強(qiáng)建模思想訓(xùn)練。

  3、若數(shù)例{an} 是等差數(shù)列,若 bn = k an ,(k為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列

  此題是對(duì)學(xué)生進(jìn)行數(shù)列問(wèn)題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問(wèn)題同時(shí)強(qiáng)化了等差數(shù)列的概念。

  (五)歸納小結(jié)(由學(xué)生總結(jié)這節(jié)課的收獲)

  1.等差數(shù)列的概念及數(shù)學(xué)表達(dá)式.

  強(qiáng)調(diào)關(guān)鍵字:從第二項(xiàng)開(kāi)始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)

  2.等差數(shù)列的通項(xiàng)公式 an= a1+(n-1) d會(huì)知三求一

  3.用“數(shù)學(xué)建!彼枷敕椒ń鉀Q實(shí)際問(wèn)題

  (六)布置作業(yè)

  必做題:課本P114 習(xí)題3.2第2,6 題

  選做題:已知等差數(shù)列{an}的首項(xiàng)a1=-24,從第10項(xiàng)開(kāi)始為正數(shù),求公差d的取值范圍。

  (目的:通過(guò)分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)

  五、板書(shū)設(shè)計(jì)

  在板書(shū)中突出本節(jié)重點(diǎn),將強(qiáng)調(diào)的地方如定義中,“從第二項(xiàng)起”及“同一常數(shù)”等幾個(gè)字用紅色粉筆標(biāo)注,同時(shí)給學(xué)生留有作題的地方,整個(gè)板書(shū)充分體現(xiàn)了精講多練的教學(xué)方法。

高中數(shù)學(xué)教案13

  各位評(píng)委、各位專家,大家好!今天,我說(shuō)課的內(nèi)容是人民教育出版社全日制普通高級(jí)中學(xué)教科書(shū)(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。

  下面從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)、效果評(píng)價(jià)六方面進(jìn)行說(shuō)課。

  一、教材分析

  (一)教材的地位和作用

  “一元二次不等式解法”既是初中一元一次不等式解法在知識(shí)上的延伸和發(fā)展,又是本章集合知識(shí)的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識(shí)的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識(shí)。

  (二)教學(xué)內(nèi)容

  本節(jié)內(nèi)容分2課時(shí)學(xué)習(xí)。本課時(shí)通過(guò)二次函數(shù)的圖象探索一元二次不等式的解集。通過(guò)復(fù)習(xí)“三個(gè)一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫(huà)、看、說(shuō)、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂(lè)趣。

  二、教學(xué)目標(biāo)分析

  根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:

  知識(shí)目標(biāo)——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

  能力目標(biāo)——通過(guò)看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

  情感目標(biāo)——?jiǎng)?chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識(shí)及主體作用。

  三、重難點(diǎn)分析

  一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問(wèn)題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的解法。

  要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識(shí)方程的解,不等式的解集與函數(shù)圖象上對(duì)應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒(méi)有專門研究過(guò)這類問(wèn)題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。

  四、教法與學(xué)法分析

 。ㄒ唬⿲W(xué)法指導(dǎo)

  教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動(dòng)手畫(huà)、動(dòng)眼看、動(dòng)腦想、動(dòng)口說(shuō)、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會(huì),教給了學(xué)生獲取知識(shí)的途徑、思考問(wèn)題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì)逐步感受到數(shù)學(xué)的美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

  (二)教法分析

  本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。

  建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動(dòng)的建構(gòu)活動(dòng),學(xué)生應(yīng)與一定的知識(shí)背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但便于保持,而且易于遷移到陌生的問(wèn)題情景中。

  本節(jié)課采用“誘思引探教學(xué)法”。把問(wèn)題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫(huà)、看、說(shuō)、用”。較好地探求一元二次不等式的解法。

  五、課堂設(shè)計(jì)

  本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過(guò)問(wèn)題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問(wèn)題解決的探索過(guò)程中,由學(xué)會(huì)走向會(huì)學(xué),由被動(dòng)答題走向主動(dòng)探究。

  (一)創(chuàng)設(shè)情景,引出“三個(gè)一次”的關(guān)系

  本節(jié)課開(kāi)始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“”則變成一元二次不等式x2-x-60讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問(wèn)開(kāi)始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。

  為此,我設(shè)計(jì)了以下幾個(gè)問(wèn)題:

  1、請(qǐng)同學(xué)們解以下方程和不等式:

  ①2x-7=0;②2x-70;③2x-70

  學(xué)生回答,我板書(shū)。

  2、我指出:2x-70和2x-70的解實(shí)際上只需利用不等式基本性質(zhì)就容易得到。

  3、接著我提出:我們能否利用不等式的基本性質(zhì)來(lái)解一元二次不等式呢?學(xué)生可能感到很困惑。

  4、為此,我引入一次函數(shù)y=2x-7,借助動(dòng)畫(huà)從圖象上直觀認(rèn)識(shí)方程和不等式的解,得出以下三組重要關(guān)系:

 、2x-7=0的解恰是函數(shù)y=2x-7的圖象與x軸

  交點(diǎn)的橫坐標(biāo)。

 、2x-70的.解集正是函數(shù)y=2x-7的圖象

  在x軸的上方的點(diǎn)的橫坐標(biāo)的集合。

 、2x-70的解集正是函數(shù)y=2x-7的圖象

  在x軸的下方的點(diǎn)的橫坐標(biāo)的集合。

  三組關(guān)系的得出,實(shí)際上讓學(xué)生找到了利用“一次函數(shù)的圖象”來(lái)解一元一次方程和一元一次不等式的方法。讓學(xué)生看到了解決一元二次不等式的希望,大大激發(fā)了學(xué)生解決新問(wèn)題的興趣。此時(shí),學(xué)生很自然聯(lián)想到利用函數(shù)y=x2-x-6的圖象來(lái)求不等式x2-x-60的解集。

 。ǘ┍扰f悟新,引出“三個(gè)二次”的關(guān)系

  為此我引導(dǎo)學(xué)生作出函數(shù)y=x2-x-6的圖象,按照“看一看 說(shuō)一說(shuō) 問(wèn)一問(wèn)”的思路進(jìn)行探究。

  看函數(shù)y=x2-x-6的圖象并說(shuō)出:

  ①方程x2-x-6=0的解是

  x=-2或x=3 ;

  ②不等式x2-x-60的解集是

  {x|x-2,或x3};

  ③不等式x2-x-60的解集是

  {x|-23}。

  此時(shí),學(xué)生已經(jīng)沖出了困惑,找到了利用二次函數(shù)的圖象來(lái)解一元二次不等式的方法。

  學(xué)生沉浸在成功的喜悅中,不妨趁熱打鐵問(wèn)一問(wèn):如果把函數(shù)y=x2-x-6變?yōu)閥=ax2+bx+c(a0),那么圖象與x軸的位置關(guān)系又怎樣呢?(學(xué)生回答:△0時(shí),圖象與x軸有兩個(gè)交點(diǎn);△=0時(shí),圖象與x軸只有一個(gè)交點(diǎn);△0時(shí),圖象與x輛沒(méi)有交點(diǎn)。)請(qǐng)同學(xué)們討論:ax2+bx+c0與ax2+bx+c0的解集與函數(shù)y=ax2+bx+c的圖象有怎樣的關(guān)系?

 。ㄈw納提煉,得出“三個(gè)二次”的關(guān)系

  1、引導(dǎo)學(xué)生根據(jù)圖象與x軸的相對(duì)位置關(guān)系,寫(xiě)出相關(guān)不等式的解集。

  2、此時(shí)提出:若a0時(shí),怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經(jīng)討論之后,有的學(xué)生得出:將二次項(xiàng)系數(shù)由負(fù)化正,轉(zhuǎn)化為上述模式求解,教師應(yīng)予以強(qiáng)調(diào);也有的學(xué)生提出畫(huà)出相應(yīng)的二次函數(shù)圖象,根據(jù)圖象寫(xiě)出解集,教師應(yīng)給予肯定。)

  (四)應(yīng)用新知,熟練掌握一元二次不等式的解集

  借助二次函數(shù)的圖象,得到一元二次不等式的解集,學(xué)生形成了感性認(rèn)識(shí),為鞏固所學(xué)知識(shí),我們一起來(lái)完成以下例題:

  例1、解不等式2x2-3x-20

  解:因?yàn)棣?,方程2x2-3x-2=0的解是

  x1= ,x2=2

  所以,不等式的解集是

  { x| x ,或x2}

  例1的解決達(dá)到了兩個(gè)目的:一是鞏固了一元二次不等式解集的應(yīng)用;二是規(guī)范了一元二次不等式的解題格式。

  下面我們接著學(xué)習(xí)課本例2。

  例2 解不等式-3x2+6x2

  課本例2的出現(xiàn)恰當(dāng)好處,一方面突出了“對(duì)于二次項(xiàng)系數(shù)是負(fù)數(shù)(即a0)的一元二次不等式,可以先把二次項(xiàng)系數(shù)化為正數(shù),再求解”;另一方面,學(xué)生對(duì)此例的解答極易出現(xiàn)寫(xiě)錯(cuò)解集(如出現(xiàn)“或”與“且”的錯(cuò)誤)。

  通過(guò)例1、例2的解決,學(xué)生與我一起總結(jié)了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫(xiě)解集。

  例3 解不等式4x2-4x+10

  例4 解不等式-x2+2x-30

  分別突出了“△=0”、“△0”對(duì)不等式解集的影響。這兩例由學(xué)生練習(xí),教師巡視、指導(dǎo),講評(píng)學(xué)生完成情況,尋找學(xué)生中的閃光點(diǎn),給予熱情表?yè)P(yáng)。

  4道例題,具有典型性、層次性和學(xué)生的可接受性。為了避免學(xué)生學(xué)后“一團(tuán)亂麻”、“一盤散沙”的局面,我和學(xué)生一起總結(jié)。

  (五)總結(jié)

  解一元二次不等式的“四部曲”:

  (1)把二次項(xiàng)的系數(shù)化為正數(shù)

  (2)計(jì)算判別式Δ

  (3)解對(duì)應(yīng)的一元二次方程

  (4)根據(jù)一元二次方程的根,結(jié)合圖像(或口訣),寫(xiě)出不等式的解集。概括為:一化正→二算Δ→三求根→四寫(xiě)解集

  (六)作業(yè)布置

  為了使所有學(xué)生鞏固所學(xué)知識(shí),我布置了“必做題”;又為學(xué)有余力者留有自由發(fā)展的空間,我布置了“探究題”。

  (1)必做題:習(xí)題1.5的1、3題

  (2)探究題:①若a、b不同時(shí)為零,記ax2+bx+c=0的解集為P,ax2+bx+c0的解集為M,ax2+bx+c0的解集為N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求實(shí)數(shù)k的取值范圍。

 。ㄆ撸┌鍟(shū)設(shè)計(jì)

  一元二次不等式解法(1)

  五、教學(xué)效果評(píng)價(jià)

  本節(jié)課立足課本,著力挖掘,設(shè)計(jì)合理,層次分明。以“三個(gè)一次關(guān)系→三個(gè)二次關(guān)系→一元二次不等式解法”為主線,以“從形到數(shù),從具體到抽象,從特殊到一般”為靈魂,以“畫(huà)、看、說(shuō)、用”為特色,把握重點(diǎn),突破難點(diǎn)。在教學(xué)思想上既注重知識(shí)形成過(guò)程的教學(xué),還特別突出學(xué)生學(xué)習(xí)方法的指導(dǎo),探究能力的訓(xùn)練,創(chuàng)新精神的培養(yǎng),引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)的美,體驗(yàn)求知的樂(lè)趣。

高中數(shù)學(xué)教案14

  教學(xué)目標(biāo)

 。1)了解用坐標(biāo)法研究幾何問(wèn)題的方法,了解解析幾何的基本問(wèn)題。

  (2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點(diǎn)的概念。

 。3)通過(guò)曲線方程概念的教學(xué),培養(yǎng)學(xué)生數(shù)與形相互聯(lián)系、對(duì)立統(tǒng)一的辯證唯物主義觀點(diǎn)。

 。4)通過(guò)求曲線方程的教學(xué),培養(yǎng)學(xué)生的轉(zhuǎn)化能力和全面分析問(wèn)題的能力,幫助學(xué)生理解解析幾何的思想方法。

  (5)進(jìn)一步理解數(shù)形結(jié)合的思想方法。

  教學(xué)建議

  教材分析

  (1)知識(shí)結(jié)構(gòu)

  曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標(biāo)法和解析幾何的思想,以及解析幾何的基本問(wèn)題,即由曲線的已知條件,求曲線方程;通過(guò)方程,研究曲線的性質(zhì)。曲線方程的概念和求曲線方程的問(wèn)題又有內(nèi)在的邏輯順序。前者回答什么是曲線方程,后者解決如何求出曲線方程。至于用曲線方程研究曲線性質(zhì)則更在其后,本節(jié)不予研究。因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問(wèn)題。

  (2)重點(diǎn)、難點(diǎn)分析

 、俦竟(jié)內(nèi)容教學(xué)的重點(diǎn)是使學(xué)生理解曲線方程概念和掌握求曲線方程方法,以及領(lǐng)悟坐標(biāo)法和解析幾何的思想。

 、诒竟(jié)的難點(diǎn)是曲線方程的概念和求曲線方程的方法。

  教法建議

  (1)曲線方程的概念是解析幾何的核心概念,也是基礎(chǔ)概念,教學(xué)中應(yīng)從直線方程概念和軌跡概念入手,通過(guò)簡(jiǎn)單的實(shí)例引出曲線的點(diǎn)集與方程的解集之間的對(duì)應(yīng)關(guān)系,說(shuō)明曲線與方程的對(duì)應(yīng)關(guān)系。曲線與方程對(duì)應(yīng)關(guān)系的基礎(chǔ)是點(diǎn)與坐標(biāo)的對(duì)應(yīng)關(guān)系。注意強(qiáng)調(diào)曲線方程的完備性和純粹性。

  (2)可以結(jié)合已經(jīng)學(xué)過(guò)的直線方程的知識(shí)幫助學(xué)生領(lǐng)會(huì)坐標(biāo)法和解析幾何的思想,學(xué)習(xí)解析幾何的意義和要解決的問(wèn)題,為學(xué)習(xí)求曲線的方程做好邏輯上的`和心理上的準(zhǔn)備。

  (3)無(wú)論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準(zhǔn)則。

 。4)從集合與對(duì)應(yīng)的觀點(diǎn)可以看得更清楚:

  設(shè) 表示曲線 上適合某種條件的點(diǎn) 的集合;

  表示二元方程的解對(duì)應(yīng)的點(diǎn)的坐標(biāo)的集合。

  可以用集合相等的概念來(lái)定義“曲線的方程”和“方程的曲線”,即

  (5)在學(xué)習(xí)求曲線方程的方法時(shí),應(yīng)從具體實(shí)例出發(fā),引導(dǎo)學(xué)生從曲線的幾何條件,一步步地、自然而然地過(guò)渡到代數(shù)方程(曲線的方程),這個(gè)過(guò)渡是一個(gè)從幾何向代數(shù)不斷轉(zhuǎn)化的過(guò)程,在這個(gè)過(guò)程中提醒學(xué)生注意轉(zhuǎn)化是否為等價(jià)的,這將決定第五步如何做。同時(shí)教師不要生硬地給出或總結(jié)出求解步驟,應(yīng)在充分分析實(shí)例的基礎(chǔ)上讓學(xué)生自然地獲得。教學(xué)中對(duì)課本例2的解法分析很重要。

  這五個(gè)步驟的實(shí)質(zhì)是將產(chǎn)生曲線的幾何條件逐步轉(zhuǎn)化為代數(shù)方程,即

  文字語(yǔ)言中的幾何條件 數(shù)學(xué)符號(hào)語(yǔ)言中的等式 數(shù)學(xué)符號(hào)語(yǔ)言中含動(dòng)點(diǎn)坐標(biāo) , 的代數(shù)方程 簡(jiǎn)化了的 , 的代數(shù)方程

  由此可見(jiàn),曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個(gè)形式的特點(diǎn)是“含動(dòng)點(diǎn)坐標(biāo)的代數(shù)方程!

 。6)求曲線方程的問(wèn)題是解析幾何中一個(gè)基本的問(wèn)題和長(zhǎng)期的任務(wù),不是一下子就徹底解決的,求解的方法是在不斷的學(xué)習(xí)中掌握的,教學(xué)中要把握好“度”。

高中數(shù)學(xué)教案15

  教學(xué)目標(biāo):

  1.結(jié)合實(shí)際問(wèn)題情景,理解分層抽樣的必要性和重要性;

  2.學(xué)會(huì)用分層抽樣的方法從總體中抽取樣本;

  3.并對(duì)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系.

  教學(xué)重點(diǎn):

  通過(guò)實(shí)例理解分層抽樣的方法.

  教學(xué)難點(diǎn):

  分層抽樣的步驟.

  教學(xué)過(guò)程:

  一、問(wèn)題情境

  1.復(fù)習(xí)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍.

  2.實(shí)例:某校高一、高二和高三年級(jí)分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

  二、學(xué)生活動(dòng)

  能否用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣,為什么?

  指出由于不同年級(jí)的學(xué)生視力狀況有一定的差異,用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣不能準(zhǔn)確反映客觀實(shí)際,在抽樣時(shí)不僅要使每個(gè)個(gè)體被抽到的機(jī)會(huì)相等,還要注意總體中個(gè)體的層次性.

  由于樣本的容量與總體的個(gè)體數(shù)的比為100∶2500=1∶25,

  所以在各年級(jí)抽取的個(gè)體數(shù)依次是,,,即40,32,28.

  三、建構(gòu)數(shù)學(xué)

  1.分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時(shí),為了使樣本更客觀地反映總體的情況,常將總體按不同的特點(diǎn)分成層次比較分明的幾部分,然后按各部分在總體中所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的'各部分叫“層”.

  說(shuō)明:①分層抽樣時(shí),由于各部分抽取的個(gè)體數(shù)與這一部分個(gè)體數(shù)的比等于樣本容量與總體的個(gè)體數(shù)的比,每一個(gè)個(gè)體被抽到的可能性都是相等的;

 、谟捎诜謱映闃映浞掷昧宋覀兯莆盏男畔ⅲ箻颖揪哂休^好的代表性,而且在各層抽樣時(shí)可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實(shí)踐中有著非常廣泛的應(yīng)用.

  2.三種抽樣方法對(duì)照表:

  類別

  共同點(diǎn)

  各自特點(diǎn)

  相互聯(lián)系

  適用范圍

  簡(jiǎn)單隨機(jī)抽樣

  抽樣過(guò)程中每個(gè)個(gè)體被抽取的概率是相同的

  從總體中逐個(gè)抽取

  總體中的個(gè)體數(shù)較少

  系統(tǒng)抽樣

  將總體均分成幾個(gè)部分,按事先確定的規(guī)則在各部分抽取

  在第一部分抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣

  總體中的個(gè)體數(shù)較多

  分層抽樣

  將總體分成幾層,分層進(jìn)行抽取

  各層抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)

  總體由差異明顯的幾部分組成

  3.分層抽樣的步驟:

 。1)分層:將總體按某種特征分成若干部分.

 。2)確定比例:計(jì)算各層的個(gè)體數(shù)與總體的個(gè)體數(shù)的比.

 。3)確定各層應(yīng)抽取的樣本容量.

  (4)在每一層進(jìn)行抽樣(各層分別按簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣的方法抽。C合每層抽樣,組成樣本.

  四、數(shù)學(xué)運(yùn)用

  1.例題.

  例1(1)分層抽樣中,在每一層進(jìn)行抽樣可用_________________.

  (2)①教育局督學(xué)組到學(xué)校檢查工作,臨時(shí)在每個(gè)班各抽調(diào)2人參加座談;

  ②某班期中考試有15人在85分以上,40人在60-84分,1人不及格.現(xiàn)欲從中抽出8人研討進(jìn)一步改進(jìn)教和學(xué);

 、勰嘲嘣┚蹠(huì),要產(chǎn)生兩名“幸運(yùn)者”.

  對(duì)這三件事,合適的抽樣方法為()

  A.分層抽樣,分層抽樣,簡(jiǎn)單隨機(jī)抽樣

  B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡(jiǎn)單隨機(jī)抽樣

  C.分層抽樣,簡(jiǎn)單隨機(jī)抽樣,簡(jiǎn)單隨機(jī)抽樣

  D.系統(tǒng)抽樣,分層抽樣,簡(jiǎn)單隨機(jī)抽樣

  例2某電視臺(tái)在因特網(wǎng)上就觀眾對(duì)某一節(jié)目的喜愛(ài)程度進(jìn)行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:

  很喜愛(ài)

  喜愛(ài)

  一般

  不喜愛(ài)

  2435

  4567

  3926

  1072

  電視臺(tái)為進(jìn)一步了解觀眾的具體想法和意見(jiàn),打算從中抽取60人進(jìn)行更為詳細(xì)的調(diào)查,應(yīng)怎樣進(jìn)行抽樣?

  解:抽取人數(shù)與總的比是60∶12000=1∶200,

  則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,

  取近似值得各層人數(shù)分別是12,23,20,5.

  然后在各層用簡(jiǎn)單隨機(jī)抽樣方法抽。

  答用分層抽樣的方法抽取,抽取“很喜愛(ài)”、“喜愛(ài)”、“一般”、“不喜愛(ài)”的人

  數(shù)分別為12,23,20,5.

  說(shuō)明:各層的抽取數(shù)之和應(yīng)等于樣本容量,對(duì)于不能取整數(shù)的情況,取其近似值.

 。3)某學(xué)校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對(duì)學(xué)校在校務(wù)公開(kāi)方面的某意見(jiàn),擬抽取一個(gè)容量為20的樣本.

  分析:(1)總體容量較小,用抽簽法或隨機(jī)數(shù)表法都很方便.

 。2)總體容量較大,用抽簽法或隨機(jī)數(shù)表法都比較麻煩,由于人員沒(méi)有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣.

 。3)由于學(xué)校各類人員對(duì)這一問(wèn)題的看法可能差異較大,所以應(yīng)采用分層抽樣方法.

  五、要點(diǎn)歸納與方法小結(jié)

  本節(jié)課學(xué)習(xí)了以下內(nèi)容:

  1.分層抽樣的概念與特征;

  2.三種抽樣方法相互之間的區(qū)別與聯(lián)系.

【高中數(shù)學(xué)教案】相關(guān)文章:

高中數(shù)學(xué)教案09-01

高中數(shù)學(xué)教案09-28

高中數(shù)學(xué)教案模板02-02

高中數(shù)學(xué)教案15篇01-31

高中數(shù)學(xué)教案精選15篇12-30

高中數(shù)學(xué)教案(15篇)04-11

高中數(shù)學(xué)教案15篇01-15

高中數(shù)學(xué)教案合集15篇01-10

高中數(shù)學(xué)教案(集合15篇)07-20

高中數(shù)學(xué)教案(集錦15篇)08-22