- 相關(guān)推薦
高一數(shù)學(xué)必修二教案
作為一名為他人授業(yè)解惑的教育工作者,常常要寫一份優(yōu)秀的教案,教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開展。那么什么樣的教案才是好的呢?下面是小編幫大家整理的高一數(shù)學(xué)必修二教案,希望對(duì)大家有所幫助。
高一數(shù)學(xué)必修二教案1
【考點(diǎn)闡述】
兩角和與差的正弦、余弦、正切.二倍角的正弦、余弦、正切.
【考試 要求】
(3)掌握兩角和與兩角差的正弦、余弦、正切公式;掌握二 倍角的正弦、余弦、正切公式.
(4)能正確運(yùn)用三角公式,進(jìn)行簡單三角函數(shù)式的化簡、求值和恒等式證明.
【考題分類】
(一)選擇題(共5題)
1.(海南寧夏卷理7) =( )
A. B. C. 2 D.
解: ,選C。
2.(山東卷 理5文10)已知cos(α- )+sinα=
(A)- (B) (C)- (D)
解: , ,
3.(四川卷理3文4) ( )
(A) (B) (C) (D)
【解】:∵
故選D;
【點(diǎn)評(píng)】:此題重點(diǎn)考察各三角函數(shù)的.關(guān)系;
4.(浙江卷理8)若 則 =( )
(A) (B)2 (C) (D)
解析:本小題主要考查三角 函數(shù)的求值問題。由 可知, 兩邊同時(shí)除以 得 平方得 ,解得 或用觀察法.
5.(四川延考理5)已知 ,則 ( )
(A) (B) (C) (D)
解: ,選C
(二)填空題(共2題)
1.(浙江卷文12)若 ,則 _________。
解析:本 小題主要考查誘導(dǎo)公式及二倍角公式的應(yīng)用。由 可知, ;而 。答案 :
2.(上海春卷6)化簡: .
(三)解答題(共1題)
1.(上海春卷17)已知 ,求 的 值.
[解] 原式 …… 2分
. …… 5分
又 , , …… 9分
. …… 12分 文章
高一數(shù)學(xué)必修二教案2
課題
1.2.1投影與三視圖
課型
新課
教學(xué)目標(biāo)
1.了解中心投影和平行投影的概念;
2.能夠判斷簡單的空間幾何體(柱、錐、臺(tái)、球及其簡單組合體)的三視圖,能夠根據(jù)三視圖描述基本幾何體或?qū)嵨镌停?/p>
3.簡單組合體與其三視圖之間的相互轉(zhuǎn)化.
教學(xué)過程
教學(xué)內(nèi)容
備注
一、
自主學(xué)習(xí)
1.照相、繪畫之所以有空間視覺效果,主要處決于線條、明暗和色彩,其中對(duì)線條畫法的基本原理是一個(gè)幾何問題,我們需要學(xué)習(xí)這方面的知識(shí).
2.在建筑、機(jī)械等工程中,需要用平面圖形反映空間幾何體的形狀和大小,在作圖技術(shù)上這也是一個(gè)幾何問題,你想知道這方面的基礎(chǔ)知識(shí)嗎?
二、
質(zhì)疑提問
下圖中的手影游戲,你玩過嗎?
光是直線傳播的,一個(gè)不透明物體在光的照射下,在物體后面的屏幕上會(huì)留下這個(gè)物體的影子,這種現(xiàn)象叫做投影.其中的光線叫做投影線,留下物體影子的屏幕叫做投影面.
思考1:不同的光源發(fā)出的光線是有差異的,其中燈泡發(fā)出的'光線與手電筒發(fā)出的光線有什么不同?
一、中心投影與平行投影
思考2:用燈泡照射物體和用手電筒照射物體形成的投影分別是哪種投影?
思考3:用燈泡照射一個(gè)與投影面平行的不透明物體,在投影面上形成的影子與原物體的形狀、大小有什么關(guān)系?當(dāng)物體與燈泡的距離發(fā)生變化時(shí),影子的大小會(huì)有什么不同?
思考4:用手電筒照射一個(gè)與投影面平行的不透明物體,在投影面上形成的影子與原物體的形狀、大小有什么關(guān)系?當(dāng)物體與手電筒的距離發(fā)生變化時(shí),影子的大小會(huì)有變化嗎?
思考5:在平行投影中,投影線正對(duì)著投影面時(shí)叫做正投影,否則叫做斜投影.一個(gè)與投影面平行的平面圖形,在正投影和斜投影下的形狀、大小是否發(fā)生變化?
思考6:一個(gè)與投影面不平行的平面圖形,在正投影和斜投影下的形狀、大小是否發(fā)生變化?
投影的分類:
把一個(gè)空間幾何體投影到一個(gè)平面上,可以獲得一個(gè)平面圖形.從多個(gè)角度進(jìn)行投影就能較好地把握幾何體的形狀和大小,通常選擇三種正投影,即正面、側(cè)面和上面,并給出下列概念:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖.
側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖.
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖.
幾何體的正視圖、側(cè)視圖和俯視圖,統(tǒng)稱為幾何體的三視圖.
思考1:正視圖、側(cè)視圖、俯視圖分別是從幾何體的哪三個(gè)角度觀察得到的幾何體的正投影圖?它們都是平面圖形還是空間圖形?
三、
問題探究
思考2:如圖,設(shè)長方體的長、寬、高分別為a、b、c,那么其三視圖分別是什么?
思考3:圓柱、圓錐、圓臺(tái)的三視圖分別是什么?
思考5:球的三視圖是什么?下列三視圖表示一個(gè)什么幾何體?
例1:如圖是一個(gè)倒置的四棱柱的兩種擺放,試分別畫出其三視圖,并比較它們的異同.
四、
課堂檢測
五、
小結(jié)評(píng)價(jià)
1.空間幾何體的三視圖:正視圖、側(cè)視圖、俯視圖;
2.三視圖的特點(diǎn):一個(gè)幾何體的側(cè)視圖和正視圖高度一樣,俯視圖和正視圖長度一樣,側(cè)視圖和俯視圖寬度一樣;
3.三視圖的應(yīng)用及與原實(shí)物圖的相互轉(zhuǎn)化.
高一數(shù)學(xué)必修二教案3
學(xué)習(xí)目標(biāo)
1.結(jié)合已學(xué)過的數(shù)學(xué)實(shí)例,了解歸納推理的含義;2.能利用歸納進(jìn)行簡單的推理,體會(huì)并認(rèn)識(shí)歸納推理在數(shù)學(xué)發(fā)現(xiàn)中的作用.
2.結(jié)合已學(xué)過的數(shù)學(xué)實(shí)例,了解類比推理的含義;
3.能利用類比進(jìn)行簡單的推理,體會(huì)并認(rèn)識(shí)合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用.
學(xué)習(xí)過程
一、課前準(zhǔn)備
問題3:因?yàn)槿切蔚膬?nèi)角和是,四邊形的內(nèi)角和是,五邊形的內(nèi)角和是
……所以n邊形的內(nèi)角和是
新知1:從以上事例可一發(fā)現(xiàn):
叫做合情推理。歸納推理和類比推理是數(shù)學(xué)中常用的合情推理。
新知2:類比推理就是根據(jù)兩類不同事物之間具有
推測其中一類事物具有與另一類事物的性質(zhì)的推理.
簡言之,類比推理是由的推理.
新知3:歸納推理就是根據(jù)一些事物的,推出該類事物的
的推理.歸納是的過程
例子:哥德巴赫猜想:
觀察6=3+3, 8=5+3, 10=5+5, 12=5+7, 14=7+7,
16=13+3, 18=11+7, 20=13+7, ……,
50=13+37, ……, 100=3+97,
猜想:
歸納推理的一般步驟
1通過觀察個(gè)別情況發(fā)現(xiàn)某些相同的性質(zhì)。
2從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想)。
二、典型例題
例1用推理的形式表示等差數(shù)列1,3,5,7……2n-1,……的前n項(xiàng)和Sn的歸納過程。
變式1觀察下列等式:1+3=4=,
1+3+5=9=,
1+3+5+7=16=,
1+3+5+7+9=25=,
……
你能猜想到一個(gè)怎樣的結(jié)論?
變式2觀察下列等式:1=1
1+8=9,
1+8+27=36,
1+8+27+64=100,
……
你能猜想到一個(gè)怎樣的結(jié)論?
例2設(shè)計(jì)算的值,同時(shí)作出歸納推理,并用n=40驗(yàn)證猜想是否正確。
變式:(1)已知數(shù)列的第一項(xiàng),且,試歸納出這個(gè)數(shù)列的通項(xiàng)公式
例3:找出圓與球的相似之處,并用圓的性質(zhì)類比球的有關(guān)性質(zhì).
圓的.概念和性質(zhì)球的類似概念和性質(zhì)
圓的周長
圓的面積
圓心與弦(非直徑)中點(diǎn)的連線垂直于弦
與圓心距離相等的弦長相等,
※動(dòng)手試試
1.觀察圓周上n個(gè)點(diǎn)之間所連的弦,發(fā)現(xiàn)兩個(gè)點(diǎn)可以連一條弦,3個(gè)點(diǎn)可以連3條弦,4個(gè)點(diǎn)可以連6條弦,5個(gè)點(diǎn)可以連10條弦,由此可以歸納出什么規(guī)律?
2如果一條直線和兩條平行線中的一條相交,則必和另一條相交。
3如果兩條直線同時(shí)垂直于第三條直線,則這兩條直線互相平行。
三、總結(jié)提升
※學(xué)習(xí)小結(jié)
1.歸納推理的定義.
2.歸納推理的一般步驟:①通過觀察個(gè)別情況發(fā)現(xiàn)某些相同的性質(zhì);②從已知的相同性質(zhì)中推出一個(gè)明確表述的一般性命題(猜想).
3.合情推理僅是“合乎情理”的推理,它得到的結(jié)論不一定真,但合情推理常常幫我們猜測和發(fā)現(xiàn)新的規(guī)律,為我們提供證明的思路和方法
高一數(shù)學(xué)必修二教案4
一、教材分析
函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個(gè)初等數(shù)學(xué)體系之中。函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對(duì)初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個(gè)簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對(duì)應(yīng)說”,這是對(duì)函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識(shí),也是學(xué)生認(rèn)識(shí)上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對(duì)學(xué)生今后的學(xué)習(xí)起著深刻的影響。
本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對(duì)概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對(duì)應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、重難點(diǎn)分析
根據(jù)對(duì)上述對(duì)教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點(diǎn),也應(yīng)該是本章的難點(diǎn)。
三、學(xué)情分析
1、有利因素:一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對(duì)函數(shù)已經(jīng)有了一定的感性認(rèn)識(shí);另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個(gè)集合間對(duì)應(yīng)來描繪函數(shù)概念,是一個(gè)抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度。
四、目標(biāo)分析
1、理解函數(shù)的概念,會(huì)用函數(shù)的定義判斷函數(shù),會(huì)求一些最基本的函數(shù)的定義域、值域。
2、通過對(duì)實(shí)際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識(shí)以及邏輯思維、建模等方面的能力。
3、通過對(duì)函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
五、教法學(xué)法
本節(jié)課的教學(xué)以學(xué)生為主體、教師是數(shù)學(xué)課堂活動(dòng)的組織者、引導(dǎo)者和參與者,我一方面精心設(shè)計(jì)問題情景,引導(dǎo)學(xué)生主動(dòng)探索。另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問題的提出、問題的解決為主線,始終在學(xué)生知識(shí)的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動(dòng)參與,通過不斷探究、發(fā)現(xiàn),在師生互動(dòng)、生生互動(dòng)中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動(dòng)認(rèn)知過程。
學(xué)法方面,學(xué)生通過對(duì)新舊兩種函數(shù)定義的對(duì)比,在集合論的觀點(diǎn)下初步建構(gòu)出函數(shù)的`概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。
高一必修二數(shù)學(xué)教案41、教材(教學(xué)內(nèi)容)
本課時(shí)主要研究任意角三角函數(shù)的定義。三角函數(shù)是一類重要的基本初等函數(shù),是描述周期性現(xiàn)象的重要數(shù)學(xué)模型,本課時(shí)的內(nèi)容具有承前啟后的重要作用:承前是因?yàn)榭梢杂煤瘮?shù)的定義來抽象和規(guī)范三角函數(shù)的定義,同時(shí)也可以類比研究函數(shù)的模式和方法來研究三角函數(shù);啟后是指定義了三角函數(shù)之后,就可以進(jìn)一步研究三角函數(shù)的性質(zhì)及圖象特征,并體會(huì)三角函數(shù)在解決具有周期性變化規(guī)律問題中的作用,從而更深入地領(lǐng)會(huì)數(shù)學(xué)在其它領(lǐng)域中的重要應(yīng)用、
2、設(shè)計(jì)理念
本堂課采用“問題解決”教學(xué)模式,在課堂上既充分發(fā)揮學(xué)生的主體作用,又體現(xiàn)了教師的引導(dǎo)作用。整堂課先通過問題引導(dǎo)學(xué)生梳理已有的知識(shí)結(jié)構(gòu),展開合理的聯(lián)想,提出整堂課要解決的中心問題:圓周運(yùn)動(dòng)等具周期性規(guī)律運(yùn)動(dòng)可以建立函數(shù)模型來刻畫嗎?從而引導(dǎo)學(xué)生帶著問題閱讀和鉆研教材,引發(fā)認(rèn)知沖突,再通過問題引導(dǎo)學(xué)生改造或重構(gòu)已有的認(rèn)知結(jié)構(gòu),并運(yùn)用類比方法,形成“任意角三角函數(shù)的定義”這一新的概念,最后通過例題與練習(xí),將任意角三角函數(shù)的定義,內(nèi)化為學(xué)生新的認(rèn)識(shí)結(jié)構(gòu),從而達(dá)成教學(xué)目標(biāo)、
3、教學(xué)目標(biāo)
知識(shí)與技能目標(biāo):形成并掌握任意角三角函數(shù)的定義,并學(xué)會(huì)運(yùn)用這一定義,解決相關(guān)問題、
過程與方法目標(biāo):體會(huì)數(shù)學(xué)建模思想、類比思想和化歸思想在數(shù)學(xué)新概念形成中的重要作用、
情感態(tài)度與價(jià)值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會(huì)閱讀數(shù)學(xué)教材,學(xué)會(huì)發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、
4、重點(diǎn)難點(diǎn)
重點(diǎn):任意角三角函數(shù)的定義、
難點(diǎn):任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、
5、學(xué)情分析
學(xué)生已有的認(rèn)知結(jié)構(gòu):函數(shù)的概念、平面直角坐標(biāo)系的概念、任意角和弧度制的相關(guān)概念、以直角三角形為載體的銳角三角函數(shù)的概念、在教學(xué)過程中,需要先將學(xué)生的以直角三角形為載體的銳角三角函數(shù)的概念改造為以象限角為載體的銳角三角函數(shù),并形成以角的終邊與單位園的交點(diǎn)的坐標(biāo)來表示的銳角三角函數(shù)的概念,再拓展到任意角的三角函數(shù)的定義,從而使學(xué)生形成新的認(rèn)知結(jié)構(gòu)、
6、教法分析
“問題解決”教學(xué)法,是以問題為主線,引導(dǎo)和驅(qū)動(dòng)學(xué)生的思維和學(xué)習(xí)活動(dòng),并通過問題,引導(dǎo)學(xué)生的質(zhì)疑和討論,充分展示學(xué)生的思維過程,最后在解決問題的過程中形成新的認(rèn)知結(jié)構(gòu)、這種教學(xué)模式能較好地體現(xiàn)課堂上老師的主導(dǎo)作用,也能充分發(fā)揮課堂上學(xué)生的主體作用、
7、學(xué)法分析
本課時(shí)先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運(yùn)用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號(hào)問題,從而使學(xué)生形成新的認(rèn)識(shí)結(jié)構(gòu),達(dá)成教學(xué)目標(biāo)。
高一數(shù)學(xué)必修二教案5
一、說課內(nèi)容:
蘇教版九年級(jí)數(shù)學(xué)下冊(cè)第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題
二、教材分析:
1、教材的地位和作用
這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。
2、教學(xué)目標(biāo)和要求:
(1)知識(shí)與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問題確定自變量的取值范圍。
(2)過程與方法:復(fù)習(xí)舊知,通過實(shí)際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.
(3)情感、態(tài)度與價(jià)值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對(duì)二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心.
3、教學(xué)重點(diǎn):對(duì)二次函數(shù)概念的理解。
4、教學(xué)難點(diǎn):由實(shí)際問題確定函數(shù)解析式和確定自變量的取值范圍。
三、教法學(xué)法設(shè)計(jì):
1、從創(chuàng)設(shè)情境入手,通過知識(shí)再現(xiàn),孕伏教學(xué)過程
2、從學(xué)生活動(dòng)出發(fā),通過以舊引新,順勢教學(xué)過程
3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程
四、教學(xué)過程:
(一)復(fù)習(xí)提問
1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))
2.它們的形式是怎樣的?
(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)
3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件? k值對(duì)函數(shù)性質(zhì)有什么影響?
【設(shè)計(jì)意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對(duì)函數(shù)定義的理解.強(qiáng)調(diào)k≠0的條件,以備與二次函數(shù)中的a進(jìn)行比較.
(二)引入新課
函數(shù)是研究兩個(gè)變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)?聪旅嫒齻(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系。(電腦演示)
例1、(1)圓的半徑是r(cm)時(shí),面積s (cm)與半徑之間的關(guān)系是什么?
解:s=πr(r>0)
例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m)與矩形一邊長x(m)之間的關(guān)系是什么?
解: y=x(20/2-x)=x(10-x)=-x+10x (0
例3、設(shè)人民幣一年定期儲(chǔ)蓄的年利率是x,一年到期后,銀行將本金和利息自動(dòng)按一年定期儲(chǔ)蓄轉(zhuǎn)存。如果存款額是100元,那么請(qǐng)問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?
解: y=100(1+x)
=100(x+2x+1)
= 100x+200x+100(0
教師提問:以上三個(gè)例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?
【設(shè)計(jì)意圖】通過具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系: (1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。
(三)講解新課
以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c (a≠0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。
鞏固對(duì)二次函數(shù)概念的理解:
1、強(qiáng)調(diào)“形如”,即由形來定義函數(shù)名稱。二次函數(shù)即y 是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。
2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問題中,自變量的取值范圍是使實(shí)際問題有意義的值。(如例1中要求r>0)
3、為什么二次函數(shù)定義中要求a≠0 ?
(若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)
4、在例3中,二次函數(shù)y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;
若c=0,則y=ax2+bx;
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
【設(shè)計(jì)意圖】這里強(qiáng)調(diào)對(duì)二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
(1)y=3(x-1)+1 (2)
(3)s=3-2t (4)y=(x+3)- x
(5) s=10πr (6) y=2+2x
(8)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))
【設(shè)計(jì)意圖】理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實(shí)踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識(shí)應(yīng)用到實(shí)踐操作中。
(四)鞏固練習(xí)
1.已知一個(gè)直角三角形的兩條直角邊長的和是10cm。
(1)當(dāng)它的一條直角邊的.長為4.5cm時(shí),求這個(gè)直角三角形的面積;
(2)設(shè)這個(gè)直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)
于x的函數(shù)關(guān)系式。
【設(shè)計(jì)意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。
2.已知正方體的棱長為xcm,它的表面積為Scm2,體積為Vcm3。
(1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子;
(2)這兩個(gè)函數(shù)中,那個(gè)是x的二次函數(shù)?
【設(shè)計(jì)意圖】簡單的實(shí)際問題,學(xué)生會(huì)很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個(gè)是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗(yàn)到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
3.設(shè)圓柱的高為h(cm)是常量,底面半徑為rcm,底面周長為Ccm,圓柱的體積為Vcm3
(1)分別寫出C關(guān)于r;V關(guān)于r的函數(shù)關(guān)系式;
(2)兩個(gè)函數(shù)中,都是二次函數(shù)嗎?
【設(shè)計(jì)意圖】此題要求學(xué)生熟記圓柱體積和底面周長公式,在這兒相當(dāng)于做了一次復(fù)習(xí),并與今天所學(xué)知識(shí)聯(lián)系起來。
4. 籬笆墻長30m,靠墻圍成一個(gè)矩形花壇,寫出花壇面積y(m2)與長x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.
【設(shè)計(jì)意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學(xué)生能夠開動(dòng)腦筋,積極思考,讓學(xué)生能夠“跳一跳,夠得到”。
(五)拓展延伸
1. 已知二次函數(shù)y=ax2+bx+c,當(dāng) x=0時(shí),y=0;x=1時(shí),y=2;x= -1時(shí),y=1.求a、b、c,并寫出函數(shù)解析式.
【設(shè)計(jì)意圖】在此稍微滲透簡單的用待定系數(shù)法求二次函數(shù)解析式的問題,為下節(jié)課的教學(xué)做個(gè)鋪墊。
2.確定下列函數(shù)中k的值
(1)如果函數(shù)y= xk^2-3k+2 +kx+1是二次函數(shù),則k的值一定是______
(2)如果函數(shù)y=(k-3)xk^2-3k+2+kx+1是二次函數(shù),則k的值一定是______
【設(shè)計(jì)意圖】此題著重復(fù)習(xí)二次函數(shù)的特征:自變量的最高次數(shù)為2次,且二次項(xiàng)系數(shù)不為0.
(六) 小結(jié)思考:
本節(jié)課你有哪些收獲?還有什么不清楚的地方?
【設(shè)計(jì)意圖】讓學(xué)生來談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識(shí)進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。
(七) 作業(yè)布置:
必做題:
1. 正方形的邊長為4,如果邊長增加x,則面積增加y,求y關(guān)于x 的函數(shù)關(guān)系式。這個(gè)函數(shù)是二次函數(shù)嗎?
2. 在長20cm,寬15cm的矩形木板的四角上各鋸掉一個(gè)邊長為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。
選做題:
1.已知函數(shù) 是二次函數(shù),求m的值。
2.試在平面直角坐標(biāo)系畫出二次函數(shù)y=x2和y=-x2圖象
【設(shè)計(jì)意圖】作業(yè)中分為必做題與選做題,實(shí)施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價(jià)值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。
五、教學(xué)設(shè)計(jì)思考
以實(shí)現(xiàn)教學(xué)目標(biāo)為前提
以現(xiàn)代教育理論為依據(jù)
以現(xiàn)代信息技術(shù)為手段
貫穿一個(gè)原則——以學(xué)生為主體的原則
突出一個(gè)特色——充分鼓勵(lì)表揚(yáng)的特色
滲透一個(gè)意識(shí)——應(yīng)用數(shù)學(xué)的意識(shí)
高一數(shù)學(xué)必修二教案6
【教學(xué)目標(biāo)與解析】
1、教學(xué)目標(biāo)
(1)理解函數(shù)的概念;
(2)了解區(qū)間的概念;
2、目標(biāo)解析
(1)理解函數(shù)的概念就是指能用集合與對(duì)應(yīng)的語言刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;
(2)了解區(qū)間的概念就是指能夠體會(huì)用區(qū)間表示數(shù)集的意義和作用;
【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號(hào)的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對(duì)學(xué)生來說一個(gè)難點(diǎn)。要解決這一問題,就要在通過從實(shí)際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。
【教學(xué)過程】
問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時(shí)間變量t之間的對(duì)應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計(jì)意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會(huì)用解析式或圖象刻畫兩個(gè)變量之間的依賴關(guān)系,從問題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的`對(duì)應(yīng)關(guān)系,都有的一個(gè)高度h與之對(duì)應(yīng)。
問題2:分析教科書中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個(gè)臭氧層空洞面積S與之相對(duì)應(yīng)。
問題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的關(guān)系。
設(shè)計(jì)意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
問題4:上述三個(gè)實(shí)例中變量之間的關(guān)系都是函數(shù),那么從集合與對(duì)應(yīng)的觀點(diǎn)分析,函數(shù)還可以怎樣定義?
4.1在一個(gè)函數(shù)中,自變量x和函數(shù)值y的變化范圍都是集合,這兩個(gè)集合分別叫什么名稱?
4.2在從集合A到集合B的一個(gè)函數(shù)f:A→B中,集合A是函數(shù)的定義域,集合B是函數(shù)的值域嗎?怎樣理解f(x)=1,x∈R?
4.3一個(gè)函數(shù)由哪幾個(gè)部分組成?如果給定函數(shù)的定義域和對(duì)應(yīng)關(guān)系,那么函數(shù)的值域確定嗎?兩個(gè)函數(shù)相等的條件是什么?
【高一數(shù)學(xué)必修二教案】相關(guān)文章:
高一數(shù)學(xué)必修一教案02-06
高一地理必修二教案08-28
高二化學(xué)必修二教案02-01
高一語文必修一教案01-31
高一語文必修1教案03-09
高中數(shù)學(xué)必修教案03-01
高一歷史必修二知識(shí)點(diǎn)總結(jié)01-17
高中數(shù)學(xué)必修五教案02-10
高中必修二《荷塘月色》教案12-02