- 最小公倍數(shù)優(yōu)秀教案 推薦度:
- 相關(guān)推薦
《最小公倍數(shù)》教案
作為一名優(yōu)秀的教育工作者,時常要開展教案準備工作,借助教案可以有效提升自己的教學能力。如何把教案做到重點突出呢?下面是小編為大家整理的《最小公倍數(shù)》教案,歡迎大家分享。
《最小公倍數(shù)》教案1
一、教材簡析
《最小公倍數(shù)》是人教版五年級下冊第88-90頁的教學內(nèi)容,是在學生已經(jīng)了解了倍數(shù)、因數(shù)以及公因數(shù)和最大公因數(shù)的基礎(chǔ)上教學的。這一內(nèi)容的學習為今后的通分學習打下基礎(chǔ),具有科學的、嚴密的邏輯性。
二、教學目標及教學重、難點
根據(jù)課程標準和教學內(nèi)容并結(jié)合學生實際,我認為這節(jié)課要達到以下的教學目標:
2.理解算理并學會計算兩個數(shù)的最小公倍數(shù),通過對最小公倍數(shù)算理的探究,培養(yǎng)和發(fā)展學生的邏輯思維能力。
3.能運用“公倍數(shù)與最小公倍數(shù)”的知識解決簡單的生活實際問題。 教學重點: 公倍數(shù)與最小公倍數(shù)的概念建立。學會求兩個數(shù)的最小公倍數(shù)。
教學難點:理解求兩個數(shù)最小公倍數(shù)的算理,能運用“公倍數(shù)與最小公倍數(shù)”的知識解決簡單的生活實際問題。
三、設(shè)計理念
數(shù)學教育的出發(fā)點和歸宿是學生熟悉的現(xiàn)實生活。讓學生從生活中的問題到數(shù)學問題,從具體到抽象概念,從特殊關(guān)系到一般規(guī)則,逐步通過自己的發(fā)現(xiàn)去學習數(shù)學。進行集合思想和極限思想的滲透,感受數(shù)學化的簡潔美。而探究性學習又是新一輪基礎(chǔ)教育課程改革所倡導的學習方式。在教學中,通過創(chuàng)設(shè)情境,讓學生自主發(fā)現(xiàn)問題,獲得能力發(fā)展和深層次的情感體驗,在得到抽象化的數(shù)學知識之后,及時應(yīng)用到新的現(xiàn)實問題中去,從而滲透數(shù)學歸納思想,達到方法的多樣化,個性化。學生構(gòu)建數(shù)學概念的過程不能簡單“告知”,通過引導,讓學生親自操作和體驗,在解決問題中初步感知公倍數(shù)、最小公倍數(shù)的特點,明晰求最小公倍數(shù)的基本1.讓學生通過具體的操作和交流活動,認識公倍數(shù)和最小公倍數(shù)。 思路,在富有生命活力的再創(chuàng)造過程中,主動建立概念,完成數(shù)形結(jié)合思想的滲透。
四、教學過程
(一)故事引入 感知概念
出示關(guān)于阿凡提的故事,巴依老爺說:“從八月一日起,我要連續(xù)出去收賬3天才休息一天,我的賬房先生要連續(xù)收賬5天才可以休息一天,你們就在我們兩人同時休息的時候來吧。我肯定給錢。”阿凡提動了動腦筋,便帶長工們離開了。那么在這一個月里,阿凡提可以選哪些日子去呢?你會幫他們把這些日子找出來嗎?”同桌討論,學生合作在日歷卡上找出巴依老爺和賬房先生的共同休息日。
根據(jù)學生的匯報,教師完成板書:
巴依老爺?shù)男菹⑷?4、8、12、16、20、24、28 ??
賬房先生的休息日 6、12、18、24、30 ??
他們共同休息日 12、24??
最早的休息日12
【設(shè)計意圖】以故事的形式提出問題,讓學生通過解決這個生動有趣的實際問題,獲得對公倍數(shù)、最小公倍數(shù)概念內(nèi)部結(jié)構(gòu)特征的直接體驗,積累數(shù)學活動的經(jīng)驗。學生在解決問題中初步感知公倍數(shù)、最小公倍數(shù)的特點,體會求最小公倍數(shù)的基本思路。這樣,不僅激發(fā)了學生學習的興趣,而且讓學生感受到數(shù)學與生活是緊密聯(lián)系的,體會到數(shù)學源于生活又高于生活的特點。
(二)加深理解 總結(jié)方法
1.公倍數(shù)和最小公倍數(shù)的概念教學
從“巴依老爺?shù)男菹⑷铡?、“賬房先生的休息日”、“他們共同休息日”、“最早的休息日”引出“4的倍數(shù)”、“6的倍數(shù)”、“4和6的公倍數(shù)”、 “4和6的最小公倍數(shù)”)。教師完成板書
巴依老爺?shù)男菹⑷眨?的倍數(shù)) 4、8、12、16、20、24、28 賬房先生的休息日(6的倍數(shù)) 6、12、18、24、30 ?? 他們共同休息日(4和6的公倍數(shù)) 12、24
最早的休息日 (4和6的最小公倍數(shù)) 12
【設(shè)計意圖】怎樣能讓學生深刻理解最小公倍數(shù)的意義,是本節(jié)課的一個重點。學生構(gòu)建數(shù)學概念的過程,決不能是簡單“告知”的過程,以概念為本的學習需要經(jīng)歷一些經(jīng)驗性的活動過程。通過學生親自操作和體驗,在一種富有生命活力的再創(chuàng)造過程中,主動建立概念。完成數(shù)形結(jié)合思想的滲透。
2.用集合圈表示倍數(shù)、公倍數(shù)、最小公倍數(shù)。首先讓學生用數(shù)學上的集合圈的形式表示4的倍數(shù)和6的倍數(shù)。(課件出示集合圈)。然后利用課件使集合圈重疊一部分。給學生問題:如果這兩個集合圈這樣放在一起,相交的'這一部分表示什么呢?(課件出示集合圈的動態(tài)過程)
【設(shè)計意圖】根據(jù)弗賴登塔爾“數(shù)學是一項人類活動”的觀點,從學生熟悉的生活開始,從生活中的問題到數(shù)學問題,從具體到抽象概念,從特殊關(guān)系到一般規(guī)則,逐步通過學生自己的發(fā)現(xiàn)去學習數(shù)學。進行集合思想和極限思想的滲透,感受數(shù)學化的簡潔美。
(三)鞏固運用
再求新法(本環(huán)節(jié)為兩個數(shù)的最小公倍數(shù)的算理和方法引探是教學難點)
出示同學排隊的題目:六(1)班同學在組織跳繩活動。班長說:“我們可以分成6人一組,也可以分成8人一組,都正好分完。這些學生至少有幾人?” 問題出示后,給學生獨立思考的時間,學生很快用列舉法求出6和8的最小公倍數(shù)。然后我預(yù)設(shè)讓學生尋找更簡便的大數(shù)翻倍法,以及進一步探索用分解質(zhì)因數(shù)的方法求最小公倍數(shù),先把6和8分解質(zhì)因數(shù),觀察質(zhì)因數(shù)之間的關(guān)系,發(fā)現(xiàn)2是它們公有的質(zhì)因數(shù),而3和4是它們各自獨有的質(zhì)因數(shù),從而突破難點。使學生理解用分解質(zhì)因數(shù)求最小公倍數(shù)就是全部公有質(zhì)因數(shù)和各自質(zhì)因數(shù)的乘積。而短除法實際就是分解質(zhì)因數(shù)的簡便算法,并且引導學生發(fā)現(xiàn),短除號左邊的數(shù)就是它們的公有質(zhì)因數(shù),下面的數(shù)就是相對應(yīng)數(shù)各自獨有的質(zhì)因數(shù)。在學生交流各自的方法后。我們可以把這些數(shù)在數(shù)軸上表示出來。上面表示6的倍數(shù),下面表示8的倍數(shù)。所圈重合的點是6和8的公倍數(shù)。(教材中出現(xiàn)了數(shù)軸上表示倍數(shù)的方法,考慮到學生想不到這種方法,我參與活動中,最后展示這種圖形結(jié)合的方法。)
【設(shè)計意圖】用富有生活問題的情境,激發(fā)學習興趣。探究學習是新一輪基礎(chǔ)教育課程改革所倡導的學習方式。在教學中,創(chuàng)設(shè)一種情境,通過學生自主發(fā)現(xiàn)問題,獲得能力發(fā)展和深層次的情感體驗。滲透數(shù)學歸納思想,體現(xiàn)方法的多樣化,個性化。
(四)解決問題 深化理解
在列舉法的基礎(chǔ)上,發(fā)現(xiàn)特殊關(guān)系的兩個數(shù)的最小公倍數(shù)的規(guī)律。由一道生活問題結(jié)束本課。(課件出示一道生活情境題)
【設(shè)計意圖】數(shù)學教育的出發(fā)點和歸宿都應(yīng)當是學生熟悉的現(xiàn)實生活。學生得到抽象化的數(shù)學知識之后,應(yīng)及時把它們應(yīng)用到新的現(xiàn)實問題中去。
《最小公倍數(shù)》教案2
教學目標
1.掌握公倍數(shù)、最小公倍數(shù)兩個概念.
2.理解求最小公倍數(shù)的算理,掌握用分解質(zhì)因數(shù)求最小公倍數(shù)的方法.
教學重點
建立公倍數(shù)和最小公倍數(shù)的概念,掌握求兩個數(shù)最小公倍數(shù)的方法.
教學難點
理解求兩個數(shù)最小公倍數(shù)的算理.
教學步驟
一、鋪墊孕伏.
1.導入:這節(jié)課我們開始學習有關(guān)最小公倍數(shù)的知識.
。ò鍟鹤钚」稊(shù))
2.復(fù)習倍數(shù)的概念.
二、探究新知.
教學例1
例1、順次寫出4的幾個倍數(shù)和6的幾個倍數(shù).它們公有的倍數(shù)是哪幾個?其中最小的是多少?
4的倍數(shù)有:4、8、12、16、20、24、28、32、36……
6的倍數(shù)有:6、12、18、24、30、36……
4和6的公倍數(shù)有:12、24、36……
其中最小的一個是12.
1、學生分組討論總結(jié)公倍數(shù)、最小公倍數(shù)的意義.
2、用集合圖表示4和6的公倍數(shù).
3、質(zhì)疑:兩個數(shù)的公倍數(shù)有什么特點?有沒有最大的公倍數(shù)?
明確:因為每一個數(shù)的倍數(shù)的個數(shù)都是無限的,所以兩個數(shù)的公倍數(shù)的個數(shù)也是無限的.因此,兩個數(shù)沒有最大的倍數(shù).
4、反饋練習.
把6和8的倍數(shù)和公倍數(shù)不超過50的填在下面的空圈里,再找出它們的最小公倍數(shù)是幾.
明確:50以內(nèi)6和8的公倍數(shù)只有2個;如果擴展數(shù)的范圍,也就是50以外6和8的公倍數(shù)則是無限的.
(二)教學例2
引入:我們用分解質(zhì)因數(shù)的方法求兩個數(shù)的最小公倍數(shù).
例2:求18和30的最小公倍數(shù).
1、用短除式分別把18和30分解質(zhì)因數(shù).
板書:18=2×3×3
30=2×3×5
教師提問:18的倍數(shù)必須包含哪些質(zhì)因數(shù)?
。18的倍數(shù)包含18的所有質(zhì)因數(shù))
30的倍數(shù)必須包含哪些質(zhì)因數(shù)?
。30的倍數(shù)包含30的所有質(zhì)因數(shù))
18和30的.公倍數(shù)必須包含哪些質(zhì)因數(shù)?
(既要包含18的所有質(zhì)因數(shù),又要包含30的所有質(zhì)因數(shù))
2、觀察集合圖:18和30的最小公倍數(shù)應(yīng)包含哪些質(zhì)因數(shù)?
教師明確:18和30的最小公倍數(shù)里,只要包含它們?nèi)抗械馁|(zhì)因數(shù)(1個2和1個3)以及各自獨有的質(zhì)因數(shù)(3和5)就可以了.2×3×3×5=90,所以18和30的最小公倍數(shù)是90.
3、小組討論:如果少一個或多一個質(zhì)因數(shù)行不行?
教師明確:如果少一個質(zhì)因數(shù),就不能保證公倍數(shù)里包含18和30全部的質(zhì)因數(shù),因而就不能得到它們的最小公倍數(shù);如果多一個質(zhì)因數(shù),雖是18和30的公倍數(shù),但不能保證是最小公倍數(shù).
板書:
18和30的最小公倍數(shù)是2×3×3×5=90
4、反饋練習.
。1)先把下面兩個數(shù)分解質(zhì)因數(shù),再求出它們的最小公倍數(shù).
30=()×()×()
42=()×()×()
30和42的最小公倍數(shù)是()×()×()×()=()
。2)A=2×2B=2×2×3
A和B的最小公倍數(shù)是()×()×()=()
。3)用分解質(zhì)因數(shù)法求24和18的最小公倍數(shù)時,小華得72,小林得144.誰做錯了?
可能錯在哪里?
5、求最小公倍數(shù)的一般書寫格式.
、僖龑W生把兩個短除式合并成一個.
板書:
、诿鞔_:綜合短除式中所有除數(shù)和商與18和30的最小公倍數(shù)90所包含的所有質(zhì)因數(shù)是一一對應(yīng)的,因此把短除式中所有的除數(shù)和商乘起來,就得到18和30的最小公倍數(shù).
、鄯答伨毩暎呵30和45的最小公倍數(shù).
④總結(jié)方法:求兩個數(shù)的最小公倍數(shù),先用這兩個數(shù)公有的質(zhì)因數(shù)連續(xù)去除(一般從最小的開始),一直除到所得的商是互質(zhì)數(shù)為止,然后把所有的除數(shù)和最后的兩個商連乘起來.
⑤反饋練習:求下面每組數(shù)的最小公倍數(shù)
6和824和20xx和2116和72
三、全課小結(jié).
今天這節(jié)課我們主要研究了用什么方法求兩個數(shù)的最小公倍數(shù),它是為以后學習通分做準備的,希望大家能熟練的掌握這部分知識.
四、隨堂練習
1.填空.
A=2×2×5
B=()×5×()
A和B和最小公倍數(shù)是().A和B的最小公倍數(shù)是2×2×5×7=140.
2.判斷.
(1)兩個數(shù)的積一定是這兩個數(shù)的公倍數(shù).()
。2)兩個數(shù)的積一定是這兩個數(shù)的最小公倍數(shù).()
五、布置作業(yè).
求下面每組數(shù)的最小公倍數(shù).
12和1530和4036和5422和33
《最小公倍數(shù)》教案3
課時:1
教學準備:
教學目標:1、復(fù)習、整理本單元的基本概念,在練習中進一步理解公因數(shù)、最大公因數(shù)、最簡分數(shù)等概念。
2、通過輸理、比較,建立相關(guān)概念的關(guān)系。
3、、在游戲、應(yīng)用中體驗數(shù)學的趣味性。
基本教學過程:
一、一、基本練習
1、復(fù)習找因數(shù)、公因數(shù)的方法:
練習第一題。
學生填寫后,說說你是怎么想的。鞏固找公因數(shù)的方法。
2、復(fù)習約分的方法:
練習第二題先約分,再連線。
二、運用知識模型:
1、復(fù)習分數(shù)的意義、約分等知識的綜合運用。
第3題。
讓學生自己用分數(shù)表示,并交流自己的思考方法。
2、第4題。
先讓學生找出分數(shù),并說說自己的思考方法?
3、第5題。
本題開放性強,學生可以自由分割,并用分數(shù)表示。
三、思考題:
本題先要幫助學生理解題意,并思考:選擇怎樣的地磚才能沒有剩余?引導學生認識到問題的實質(zhì)是要求24和30的公因數(shù)是1、2、3、6,因此可以選邊長是1dm,2dm,3dm,6dm的方轉(zhuǎn)。
四、實踐活動:
先讓學生用最簡分數(shù)表示小明一天中每項活動的時間,鞏固分數(shù)的意義、分數(shù)與除法、約分等知識。然后讓學生自己設(shè)計一張表格,并用分數(shù)知識進行交流。
四、總結(jié):教學反思:
內(nèi)容:公倍數(shù)與最小公倍數(shù)
課時:1
教學準備:
教學目標:1、結(jié)合具體情境,體會公倍數(shù)和最小公倍數(shù)的應(yīng)用。理解公倍數(shù)和最小公倍數(shù)的意義。
2、探索找公倍數(shù)的方法,會利用列舉法等方法找出兩個數(shù)的公倍數(shù)和最小公倍數(shù)。
基本教學過程:
一、一、創(chuàng)設(shè)活動情境,進行找倍數(shù)活動:
二、出示題目和8月份的日歷:
1、誰能說一說“每隔2天去一次,每隔4天去一次”怎么理解?用不同的符號圈出兩人去少年宮的日子。
2、把這些數(shù)寫下來。
二、自主探索,總結(jié)找兩個數(shù)的'公倍數(shù)的方法:
1、觀察這些數(shù)有什么特點?
2、再觀察兩人同時去少年宮的日子有什么特點?
3、師總結(jié):揭示公倍數(shù)和最小公倍數(shù)的概念。
填一填:第48頁
、賹W生嘗試找6和9的公倍數(shù)和最小公倍數(shù),并利用集合進一步加深對公倍數(shù)意義的理解。
、趯W生討論交流找公倍數(shù)的基本方法。
③還有其他方法嗎?(鼓勵學生用其他方法找公倍數(shù))
4、師總結(jié):找公倍數(shù)和最小公倍數(shù)的方法
三、拓展引思:
1、第49頁練一練
第一、二題
讓學生獨立填一填,再交流。
教學反思:
、15和5014和3512和484和7
說說你是怎么想的?學生明確找兩個數(shù)公因數(shù)的一般方法,并對找有特征數(shù)的最大公因數(shù)的特殊方法有所體驗。
注意:教師出題時,數(shù)字不要太大,要注意把握難度要求。
②練一練,第42頁第1題。第2題。第3題。
、鄣43頁第4題:
讓學生找出這幾組數(shù)的公因數(shù)后,說說有什么發(fā)現(xiàn)?
、艿43頁第5題:
⑤數(shù)學探索:
三、總結(jié)。
分數(shù)的大小
教學目標
1、探索分數(shù)大小比較的方法,會正確比較兩個分數(shù)的大小。結(jié)合具體情境引導學生用分數(shù)描述有關(guān)現(xiàn)象,理解通分的含義探索并掌握通分的方法。
2、進一步加深對分數(shù)意義的理解,培養(yǎng)學生的發(fā)散思維能力。
3、激發(fā)學生的創(chuàng)新樂趣,培養(yǎng)學生勇于思考、敢于求異的創(chuàng)新精神,使學生感受比較與分類、猜想與驗證在解決問題中的作用,并逐步學會用此種方法處理、解決問題。
教學過程
。ㄒ唬(chuàng)設(shè)情景談話激趣
師:同學們,你們喜歡中央電視臺李詠主持的什么娛樂節(jié)目?
生:非常6+1幸運52
師:今天就讓幸運帶給我們五年級二班每個人好嗎?在幸運52的幸運擂臺挑戰(zhàn)之前要知道我們班的課堂比賽規(guī)則:
A、把我們班分成四大組,如果哪一組回答問題出色,或者回答問題積極相應(yīng)加上兩顆星。
B、如果哪一組不聽人家的回答則倒扣一顆星。
C、最后看哪一組勝利相應(yīng)進行獎勵。
師:我們已經(jīng)學習了分數(shù)的意義和分數(shù)的基本性質(zhì)這些知識,如何運用這些知識來比較分數(shù)的大小呢?今天我們一起來研究研究。(板書:分數(shù)大小比較)
《最小公倍數(shù)》教案4
教學目標
。1)使學生能比較熟練地掌握求最大公約數(shù)和最小公倍數(shù)的方法,并且能夠根據(jù)不同,靈活運用簡捷的方法。
。2)綜合運用知識,進一步溝通知識間的聯(lián)系。
教學重點、難點
重點、難點:能夠根據(jù)不同,靈活運用簡捷的方法。
教具、學具準備
教 學過程
備 注
一、基本練習
1、填空。(課本第67頁第7題)
。1)9和27這兩個數(shù),()能被()整數(shù),()是()的倍數(shù),()是()的約數(shù)。
。2)20以內(nèi)既是偶數(shù)又是素數(shù)的數(shù)是(),既是奇數(shù)又是合數(shù)的數(shù)是()
(3)在4、9和16中,成互質(zhì)數(shù)的兩個數(shù)有()和();()和()。
(4)三個素數(shù)的最小公倍數(shù)是42,這三個素數(shù)是()、()和()。
。5)如果甲數(shù)=2×3×5,乙數(shù)=2×3×7,那么甲數(shù)與乙數(shù)的最大公約是(),最小公倍數(shù)是()。
學生先填在書上,再集體交流討論,注意讓學生說說思考方法。
2、很快說出下面每組數(shù)的最大公約數(shù)和最小公倍數(shù)。
11和49和65、10和20
16和1580和20年5、6和7
說的過程中注意讓學生說出思考的過程及理由。
3、求下面各組數(shù)的`最大公約數(shù)和最小公倍數(shù)。
80和10015、8和30
25和330、60和75
19和388、9和10
讓學生用短除法做,選做三題,交流時注意用短除法要注意的地方,同時讓學生說說還有其他的思考方法。
二、綜合練習
1、你能用下面的一個或幾個概念和一個或幾個數(shù)連起來說一句話嗎?
整數(shù)自然數(shù)整除約數(shù)倍數(shù)
奇數(shù)偶數(shù)合數(shù)素數(shù)質(zhì)因數(shù)
公約數(shù)最大公約數(shù)公倍數(shù)最小公倍數(shù)
教學過程
備 注
例2:2和8都是自然數(shù),8能被2整除,8是2的倍數(shù)。
2、動腦筋:下面每組數(shù)中,你能找出不同類的數(shù)嗎?
。1)1473.82345
(2)21216223647
(3)23792943
學生找出不同類的數(shù)并說明理由,教師要注意答案的開放性,學生的答案只要有理由,就應(yīng)該肯定和鼓勵.
3、猜一猜老師家的電話號碼.
老師家的電話號碼是七位數(shù),排列如下:
()最小的素數(shù)
()7的最大約數(shù)
()8的最小倍數(shù)
()最小的自然數(shù)
()最小的合數(shù)
()最小的一位奇數(shù)
()既不是素數(shù)也不是合數(shù)的數(shù)
三、課堂
師:本單元知識概念較多,同學們要注意這些概念的區(qū)別和聯(lián)系,并能夠綜合練習。還有什么疑問嗎?
四、作業(yè)
1、課本上第9、10題中剩余題目各選一列。
2、《作業(yè)本》
教學過程中,重在引導學生根據(jù)不同情況,靈活運用簡捷的方法求最大公約數(shù)和最小公倍數(shù)
《最小公倍數(shù)》教案5
教學目標:
1、理解公倍數(shù),最小公倍數(shù)的意義.
2、會用列舉法,分解質(zhì)因數(shù),短除法求兩個數(shù)的最小公倍數(shù).
3、會求是互質(zhì)數(shù)或有倍數(shù)關(guān)系的兩個數(shù)的最小公倍數(shù).
4、在知識的探究過程中,培養(yǎng)大膽質(zhì)疑的習慣.
教學過程:
一、導入:
同學們,昨天我們班在舞臺旁30米長的花帶上每隔2米種一株桂花,樹種的太密了,下午要重種,改成每隔3米種一株,F(xiàn)在大家出出主意,下午怎樣種才能又快又好的完成任務(wù)呢?我一邊說一邊把課前準備好的圖片分給各小組,讓各小組討論交流后交由小組長匯報本組的方案。各組討論后出現(xiàn)以下三種情況:
1、全部拔起,重新測量后再種
2、頭尾不動,把中間的全部拔起,重新測量后再種
3、除頭、尾不動外,還有6米、12米、18米、24米共六株不用拔,只需拔10株,在每兩株中間種一株,這樣重種5株就可以啦。
師:剛才有4組采用了第三種方案該種的,這種方案確實比前兩種方案要好,現(xiàn)在請你們說說是怎么發(fā)現(xiàn)這些株數(shù)不用重種的?
生:通過測量的方法發(fā)現(xiàn)的。還發(fā)現(xiàn)了6、12不僅是2的倍數(shù)同時也是3的倍數(shù),所以覺得是2和3的公倍數(shù)就都不用動。
師:你們怎么想到“公倍數(shù)”這么個好聽的名字的?
生:我們前面學習的幾個公有的因數(shù)叫公因數(shù),最大的叫最大公因數(shù)。那現(xiàn)在兩個公有倍數(shù)就叫公倍數(shù),30是最大的就叫最大公倍數(shù)。
師:大家還有不同的意見嗎?
生:(議論紛紛)這個不是最大的,還有更大的。。。。
師:確實如此,大家真能干!這節(jié)課我們就一起來探究這個問題。(出示課題:公倍數(shù)最小公倍數(shù))
師:誰能用自己的話說一說什么叫公倍數(shù)
(幾個數(shù)共有的倍數(shù),叫做這幾個數(shù)的公倍數(shù))
這一個是最小的,我們又稱它為什么
補充課題:最小公倍數(shù)誰能再來說一說什么叫最小公倍數(shù)
(其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù))
今天我們就來研究公倍數(shù)與最小公倍數(shù).
二、探究:
看了這個課題,你想在這節(jié)課中了解些什么請學生寫在紙上,并貼到黑板上.
(為什么不求最大公倍數(shù)求最小公倍數(shù)有哪些方法 哪些情況下可以很快說出兩個數(shù)的`最小公倍數(shù)是幾 等)
四人一組合作解決1~2個問題,舉例說明,組長筆錄.可以翻書請教,在P.69~71.
成果匯報:
(1)公倍數(shù)有多少個 (公倍數(shù)的個數(shù)是無限的,沒有最大公倍數(shù).)
(2)求最小公倍數(shù)的幾種方法:
①枚舉法:
根據(jù)學生舉例填寫集合圈并說出各部分所表示的內(nèi)容:
、诜纸赓|(zhì)因數(shù):如:12與30的最小公倍數(shù)
12= 2 × 2 × 3
30= 2 × 3 × 5
60= 2 × 3 × 2 × 5
12獨有的質(zhì)因數(shù) 30獨有的質(zhì)因數(shù)
最小公倍數(shù)是兩個數(shù)全部公有質(zhì)因數(shù)與各自獨有之因數(shù)的乘積.
[12,30]=2×3×2×5=60
從這兩個分解質(zhì)因數(shù)的式子里你能看出12于30的最大公約數(shù)是幾
最大公約數(shù)與最小公倍數(shù)之間有什么關(guān)系
(12= 6 × 2
30= 6 × 5
6 × 2 × 5 = 60)
最大公因數(shù) 各自獨有的質(zhì)因數(shù)
最小公倍數(shù)是兩個數(shù)的最大公因數(shù)與各自獨有質(zhì)因數(shù)的乘積.
、鄱坛:如:36和45的最小公倍數(shù)
3 36 45 用公因數(shù)去除
3 12 15
4 5 除到商是互質(zhì)數(shù)為止
[36,45]=3×3×4×5=180
討論:與求最大公因數(shù)比較有什么異同之處
(相同處:都用公因數(shù)去除, 除到商是互質(zhì)數(shù)為止.
不同處:求最大公因數(shù)只要把公有的質(zhì)因數(shù)相乘,求最小公倍數(shù)還要乘以各自獨有的質(zhì)因數(shù).)
短除法與分解質(zhì)因數(shù)有什么聯(lián)系
任選一種方法,求下列各組數(shù)的最小公倍數(shù)(第一組必做,其它可任選,看誰做的又快又多又正確):
16和20 65和130 4和15 18和24
得出兩個特殊情況:當兩個數(shù)是互質(zhì)數(shù)時,最小公倍數(shù)是這兩個數(shù)的乘積;
當兩個數(shù)有倍數(shù)關(guān)系時,最小公倍數(shù)是較大的數(shù).
4、總結(jié):今天你們根據(jù)自己所提出的問題進行了研究學習,對于今天所學的內(nèi)容還有什么疑問
《最小公倍數(shù)》教案6
教學目標
1.知識與技能:解公倍數(shù)、最小公倍數(shù)的概念,理解、掌握求兩個數(shù)最小公倍數(shù)的方法。
2.過程與方法:使學生經(jīng)歷探索理解公倍數(shù)、最小公倍數(shù)的概念,求兩個數(shù)最小公倍數(shù)的方法,培養(yǎng)學生的遷移能力和分析研究問題的能力。
3.情感、態(tài)度與價值觀(育人目標):在師生共同探討的學習過程中,激發(fā)學生的學習興趣,培養(yǎng)學生良好的學習習慣。
教學重難點
重點難點:求兩個數(shù)最小公倍數(shù)的方法。
教學過程
。ㄒ唬、小組長匯報“前置小研究”完成情況怎樣求3和2的最小公倍數(shù)?
第一步:3的倍數(shù)有:()
2的倍數(shù)有:()
第二步:3和2的公倍數(shù)有:()
第三步:3和2的最小公倍數(shù)是:()
。ǘ⑿〗M交流、探討“前置小研究”
1、要求小組內(nèi)互相解決出現(xiàn)的錯誤,并能說說自己的方法;
2、要求學生說說:
。1)什么是公倍數(shù)和最小公倍數(shù)?
。2)兩個數(shù)的公倍數(shù)的個數(shù)是怎樣的?
。ㄈ┮n:今天我們就來探究最小公倍數(shù)(板書課題)
出示書例1題一種墻磚長3 dm,寬2 dm。如果用這種墻磚鋪一個正方形(用的墻磚都是整塊),正方形的邊長可以是多少分米?最小是多少分米?
1.請仔細看看小明家裝修的要求,你獲得了哪些有價值的信息?
、僖眠@種長是3dm,寬是2dm的墻磚鋪一個正方形。
②使用的墻磚必須都是整塊的,不能切割開用半塊的。
、蹎栴}是鋪好的正方形的邊長可以是多少分米,最小是多少分米?
2.我們先來研究正方形的邊長可以是多少分米。你有辦法解決這個問題嗎?
3.學具:長是3dm,寬是2dm的長方形紙片
動手來實踐。
。1).要求:
、儆瞄L方形紙片代替墻磚拼一個正方形。
②和你的同桌進行交流,說說你擺出的正方形邊長是多少。
(2).探究結(jié)果交流。
、傥业谝恍袛[了2個長方形,擺了這樣的3行,拼成了一個邊長是
6dm的正方形。
、谖业谝恍袛[了4個長方形,擺了這樣的6行,拼成了一個邊長是
12dm的正方形。
你還能拼成不一樣的大正方形嗎?
學生進行討論:
。3).如果我們有足夠多的小長方形的話,還可以拼出邊長是其他數(shù)的正方形嗎?
。4).用這樣的小長方形可以拼出邊長是18dm,24dm,30dm……的正方形嗎?小組內(nèi)討論一下。
。5).我們長2dm、寬3dm的長方形可以拼出多少個邊長不一樣的大正方形呢?說說理由。
。6).用這樣的長方形可以拼成邊長是8dm的正方形嗎?說說理由。
、俨荒埽驗8是2的倍數(shù),不是3的倍數(shù),拼不成邊長是8的正方形。
②實際動手操作。
。7).在拼成的所有正方形里邊長最小是幾分米?你怎么知道的?
。8).總結(jié)提升:通過解決這個問題你有哪些收獲?
、偾3和2的最小公倍數(shù),還可以用用集合圈的方法表示
②全班交流并板書。
3的倍數(shù)
2的倍數(shù)
可以鋪出邊長是6 dm,12 dm,18 dm,···的.正方形,最小的正方形邊長是6 dm。
6,12,18,···是3和2公有的倍數(shù),叫做它們的公倍數(shù)。其中,6是最小的公倍數(shù),叫做它們的最小公倍數(shù)。
4、考考你:用新學的知識解決問題:完成P89做一做
5、教學例2:怎樣求6和8的最小公倍數(shù)?
(1)學生獨立完成,全班交流。
(2)學生交流方法有(交流時課件演示)
、倭信e法:先找倍數(shù),再找公倍數(shù),最后找出最小公倍數(shù)。
例如:6的倍數(shù):6,12,18,24,30,36,42,48,
8的倍數(shù):8,16,24,32,40,48,
6和8公倍數(shù):24,48,
6和8的最小公倍數(shù):24
、谟脠D表示也很清楚。
、6的倍數(shù)中有哪些是8的倍數(shù)呢?
你還有其他方法嗎?和同學討論一下。
教師介紹:
①大數(shù)翻倍法:8,16,24,
6和8的最小公倍數(shù):24
、诜纸赓|(zhì)因數(shù)法:8=2×2×2
6=2×3
8和6的最小公倍數(shù)= 2×2×2×3 = 24
8和6的最小公倍數(shù)包括8和6的公有質(zhì)因數(shù)和各自獨有的質(zhì)因數(shù)的乘積。
6、通過觀察,想一想:
、賰蓚數(shù)的公倍數(shù)的個數(shù)是怎樣的?
②兩個數(shù)的公倍數(shù)和它們的最小公倍數(shù)之間有什么關(guān)系?
5、考考你會求兩個數(shù)的最小公倍數(shù)嗎?
完成書P90做一做:求下面每組數(shù)的最小公倍數(shù),看看有什么發(fā)現(xiàn)?
3和6 2和8 5和6 4和9
7、交流你的發(fā)現(xiàn):若兩數(shù)互質(zhì),兩數(shù)直接相乘求最小公倍數(shù);若兩數(shù)含有倍數(shù)的關(guān)系,較大數(shù)是兩數(shù)的最小公倍數(shù)。
8、我能很快說出每組數(shù)的最小公倍數(shù)。
8和9()24和8()30和5()4和12()36和4()48和6()17和13()14和15()23和24()
(四)加強應(yīng)用,鞏固練習
1.有一堆糖,4顆4顆地數(shù),6顆6顆地數(shù),都能剛好數(shù)完。這堆糖至少
有多少顆?
2.如果這些學生的總?cè)藬?shù)在40人以內(nèi),可能是多少人?
3.李阿姨給月季和君子蘭同時澆水,至少多少天以后要再給這兩種花同時澆水?
知識應(yīng)用:練習
布置作業(yè):
作業(yè):第72頁練習十七,第10題、第11題。
。ㄎ澹┤n總結(jié):通過這節(jié)課的學習,你有什么收獲?
板書設(shè)計
最小公倍數(shù)
公倍數(shù):兩個數(shù)公有的倍數(shù)
最小公倍數(shù):兩個數(shù)公有的倍數(shù)中最小的那個數(shù)
找“最小公倍數(shù)”的方法:
1、一般情況:
先寫出一個數(shù)的倍數(shù),再寫出另一個數(shù)的倍數(shù),從兩個數(shù)的公倍數(shù)中找出兩個數(shù)的最小公倍數(shù)
2、特殊情況:
、佼攦蓴(shù)成倍數(shù)關(guān)系時,這兩個數(shù)的最小公倍數(shù)就是較大的數(shù);
②當兩個數(shù)是互質(zhì)數(shù)時,這兩個數(shù)的最小公倍數(shù)就是這兩個數(shù)的積。
《最小公倍數(shù)》教案7
教學要求:
學會用短除法求兩個數(shù)的最小公倍數(shù)
掌握求最大公因數(shù)和求最小公倍數(shù)的區(qū)別
教學重點:
學會用短除法求兩個數(shù)的最小公倍數(shù)
掌握求最大公因數(shù)和求最小公倍數(shù)的區(qū)別
課前準備:
小黑板
教學過程:
一、復(fù)習
。1) 寫出3組互質(zhì)數(shù)
。2) 找出每組數(shù)的最小公倍數(shù)
6和9 25和10
二、學習用短除法求最小公倍數(shù)
3 6 9 5 25 10
2 3 5 2
還能再除下去嗎?
6 和9的最小公倍數(shù)是:3×2×3=18
25和10的最小公倍數(shù)是:5×5×2=50
練習:求每組數(shù)的最小公倍數(shù)
12和30 36和54 7的14
24和36 14和56
三、比較用短除法求最大公因數(shù)與最小公倍的區(qū)別
分別求30和45的最大公因數(shù)和最小公倍數(shù)
比較:用短除法求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)的什么相同點?不同點?
小結(jié):相同點:用短除法,除到互質(zhì)數(shù)為止
不同點:最大公因數(shù)是把所有的除數(shù)相乘;最小公倍數(shù)是把除數(shù)和商相乘。
四、教學求兩個數(shù)的最小公倍數(shù)的兩種特殊情況
兩個數(shù)成倍數(shù)關(guān)系
15和30 12和36 8和4
求這兩個數(shù)的最小公倍數(shù)?
說說你的發(fā)現(xiàn)?
五、觀察
兩個數(shù)是什么關(guān)系?
最小公倍數(shù)與這兩個數(shù)的`什么關(guān)系?最大公 因數(shù)與這兩數(shù)有什么關(guān)系?
1.兩個數(shù)互質(zhì)
拿出復(fù)習中同學們寫出的互質(zhì)數(shù)
小組合作討論研究
如果兩個數(shù)是互質(zhì)數(shù),它們的最小公倍數(shù)與最大公因數(shù)有什么特點呢?
2.練習
直接說出每組數(shù)的最小公倍數(shù)與最大公因數(shù)
3和7 8和9 11和4
4和28 4 和25 33和11
7和63 48和12 42和56
3.作業(yè):求每組數(shù)的最小公倍數(shù)與最大
公因數(shù)
15和20 7和5 12和16
5和35 28和14 34和51
《最小公倍數(shù)》教案8
教學內(nèi)容 第十冊數(shù)學P72—74最小公倍數(shù)
教學目標
1、在原有知識結(jié)構(gòu)的基礎(chǔ)上,通過自主建構(gòu),形成新的知識結(jié)構(gòu),掌握最小公倍數(shù)的意義及求法。
2、培養(yǎng)學生的遷移、判斷、推理、分析能力。學會反思,學會合作。
3、培養(yǎng)學生的積極學習情感,學會欣賞他人。
教學過程
一、再現(xiàn)原有知識結(jié)構(gòu)
1、用短除法求30與45的最大公約數(shù)
獨立完成,一人板演,集體訂正。
師提問:怎樣用短除法求兩個數(shù)的最大公約數(shù)?
。ㄔu析:根據(jù)教材的內(nèi)容與學生的實際需要設(shè)計課堂引入環(huán)節(jié),實實在在,利于學生再現(xiàn)原有知識結(jié)構(gòu),為構(gòu)建新的知識結(jié)構(gòu)做好了知識準備與心理準備。)
二、構(gòu)建新的`知識結(jié)構(gòu)
1、揭示課題
今天我們來研究最小公倍數(shù)。(板書課題)
2、明確意義
師:你認為什么是最小公倍數(shù)?
生1:兩個數(shù)公有的最小的倍數(shù)。
師:說的很好,你很會擴寫。(生笑)
生2:兩個數(shù)公有的倍數(shù)叫做它們的公倍數(shù),其中最小的一個是它們的最小公倍數(shù)。
生3:公倍數(shù)可以是兩個數(shù)公有的倍數(shù),也可以是三個或四個數(shù)公有的倍數(shù)。我認為應(yīng)改成幾個數(shù)公有的倍數(shù)叫做它們的公倍數(shù),其中最小的一個是它們的最小公倍數(shù)。師:太好了,誰能再說一遍。
生說完師出示,齊讀。
。ㄔu析:有了最大公約數(shù)的認知基礎(chǔ),學生很容易通過遷移實現(xiàn)對最小公倍數(shù)這一概念的自主建構(gòu)。因此教師直接揭示課題,讓學生根據(jù)自己的理解,互相補充完善最小公倍數(shù)的概念,取得了很好的效果。)
3、探討求法
出示:求4與5的最小公倍數(shù)。
師:你認為可以怎樣求兩個數(shù)的最小公倍數(shù)?
生1:用短除法。(師板書:短除法)
師:oh,你會嗎?
《最小公倍數(shù)》教案9
課題:找最小公倍數(shù)
教學目標:
1.結(jié)合具體情境,體會公倍數(shù)和最小公倍數(shù)的應(yīng)用,并會利用例舉法等方法找出兩個數(shù)的公倍數(shù)和最小公倍數(shù)。
2.培養(yǎng)學生分析歸納能力以及主動探究的精神。
教學重點:理解兩個數(shù)的公倍數(shù)和最小公倍數(shù)的意義
教學難點:探究趙公倍數(shù)和最小公倍數(shù)的方法
教具:多媒體課件
教學過程:
一.創(chuàng)設(shè)情境、引入新課
1.課件展示蜜蜂采蜜
師:同學們看看這是什么?
生:蜜蜂。
師:蜜蜂在干嘛呀?
生:在采蜜。
師:嗯,是的。那你們看現(xiàn)在蜜蜂王國日益壯大,蜜蜂們越來越多,每次大家同時采完蜜回來都非常擁擠,這可怎么辦呢?
(生自由發(fā)表意見,各抒己見)
2.師:現(xiàn)在呢,有只小蜜蜂呢提出了這么一計策,把這些蜜蜂分成兩個組,一組四分鐘回來一次,一組六分鐘回來一次,你們覺得這個問題完全解決了嗎?同學們想一想。
。ㄆ讨螅⿴煟和瑢W們把書翻到第六十頁,在這個表中把4的倍數(shù)用標出來,用 把6的倍數(shù)標出來。
兩分鐘之后展示一位同學所標出來的。
3.師:那4的倍數(shù)有哪些?
生:4、8、12、16、20、24、28、32、36、40、44、48。
師:那6的倍數(shù)又有哪些呢?
生:6、12、18、24、30、36、42、48。
又標了的有哪些?
生:12、24、36、48。
師:12、24、36、48既是4的倍數(shù)又是6的倍數(shù),它們就叫做4和6的公倍數(shù)。
師:那么我們的兩組蜜蜂在這些時候又會碰上一起回家。那它們最快是在什么時候相遇呢?
生:12分鐘。
師:12是4和6的最小公倍數(shù)。
4.師:剛才我們是在50以內(nèi)(包括50)的數(shù)中找4和6的倍數(shù),如果繼續(xù)找下去,還有嗎?有多少個?
生:有,有無數(shù)個。
師:你能找出最大的一個嗎?
生:不能。
師:4和6沒有最大的公倍數(shù),但有最小的公倍數(shù),它就是我們這節(jié)課要學習的內(nèi)容——最小公倍數(shù)。
二.鞏固練習
1.師:現(xiàn)在如果把蜜蜂分成兩組,一組6分鐘回來一次,一組9分鐘
回來一次,你知道它們最快什么時候相遇嗎?(完成書上60頁的試一試)
師:50以內(nèi)6的倍數(shù)有哪些?
生:6、12、18、24、30、36、42、48。
師:50以內(nèi)9的倍數(shù)又有哪些?
生:9、18、27、36、45。
師:50以內(nèi)6和9的公倍數(shù)有哪些?
生:18和36。
師:它們的最小公倍數(shù)是多少呢?
生:18。
師:我們的兩組蜜蜂最快在18分鐘的時候相遇了。
2.小猴子要過河了,小猴子現(xiàn)在要做從三塊石頭上走過去,可是石頭都有密碼的,你們可以幫助小猴子順利過河嗎?
(出示課件,50以內(nèi)9的.倍數(shù)、50以內(nèi)5的倍數(shù)、50以內(nèi)9和5的公倍數(shù))學生 獨立完成再匯報。(書上61頁練一練的第2題) 師:剛剛我們都是用的什么方法來找最小公倍數(shù)的?
生:列舉法。
師:那現(xiàn)在還有一種方法找最小公倍數(shù),短除法。
2 18 24
9 12
3 4
18和24的最大公因數(shù)就是:2×3=6.
18和24的最小公倍數(shù)就是:2×3×3×4=72。
3.求下列數(shù)的最小公倍數(shù)
3和6 10和89和4
4.聯(lián)系實際,解決問題
師:看看,這是什么?
生:跑道。
師:同學們平時愛跑步嗎?,在學校的跑道上跑一圈大概需要多長時間?現(xiàn)在看看他們?nèi)齻人的。
。1)我跑一圈用6分鐘
。2)我跑一圈用4分鐘
(3)我跑一圈用8分鐘
師:你能提出問題嗎?
生1:他們同時出發(fā)男孩和女孩最快什么時候相遇?
生2:他們同時出發(fā)男孩和老師最快什么時候相遇?
生3:他們同時出發(fā)老師和女孩最快什么時候相遇?
。í毩⑼瓿桑
三.本堂小結(jié)
師:通過這節(jié)課的學習你有什么收獲?
生先談收獲師再總結(jié)
1.同學們都很好的掌握了用列舉法找兩個數(shù)的公倍數(shù)和最小公倍數(shù)的方法。
2.學會了用短除法求兩個數(shù)的最小公倍數(shù)。
《最小公倍數(shù)》教案10
教學內(nèi)容:
人教版義務(wù)教育教科書數(shù)學五年級下冊第68—69頁。
教學目標:
1.學生結(jié)合具體情境,體會并理解公倍數(shù)和最小公倍數(shù)的含義,會在集合圖中表示兩個數(shù)的倍數(shù)和公倍數(shù)。
2.通過自主探索,使學生經(jīng)歷找公倍數(shù)的方法,會利用列舉法等方法找出兩個數(shù)的公倍數(shù)和最小公倍數(shù)。
3.在探索交流的學習過程中,使學生獲得成功的體驗,激發(fā)學生的學習興趣。教學重點:理解公倍數(shù)和最小公倍數(shù)的含義。
教學難點:
用不同的方法求兩個數(shù)的公倍數(shù)和最小公倍數(shù)。
教學過程:
一、游戲?qū)?/p>
同學們都知道自己的學號吧,我叫到學號的同學請起立,看看誰的反應(yīng)快。(課件出示:學號是4的倍數(shù)的同學請起立;是6的倍數(shù)的同學請起立)哪些同學站起來2次?請站起來兩次的同學再次起立,依次報出你們的學號。
師:想一想,他們?yōu)槭裁凑酒饋韮纱危?/p>
生:因為他們既是4的倍數(shù)也是6的倍數(shù)。
師:你能給它起個名字嗎?(板書公倍數(shù))這節(jié)課我們就來研究關(guān)于公倍數(shù)的問題。設(shè)計意圖:說明通過報數(shù)游戲,讓學生在研究現(xiàn)實問題的情境中學習數(shù)學,激發(fā)學生的學習積極性。
二、自主探索
。ㄒ唬┕稊(shù)和最小公倍數(shù)的概念
1.回憶學習方法
師:請同學們回憶,我們是怎樣研究公因數(shù)的?
生:先分別寫出兩個數(shù)的因數(shù);從這些因數(shù)中找出相同的因數(shù)就是公因數(shù);其中最大的一個因數(shù)就是這兩個數(shù)的最大公因數(shù)。
師:我們就用這樣的方法來研究游戲中4和6的公倍數(shù)問題。
2.自主探究
學生在練習本上獨立找出4和6的.公倍數(shù)。
3.匯報交流
學生交流自己的學習成果,同學間互相討論。(兩個數(shù)有沒有最大的公倍數(shù)?為什么?)
4.小結(jié)概念,課件演示集合圖。
12,24,36,……是4和6公有的倍數(shù),叫做它們的公倍數(shù)。其中,12是最小的公倍數(shù),叫做它們的最小公倍數(shù)。
設(shè)計意圖:因為學生前面已經(jīng)學習了公因數(shù),這里讓學生通過遷移的方法,很快地認識到這方面的知識,從而使學生獲得成功的體驗。
。ǘ┣髢蓚數(shù)的公倍數(shù)和最小公倍數(shù)的方法。
師:請用你想到的方法找出6和8的公倍數(shù)和最小公倍數(shù)。
(1)學生獨立完成,全班交流。
。2)學生交流方法有:
①列舉法:先找倍數(shù),再找公倍數(shù),最后找出最小公倍數(shù)。
例如:6的倍數(shù):6,12,18,24,30,36,42,48,……
8的倍數(shù):8,16,24,32,40,48,……
6和8公倍數(shù):24,48,……6和8的最小公倍數(shù):24
、谟眉蠄D表示也很清楚。
③6的倍數(shù)中有哪些是8的倍數(shù)呢?或者8的倍數(shù)中有哪些是6的倍數(shù)呢?
師:這么多方法,你喜歡哪一種?
通過觀察,想一想:①兩個數(shù)的公倍數(shù)和它們的最小公倍數(shù)之間有什么關(guān)系?
練習:18和2415和25
三、課堂練習:
找出下面每組數(shù)的最小公倍數(shù),看看有什么發(fā)現(xiàn)?
3和62和85和64和93和95和10
交流你的發(fā)現(xiàn):若兩數(shù)互質(zhì),兩數(shù)直接相乘求最小公倍數(shù);若兩數(shù)含有倍數(shù)的關(guān)系,較大數(shù)是兩數(shù)的最小公倍數(shù)。
你能舉個例子嗎?
四、獨立作業(yè):
數(shù)學書71頁2題
五、課堂小結(jié):
師:今天學習了什么知識?你有什么收獲?
生:幾個數(shù)公有的倍數(shù)叫做這幾個數(shù)的公倍數(shù)。其中最小的一個叫做這幾個數(shù)的最小公倍數(shù)。
找兩個數(shù)公倍數(shù)和最小公倍數(shù)的方法等等。
板書設(shè)計:
《最小公倍數(shù)》教案11
教學內(nèi)容:教科書五年級上冊第81——82頁及練習。
教學目標:
1、在異分母分數(shù)大小比較的活動中,經(jīng)歷認識最小公倍數(shù)和用短除法求最小公倍數(shù)的過程。
2、了解最小公倍數(shù),學會用短除法求兩個數(shù)的最小公倍數(shù)。
3、能積極主動參與數(shù)學活動,獲得積極的學習體驗,提高對數(shù)學的興趣。
教學重點:學會用短除法求兩個數(shù)的最小公倍數(shù)。
教學過程:
一、課前活動——對口令
師:上課前我們先來做個游戲——對口令,老師說一個數(shù)請你對出它的倍數(shù)1、對9、12的倍數(shù)。
2、對出一個數(shù),它既是2的倍數(shù)也是3的倍數(shù)。
二、創(chuàng)設(shè)情境,感知概念
1、兩個數(shù)的公倍數(shù)和最小公倍數(shù)的概念教學
師:同學們,我們每周都會上微機課,老師想了解一下同學打字情況,那誰愿意介紹一下你一分鐘能打多少個字呢?
請幾位學生說說自己一分鐘能打多少個字。學生打字的速度各有不同,教師可進行激勵性。如:真不錯,你一分鐘能打這么多字;打得慢了點,沒關(guān)系,只要你經(jīng)常練習,一定會越來越快。
師:你們知道嗎?我們的小伙伴紅紅和聰聰都是打字的能手,他倆打同樣一份稿件進行了一次打字比賽。
出示教材上的情境圖。
師:從兩個人的對話中了解到哪些數(shù)學信息?
生1:聰聰用了5/6小時。
生2:紅紅用3/4小時就打完了。
師:他們兩個人誰打得快呢?請同學們當裁判,通過比較兩個分數(shù)的大小來解決這個問題。
學生獨立思考并比較,教師巡視,了解通分的方法和結(jié)果。師:誰來說說是怎樣比較的?誰打得快呢?
師:誰來說說是怎樣比較的?誰打得快呢?
學生交流,教師進行板書。
生1:因為6×4=24,我先把和進行通分,都化成分母是24的分數(shù),然后再進行比較。
5/6=5×4/6×4=20/24,3/4=3×6/4×6=18/24
20/24>18/24,所以5/6>3/4。
紅紅打得快。
生2:我也認為紅紅打得快。但是我把5/6和3/4進行通分,都化成分母是12的分數(shù),然后再進行比較。
5/6=5×2/6×2=10/12,3/4=3×3/4×3=9/12
10/12>9/12,所以5/6>3/4。
……
如果學生只有分母是24或12的一種方法,教師要作為參與者介紹另一種方法。
師:現(xiàn)在請大家觀察這兩種方法,你發(fā)現(xiàn)有什么相同的地方和不同的地方?
學生可能有不同的表達方式,概括一下,應(yīng)有如下回答:
●相同的地方
。1)這兩種方法都是先把5/6和3/4進行通分后,再比較大小的。
。2)兩種方法通分時用的分母12和24都是6和4的公倍數(shù)。
教學預(yù)設(shè)
●不同的地方
。1)第一種方法,通分時用兩個分數(shù)分母的積24作分母,第二種方法,通分時用4和6的公倍數(shù)12作分母。
(2)24是12的2倍。
……
師:同學們觀察得非常仔細,兩種通分方法中,12和24都是6和4的公倍數(shù)。那么,4和6的公倍數(shù)還有哪些?請同桌的同學合作,在老師發(fā)給你們的橢圓形紙片上分別寫出50以內(nèi)4和6的倍數(shù),再圈出它們的`公倍數(shù)。
學生自己找,教師巡視。
師:說說你們是怎么找的?4和6的公倍數(shù)都有哪些呢?生:我先找出4和6各自的倍數(shù)
4的倍數(shù)有:4,8,12,16,20,24,28,32,36,40,44,48,
師:如果讓你繼續(xù)找下去,4的倍數(shù)還有沒有?用什么表示?
生:還有無數(shù)個,用省略號表示。
生:6的倍數(shù)有:6,12,18,24,30,36,42,48,
師:如果讓你繼續(xù)找下去,6的倍數(shù)還有沒有?用什么表示?
生:還有無數(shù)個,也用省略號表示。
生:然后找4和6的公倍數(shù)有:12,24,36,48,……。
教師根據(jù)學生的回答出示課件。
師:觀察我們找到的50以內(nèi)6和4的這幾個公倍數(shù),想一想,如果繼續(xù)找下去,48后面一個公倍數(shù)是幾?說一說你是怎樣判斷的?
學生可能會說:
生:繼續(xù)找下去,48后面一個公倍數(shù)是60。因為每兩個公倍數(shù)之間都相差12,48加12等于60。
師:60后面還有沒有?還有多少個?
生:還有無數(shù)個,用省略號表示。
師:有沒有最大公倍數(shù)?
生:沒有最大公倍數(shù)。因為4和6的公倍數(shù)有無數(shù)個,找不到最大的一個。
師:同學們說的很好,F(xiàn)在再來觀察4和6的這些公倍數(shù),沒有最大的我們能找到一個最小的誰?
生:12。
師:還有比12小的公倍數(shù)嗎?
生:沒有了。
師:我們給它起個名字叫做這兩個數(shù)的最小公倍數(shù)。這節(jié)課我們就來重點研究一下最小公倍數(shù)。(教師板書課題:最小公倍數(shù))
師:我們對公倍數(shù)和最小公倍數(shù)有了一些認識,誰能用自己的話說說什么是公倍數(shù)?什么是最小公倍數(shù)?同桌的同學現(xiàn)互相說說。
學生之間互相交流。
教師引導學生出概念(出示課件)讓學生讀一讀。
師:剛才我們找了4和6的最小公倍數(shù),現(xiàn)找了4的倍數(shù),又找了6的倍數(shù),最后找到4和6的最小公倍數(shù)。這種方法太麻煩,其實有一種更簡便的方法——短除法(教師邊說邊板書用短除法求4和6的最小公倍數(shù))
用短除法求兩個數(shù)的最小公倍數(shù)與上學期我們學過的求兩個數(shù)的最大公因數(shù)的書寫方式一樣。
板書設(shè)計:
《最小公倍數(shù)》教案12
【教學內(nèi)容】:
人教版五年級下冊教科書第88—90頁內(nèi)容。
【設(shè)計理念】:
數(shù)學于生活,有作用于生活。在本堂課的教學,我把數(shù)學與生活緊密的聯(lián)系在一起,從而構(gòu)建一種生活化的數(shù)學課堂。讓學生根據(jù)現(xiàn)實生活中一些能夠反映公倍數(shù)、最小公倍數(shù)的實際問題,獲得對公倍數(shù)、最小公倍數(shù)概念內(nèi)部結(jié)構(gòu)特征的直接體驗,積累數(shù)學活動的經(jīng)驗,進而激發(fā)學生興趣,去解決這些實際問題,真切地體會到數(shù)學與外部生活世界的'聯(lián)系,體會到數(shù)學的特點和價值,體會到“數(shù)學化”的真正含義,從而幫助他們獲得對數(shù)學的正確認識。真正達到“人人學有價值的數(shù)學,人人都能獲得必需的數(shù)學,不同的人在數(shù)學上得到不同的發(fā)展”。
【教學目標】:
1、知識與技能:通過創(chuàng)設(shè)具體情境(三個情景片斷)和操作活動,使學生認識并理解公倍數(shù)和最小公倍數(shù)的概念,初步了解兩個數(shù)的公倍數(shù)和最小公倍數(shù)在現(xiàn)實生活中的應(yīng)用,會找兩個數(shù)的公倍數(shù)和它們的最小公倍數(shù)。
2、過程與方法:通過自主探索解決問題的方法,使學生經(jīng)歷探索找兩個數(shù)的公倍數(shù)和最小公倍數(shù)的過程,鼓勵學生思考多樣化,簡潔化,進行有條理的思考。
3、情感態(tài)度價值觀:在自主探索與合作交流的過程中,進一步發(fā)展與同伴的合作交流能力,獲得成功的體驗。使學生感受到數(shù)學于生活,體會公倍數(shù)和最小公倍數(shù)在生活中的實際價值。
【教學重點】:
1、理解公倍數(shù)與最小公倍數(shù)的概念
2、能找出兩個數(shù)的公倍數(shù)與最小公倍數(shù),會解決實際生活中的一些問題
【教學難點】:
能找出兩個數(shù)的公倍數(shù)與最小公倍數(shù),會解決實際生活中的一些問題
【教具、學具準備】:
多媒體、日歷。
《最小公倍數(shù)》教案13
第三課時
教學內(nèi)容:求三個數(shù)的最小公倍數(shù)
教學目標:
使學生學會求三個數(shù)的最小公倍數(shù)的方法,并能正確地,合理地求三個數(shù)的最小公倍數(shù)。
教學過程:
一、復(fù)習
什么是公倍數(shù)、最小公倍數(shù)
怎樣求兩個數(shù)的最小公倍數(shù)
求兩個數(shù)的最小公倍數(shù)與最大公約數(shù)有什么聯(lián)系
當兩個數(shù)是倍數(shù)關(guān)系時,大數(shù)就是這兩個數(shù)的`最小公倍數(shù),小數(shù)就是這兩個數(shù)的最大公約數(shù)。
當兩個數(shù)是互質(zhì)數(shù)時,這兩個數(shù)的最大公約數(shù)是1,這兩個數(shù)的最小公倍數(shù)是這兩個數(shù)的乘積。
二、揭示課題
這節(jié)課我們學習求三個數(shù)的最小公倍數(shù)。
三、教學新課
1、例3求12、16和18的最小公倍數(shù)。
2、學生自學完成。
3、對不懂的問題提出疑問。
4、注意:用短除法求三個數(shù)的最小公倍數(shù)時,先要用三個數(shù)的公約數(shù)去除,然后再用任意兩個數(shù)的公約數(shù)去除。最后的結(jié)果要兩兩互質(zhì)。
5、試一試
求15、30和60,3.4和7的最小公倍數(shù)。
計算后,你發(fā)現(xiàn)了什么?
。1)其中一個數(shù)是其他兩個數(shù)的倍數(shù),那么最大的數(shù)就是這三個數(shù)的最小公倍數(shù)。
。2)當三個數(shù)是互質(zhì)數(shù)時,三個數(shù)的乘積是這三個數(shù)的最小公倍數(shù)。
四、鞏固練習
書本第57-58頁
五、反饋
六、布置作業(yè)
反思:本節(jié)課的難點是讓學生知道為什么在求出三個數(shù)的公約數(shù)后還要求出兩個數(shù)的公約數(shù)。然后把所有的除數(shù)和商乘起來。
《最小公倍數(shù)》教案14
教材分析:
該內(nèi)容是在學生已經(jīng)學習了約數(shù)和倍數(shù)的意義、質(zhì)數(shù)和合數(shù)、分解質(zhì)因數(shù)、最大公約數(shù)等的基礎(chǔ)上進行教學的,既是對前面知識的綜合運用,同時又是學生學習通分所必不可少的知識基礎(chǔ)。因而是本單元的教學重點,是本冊教材的核心內(nèi)容。本課的教學,對于學生的后續(xù)學習和發(fā)展,具有舉足輕重的作用。借鑒前面的學習方法學習后面的內(nèi)容是本課設(shè)計中很重要的一個教學特色,這樣設(shè)計不僅使教學變得輕松,而且能使學生在學習知識的同時掌握一些學習方法,這些學習策略和方法的掌握,對于今后的學習是很有幫助的。
學情分析:
五年級學生的生活經(jīng)驗和知識背景更為豐富,動手欲較強,學生認識數(shù)的概念時更愿意自主參與,自己發(fā)現(xiàn)。再者,學生個人的解題能力有限,而小組合作則能更好地激發(fā)他們的數(shù)學思維,通過交流獲得數(shù)學信息。
教學目標:
1、讓學生通過具體的操作和交流活動,認識公倍數(shù)和最小公倍數(shù),會用列舉法求兩個數(shù)的最小公倍數(shù)。
2、讓學生經(jīng)歷探索和發(fā)現(xiàn)數(shù)學知識的過程,積累數(shù)學活動的.經(jīng)驗,培養(yǎng)學生自主探索合作交流的能力。
3、滲透集合思想,培養(yǎng)學生的抽象概括能力
教學重點:
公倍數(shù)與最小公倍數(shù)的概念建立。
教學難點:
運用公倍數(shù)與最小公倍數(shù)解決生活實際問題
教法學法:
為了實現(xiàn)教學目標,達到《標準》中的要求,也為了更好的解決教學重、難點,我將本節(jié)課設(shè)計成寓教于樂的形式,將教學內(nèi)容融入一環(huán)環(huán)的學生自主探索發(fā)現(xiàn)的過程中,引導學生動手、動腦、動口。
教學過程:
一、任務(wù)導學
師:課前我們來做個報數(shù)游戲,看誰的反應(yīng)最快。請兩大組的同學參加。
師:請報到3的倍數(shù)的同學起立,報到4的倍數(shù)的同學起立。你們發(fā)現(xiàn)了什么?他們?yōu)槭裁匆鹆纱?(因為他們報到的號?shù)既是3的倍數(shù)又是4的倍數(shù))是嗎?咱們一起來驗證一下。(師板書:12、24)
師:像這些數(shù)既是3的倍數(shù),又是4的倍數(shù),我們就把這些數(shù)叫做3和4的公倍數(shù)。(板書:公倍數(shù))今天這節(jié)課我們一起來研究公倍數(shù)。
《最小公倍數(shù)》教案15
教學目標:
1、使學生在具體的操作活動中,認識公倍數(shù)和最小公倍數(shù),會在集合圖中分別表示兩個數(shù)的倍數(shù)和它們的公倍數(shù)。
2、使學生學會用列舉的方法找到10以內(nèi)兩個數(shù)的公倍數(shù)和最小公倍數(shù),并能在解決問題的過程中主動探索簡捷的方法,進行有條理的思考。
3、使學生在自主探索與合作交流的過程中,進一步發(fā)展與同伴進行合作交流的意識和能力,獲得成功的體驗。
教學準備:
長3厘米、寬2厘米的長方形紙片16張,邊長6厘米和8厘米的正方形紙片;練習四第4題的方格圖、紅棋和黃棋。
教學過程:
復(fù)習
今天我們所學的知識與倍數(shù)有關(guān),這在四年級我們已經(jīng)學過了,同學們還記得嗎?
那誰能連續(xù)的說幾個2的倍數(shù)?有什么特征?3的倍數(shù)呢?
看來大家四年級的知識掌握的不錯,那么今天我們就再來繼續(xù)研究關(guān)于倍數(shù)的知識。
一、經(jīng)歷操作活動,認識公倍數(shù)
1、操作活動
提問:(在投影儀上擺出長3厘米、寬2厘米的長方形紙片,以及邊長6厘米和8厘米的正方形紙片)用長3厘米、寬2厘米的長方形紙片分別鋪邊長6厘米和8厘米和正方形,能鋪滿哪個正方形?請大家猜猜看
拿出手中的圖形,動手拼一拼。
學生獨立活動后,指名在黑板上用長3厘米、寬2厘米的長方形紙片分別鋪邊長6厘米和8厘米的正方形。
提問:通過剛才的活動,你們發(fā)現(xiàn)了什么?(用上面的長方形紙片可以正好鋪滿邊長6厘米和正方形,但不能正好鋪滿邊長8厘米的正方形)
引導:用長3厘米、寬2厘米的長方形紙片鋪邊長6厘米的正方形,每條邊各鋪了幾次?怎樣用算式表示?(在邊長6厘米的正方形下面板書:6÷3=2,6÷2=3)
鋪邊長8厘米的.正方形呢?每條邊都能正好鋪完嗎?(在邊長8厘米的正方形下面板書:8÷3=2......2,8÷2=4)
2、想像延伸
提問:根據(jù)剛才鋪正方形過程,在頭腦里想一想,用長3厘米、寬2厘米的長方形紙片還能正好鋪滿邊長多少厘米的正方形?在小組里交流。
生可能的想法:
⑴、能正好鋪滿邊長12厘米、18厘米、24厘米......的正方形。
在學生回答后,提問:你是怎么想的?(引導學生明確:12、18、24......除以2和3都沒有余數(shù))
、、能正好鋪滿的正方形,邊長的厘米既是2的倍數(shù),又是3的倍數(shù)。
如果學生說不出這一點,可提問:6、12、18、24......這些數(shù)與2有什么關(guān)系?與3呢?
3、揭示概念
講述:6、12、18、24......既是2的倍數(shù),又是3的倍數(shù),它們是2和3的倍數(shù)。(板書:公倍數(shù))
說明:因為一個數(shù)的倍數(shù)的個數(shù)是無限的,所以兩個數(shù)的公倍數(shù)的個數(shù)也是無限的,同樣可以用省略號來表示。
引導:用長3厘米、寬2厘米的長方形紙片不能正好鋪滿邊長8厘米的正方形,說明什么?(8不是2和3的公倍數(shù))為什么?
二、自主探索,用列舉的方法求公倍數(shù)和最小公倍數(shù)
1、自主探索
提問:6和9的公倍數(shù)有哪些?其中最小的公倍數(shù)是幾?你能試著找一找嗎?
學生自主活動,然后在小組里交流。
生可能想到的方法:
⑴依次分別寫出6和9的公倍數(shù),再找一找。
提問:你是怎樣找到6和9的公倍數(shù)的?又是怎樣確定6和9的最小公倍數(shù)的?
⑵、先找出6和倍數(shù),再從6的倍數(shù)中找出9的倍數(shù)。
⑶、先找出9的倍數(shù),再從9的倍數(shù)中找出6的倍數(shù)。
引導:第⑵種和第⑶種方法有什么相同的地方?你覺得哪一種方法簡捷一些?
2、明確6和9的最小的公倍數(shù)是18后,指出:18就是6和9的最小公倍數(shù)。(完成課題板書)
3、用集合圖表示。
說明:我們可以用下圖表示兩個數(shù)的公倍數(shù)。先出示一個圈,表示6的倍數(shù)。想一想,里面可以填哪些數(shù)?旁邊一個圈,表示9的倍數(shù)。想一想,里面可以填哪些數(shù)?指出:6和9的公倍數(shù)要填在兩個圈相交的部分。想一想,里面應(yīng)該填哪些數(shù)?
引導:12是6和9的公倍數(shù)嗎?為什么?27呢?哪幾個數(shù)是6和9的公倍數(shù)?
4、做“練一練”
要求:(出示數(shù)表)先在2的倍數(shù)上畫“△”,在5的倍數(shù)上畫“○”,然后填空。
集體交流:2和5的公倍數(shù)有什么特點?(是10的倍數(shù),個位是0的自然數(shù))
三、鞏固練習,加深對公倍數(shù)和最小公倍數(shù)的認識
1、做練習四的第1題
要求:把50以內(nèi)6和8的倍數(shù)、公倍數(shù)分別填在題目下面的圈里,再找出它們的最小公倍數(shù)。
提問:這里在圖中要寫省略號嗎?為什么?如果沒有“50以內(nèi)”這個前提條件呢?
2、做練習四第2題
要求:先在表中分別寫出兩個數(shù)的積,再填空。
引導:4與一個數(shù)的乘積都是4的什么數(shù)?5、6與一個數(shù)的乘積呢?怎樣找到4和5的公倍數(shù)?填空時為什么要寫省略號?
3、做練習四的第3題
要求:自己找出每組數(shù)的最小公倍數(shù)。
集體交流,說說是怎樣找的,讓學生進一步掌握用列舉法找兩個數(shù)的最小公倍數(shù)。
四、全課小結(jié)
提問:今天學習的內(nèi)容是什么?什么是兩個數(shù)的公倍數(shù)和最小公倍數(shù)?怎樣找兩個數(shù)的最小公倍數(shù)?
引導:你還有什么疑問嗎?
五、游戲活動
要求:下面我們來做個游戲。出示練習四第4題:紅棋每次走3格,黃棋每次走4格。你能在兩種棋都走到的方格里涂上顏色嗎?在小組里先玩一玩,再想一想。
提問:涂色的方格里寫的數(shù)與3和4有什么關(guān)系?
【《最小公倍數(shù)》教案】相關(guān)文章:
最小公倍數(shù)教案01-20
最小公倍數(shù)優(yōu)秀教案03-07
精選《最小公倍數(shù)》教案四篇10-18
精選《最小公倍數(shù)》教案三篇04-05
【熱門】《最小公倍數(shù)》教案四篇04-15
《最小公倍數(shù)》教案匯總五篇04-12
《最小公倍數(shù)》教案范文9篇04-17