亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

范文資料網(wǎng)>反思報(bào)告>教案大全>《初中數(shù)學(xué)因式分解教案

初中數(shù)學(xué)因式分解教案

時(shí)間:2023-03-19 16:09:27 教案大全 我要投稿
  • 相關(guān)推薦

初中數(shù)學(xué)因式分解教案

  作為一名教職工,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。來(lái)參考自己需要的教案吧!以下是小編為大家整理的初中數(shù)學(xué)因式分解教案,希望能夠幫助到大家。

初中數(shù)學(xué)因式分解教案

初中數(shù)學(xué)因式分解教案1

  知識(shí)點(diǎn):

  因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。

  教學(xué)目標(biāo):

  理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡(jiǎn)單多項(xiàng)式分解因式。

  考查重難點(diǎn)與常見題型:

  考查因式分解能力,在中考試題中,因式分解出現(xiàn)的.頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。

  教學(xué)過(guò)程:

  因式分解知識(shí)點(diǎn)

  多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的常用方法有:

 。1)提公因式法

  如多項(xiàng)式

  其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式, m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。

 。2)運(yùn)用公式法,即用

  寫出結(jié)果。

 。3)十字相乘法

  對(duì)于二次項(xiàng)系數(shù)為l的二次三項(xiàng)式 尋找滿足ab=q,a+b=p的a,b,如有,則對(duì)于一般的二次三項(xiàng)式尋找滿足

  a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則

 。4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。

  分組時(shí)要用到添括號(hào):括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)。

  (5)求根公式法:如果有兩個(gè)根X1,X2,那么

  2、教學(xué)實(shí)例:學(xué)案示例

  3、課堂練習(xí):學(xué)案作業(yè)

  4、課堂:

  5、板書:

  6、課堂作業(yè):學(xué)案作業(yè)

  7、教學(xué)反思:

初中數(shù)學(xué)因式分解教案2

  學(xué)習(xí)目標(biāo)

  1、了解因式分解的意義以及它與正式乘法的關(guān)系。

  2、能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法分解因式。

  學(xué)習(xí)重點(diǎn):

  能用提公因式法分解因式。

  學(xué)習(xí)難點(diǎn):

  確定因式的公因式。

  學(xué)習(xí)關(guān)鍵:

  在確定多項(xiàng)式各項(xiàng)公因式時(shí),應(yīng)抓住各項(xiàng)的公因式來(lái)提公因式。

  學(xué)習(xí)過(guò)程

  一.知識(shí)回顧

  1、計(jì)算

  (1)、n(n+1)(n-1)(2)、(a+1)(a-2)

  (3)、m(a+b)(4)、2ab(x-2y+1)

  二、自主學(xué)習(xí)

  1、閱讀課文P72-73的內(nèi)容,并回答問(wèn)題:

  (1)知識(shí)點(diǎn)一:把一個(gè)多項(xiàng)式化為幾個(gè)整式的xxxxxxxxxx的形式叫做xxxxxxxxxxxx,也叫做把這個(gè)多項(xiàng)式xxxxxxxxxx。

  (2)、知識(shí)點(diǎn)二:由m(a+b+c)=ma+mb+mc可得

  ma+mb+mc=m(a+b+c)

  我們來(lái)分析一下多項(xiàng)式ma+mb+mc的特點(diǎn);它的每一項(xiàng)都含有一個(gè)相同的因式m,m叫做各項(xiàng)的.xxxxxxxxx。如果把這個(gè)xxxxxxxxx提到括號(hào)外面,這樣

  ma+mb+mc就分解成兩個(gè)因式的積m(a+b+c),即ma+mb+mc=m(a+b+c)。這種xxxxxxxx的方法叫做xxxxxxxx。

  2、練一練。P73練習(xí)第1題。

  三、合作探究

  1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一種變形,左邊是幾個(gè)整式乘積形式,右邊是一個(gè)多項(xiàng)式。、

  2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一種變形,左邊是xxxxxxxxxxxxx,右邊是xxxxxxxxxxxxx。

  3、下列是由左到右的變形,哪些屬于整式乘法,哪些屬于因式分解?

  (1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)

  (3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1

  4、準(zhǔn)確地確定公因式時(shí)提公因式法分解因式的關(guān)鍵,確定公因式可分兩步進(jìn)行:

  (1)確定公因式的數(shù)字因數(shù),當(dāng)各項(xiàng)系數(shù)都是整數(shù)時(shí),他們的最大公約數(shù)就是公因式的數(shù)字因數(shù)。

  例如:8a2b-72abc公因式的數(shù)字因數(shù)為8。

  (2)確定公因式的字母及其指數(shù),公因式的字母應(yīng)是多項(xiàng)式各項(xiàng)都含有的字母,其指數(shù)取最低的。故8a2b-72abc的公因式是8ab

  四、展示提升

  1、填空(1)a2b-ab2=ab(xxxxxxxx)

  (2)-4a2b+8ab-4b分解因式為xxxxxxxxxxxxxxxxxx

  (3)分解因式4x2+12x3+4x=xxxxxxxxxxxxxxxxxx

  (4)xxxxxxxxxxxxxxxxxx=-2a(a-2b+3c)

  2、P73練習(xí)第2題和第3題

  五、達(dá)標(biāo)測(cè)試。

  1、下列各式從左到右的變形中,哪些是整式乘法?哪些是因式分解?哪些兩者都不是?

  (1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)

  (3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)

  (5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4

  2.課本P77習(xí)題8.5第1題

  學(xué)習(xí)反思

  一、知識(shí)點(diǎn)

  二、易錯(cuò)題

  三、你的困惑

初中數(shù)學(xué)因式分解教案3

  教學(xué)目標(biāo)

  1、知識(shí)與技能

  了解因式分解的意義,以及它與整式乘法的關(guān)系、

  2、過(guò)程與方法

  經(jīng)歷從分解因數(shù)到分解因式的類比過(guò)程,掌握因式分解的概念,感受因式分解在解決問(wèn)題中的作用、

  3、情感、態(tài)度與價(jià)值觀

  在探索因式分解的方法的活動(dòng)中,培養(yǎng)學(xué)生有條理的思考、表達(dá)與交流的能力,培養(yǎng)積極的'進(jìn)取意識(shí),體會(huì)數(shù)學(xué)知識(shí)的內(nèi)在含義與價(jià)值、

  重、難點(diǎn)與關(guān)鍵

  1、重點(diǎn):了解因式分解的意義,感受其作用、

  2、難點(diǎn):整式乘法與因式分解之間的關(guān)系、

  3、關(guān)鍵:通過(guò)分解因數(shù)引入到分解因式,并進(jìn)行類比,加深理解、

  教學(xué)方法

  采用“激趣導(dǎo)學(xué)”的教學(xué)方法、

  教學(xué)過(guò)程

  一、創(chuàng)設(shè)情境,激趣導(dǎo)入

  【問(wèn)題牽引】

  請(qǐng)同學(xué)們探究下面的2個(gè)問(wèn)題:

  問(wèn)題1:720能被哪些數(shù)整除?談?wù)勀愕南敕ā?/p>

  問(wèn)題2:當(dāng)a=102,b=98時(shí),求a2—b2的值、

  二、豐富聯(lián)想,展示思維

  探索:你會(huì)做下面的填空嗎?

  1、ma mb mc=()();

  2、x2—4=()();

  3、x2—2xy y2=()2、

  【師生共識(shí)】把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解,也叫做分解因式、

  三、小組活動(dòng),共同探究

  【問(wèn)題牽引】

 。1)下列各式從左到右的變形是否為因式分解:

 、伲▁ 1)(x—1)=x2—1;

 、赼2—1 b2=(a 1)(a—1)b2;

 、7x—7=7(x—1)、

 。2)在下列括號(hào)里,填上適當(dāng)?shù)捻?xiàng),使等式成立、

 、9x2(______)y2=(3x y)(_______);

  ②x2—4xy(_______)=(x—_______)2、

  四、隨堂練習(xí),鞏固深化

  課本練習(xí)、

  【探研時(shí)空】計(jì)算:993—99能被100整除嗎?

  五、課堂總結(jié),發(fā)展?jié)撃?/p>

  由學(xué)生自己進(jìn)行小結(jié),教師提出如下綱目:

  1、什么叫因式分解?

  2、因式分解與整式運(yùn)算有何區(qū)別?

  六、布置作業(yè),專題突破

  選用補(bǔ)充作業(yè)、

  板書設(shè)計(jì)

初中數(shù)學(xué)因式分解教案4

  教學(xué)目標(biāo)

  1、知識(shí)與技能

  會(huì)應(yīng)用平方差公式進(jìn)行因式分解,發(fā)展學(xué)生推理能力、

  2、過(guò)程與方法

  經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過(guò)程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識(shí)的完整性、

  3、情感、態(tài)度與價(jià)值觀

  培養(yǎng)學(xué)生良好的互動(dòng)交流的習(xí)慣,體會(huì)數(shù)學(xué)在實(shí)際問(wèn)題中的應(yīng)用價(jià)值、

  重、難點(diǎn)與關(guān)鍵

  1、重點(diǎn):利用平方差公式分解因式、

  2、難點(diǎn):領(lǐng)會(huì)因式分解的解題步驟和分解因式的徹底性、

  3、關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對(duì)公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問(wèn)題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來(lái)、

  教學(xué)方法

  采用“問(wèn)題解決”的教學(xué)方法,讓學(xué)生在問(wèn)題的牽引下,推進(jìn)自己的思維、

  教學(xué)過(guò)程

  一、觀察探討,體驗(yàn)新知

  【問(wèn)題牽引】

  請(qǐng)同學(xué)們計(jì)算下列各式、

  (1)(a 5)(a—5);(2)(4m 3n)(4m—3n)、

  【學(xué)生活動(dòng)】動(dòng)筆計(jì)算出上面的`兩道題,并踴躍上臺(tái)板演、

 。1)(a 5)(a—5)=a2—52=a2—25;

 。2)(4m 3n)(4m—3n)=(4m)2—(3n)2=16m2—9n2、

  【教師活動(dòng)】引導(dǎo)學(xué)生完成下面的兩道題目,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律、

  1、分解因式:a2—25;2、分解因式16m2—9n、

  【學(xué)生活動(dòng)】從逆向思維入手,很快得到下面答案:

  (1)a2—25=a2—52=(a 5)(a—5)、

  (2)16m2—9n2=(4m)2—(3n)2=(4m 3n)(4m—3n)、

  【教師活動(dòng)】引導(dǎo)學(xué)生完成a2—b2=(a b)(a—b)的同時(shí),導(dǎo)出課題:用平方差公式因式分解、

  平方差公式:a2—b2=(a b)(a—b)、

  評(píng)析:平方差公式中的字母a、b,教學(xué)中還要強(qiáng)調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項(xiàng)式、多項(xiàng)式)、

  二、范例學(xué)習(xí),應(yīng)用所學(xué)

  【例1】把下列各式分解因式:(投影顯示或板書)

 。1)x2—9y2;(2)16x4—y4;

 。3)12a2x2—27b2y2;(4)(x 2y)2—(x—3y)2;

  (5)m2(16x—y)n2(y—16x)、

  【思路點(diǎn)撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解、

  【教師活動(dòng)】啟發(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請(qǐng)5位學(xué)生上講臺(tái)板演、

  【學(xué)生活動(dòng)】分四人小組,合作探究、

  解:(1)x2—9y2=(x 3y)(x—3y);

 。2)16x4—y4=(4x2 y2)(4x2—y2)=(4x2 y2)(2x y)(2x—y);

 。3)12a2x2—27b2y2=3(4a2x2—9b2y2)=3(2ax 3by)(2ax—3by);

 。4)(x 2y)2—(x—3y)2=[(x 2y)(x—3y)][(x 2y)—(x—3y)]=5y(2x—y);

  (5)m2(16x—y)n2(y—16x)

  =(16x—y)(m2—n2)=(16x—y)(m n)(m—n)、

初中數(shù)學(xué)因式分解教案5

  整式乘除與因式分解

  一.回顧知識(shí)點(diǎn)

  1、主要知識(shí)回顧:

  冪的運(yùn)算性質(zhì):

  aman=am+n(m、n為正整數(shù))

  同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.

  =amn(m、n為正整數(shù))

  冪的乘方,底數(shù)不變,指數(shù)相乘.

  (n為正整數(shù))

  積的乘方等于各因式乘方的積.

  =am-n(a≠0,m、n都是正整數(shù),且m>n)

  同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.

  零指數(shù)冪的概念:

  a0=1(a≠0)

  任何一個(gè)不等于零的數(shù)的零指數(shù)冪都等于l.

  負(fù)指數(shù)冪的概念:

  a-p=(a≠0,p是正整數(shù))

  任何一個(gè)不等于零的數(shù)的-p(p是正整數(shù))指數(shù)冪,等于這個(gè)數(shù)的p指數(shù)冪的倒數(shù).

  也可表示為:(m≠0,n≠0,p為正整數(shù))

  單項(xiàng)式的乘法法則:

  單項(xiàng)式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個(gè)因式.

  單項(xiàng)式與多項(xiàng)式的乘法法則:

  單項(xiàng)式與多項(xiàng)式相乘,用單項(xiàng)式和多項(xiàng)式的每一項(xiàng)分別相乘,再把所得的積相加.

  多項(xiàng)式與多項(xiàng)式的乘法法則:

  多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)與另一個(gè)多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加.

  單項(xiàng)式的除法法則:

  單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式:對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式.

  多項(xiàng)式除以單項(xiàng)式的法則:

  多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng)式,再把所得的商相加.

  2、乘法公式:

  ①平方差公式:(a+b)(a-b)=a2-b2

  文字語(yǔ)言敘述:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差相乘,等于這兩個(gè)數(shù)的平方差.

 、谕耆椒焦剑(a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  文字語(yǔ)言敘述:兩個(gè)數(shù)的和(或差)的平方等于這兩個(gè)數(shù)的平方和加上(或減去)這兩個(gè)數(shù)的積的2倍.

  3、因式分解:

  因式分解的定義.

  把一個(gè)多項(xiàng)式化成幾個(gè)整式的乘積的形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解.

  掌握其定義應(yīng)注意以下幾點(diǎn):

  (1)分解對(duì)象是多項(xiàng)式,分解結(jié)果必須是積的形式,且積的因式必須是整式,這三個(gè)要素缺一不可;

  (2)因式分解必須是恒等變形;

  (3)因式分解必須分解到每個(gè)因式都不能分解為止.

  弄清因式分解與整式乘法的內(nèi)在的關(guān)系.

  因式分解與整式乘法是互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差的形式.

  二、熟練掌握因式分解的常用方法.

  1、提公因式法

  (1)掌握提公因式法的概念;

  (2)提公因式法的關(guān)鍵是找出公因式,公因式的構(gòu)成一般情況下有三部分:①系數(shù)一各項(xiàng)系數(shù)的'最大公約數(shù);②字母——各項(xiàng)含有的相同字母;③指數(shù)——相同字母的最低次數(shù);

  (3)提公因式法的步驟:第一步是找出公因式;第二步是提取公因式并確定另一因式.需注意的是,提取完公因式后,另一個(gè)因式的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)一致,這一點(diǎn)可用來(lái)檢驗(yàn)是否漏項(xiàng).

  (4)注意點(diǎn):①提取公因式后各因式應(yīng)該是最簡(jiǎn)形式,即分解到“底”;②如果多項(xiàng)式的第一項(xiàng)的系數(shù)是負(fù)的,一般要提出“-”號(hào),使括號(hào)內(nèi)的第一項(xiàng)的系數(shù)是正的.

  2、公式法

  運(yùn)用公式法分解因式的實(shí)質(zhì)是把整式中的乘法公式反過(guò)來(lái)使用;

  常用的公式:

  ①平方差公式:a2-b2=(a+b)(a-b)

 、谕耆椒焦剑篴2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

初中數(shù)學(xué)因式分解教案6

  一、教學(xué)目標(biāo)

  【知識(shí)與技能】

  了解運(yùn)用公式法分解因式的意義,會(huì)用平方差分解因式;知道提公因式法分解因式是首先考慮的方法,再考慮用平方差分解因式。

  【過(guò)程與方法】

  通過(guò)對(duì)平方差特點(diǎn)的辨析,培養(yǎng)觀察、分析能力,訓(xùn)練對(duì)平方差公式的應(yīng)用能力。

  【情感態(tài)度價(jià)值觀】

  在逆用乘法公式的過(guò)程中,培養(yǎng)逆向思維能力,在分解因式時(shí)了解換元的思想方法。

  二、教學(xué)重難點(diǎn)

  【教學(xué)重點(diǎn)】

  運(yùn)用平方差公式分解因式。

  【教學(xué)難點(diǎn)】

  靈活運(yùn)用公式法或已經(jīng)學(xué)過(guò)的提公因式法分解因式;正確判斷因式分解的徹底性。

  三、教學(xué)過(guò)程

  (一)引入新課

  我們學(xué)習(xí)了因式分解的定義,還學(xué)習(xí)了提公因式法分解因式。如果一個(gè)多項(xiàng)式的各項(xiàng),不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,大家知道因式分解與多項(xiàng)式乘法是互逆關(guān)系,能否利用這種關(guān)系找到新的因式分解的`方法呢?

  大家先觀察下列式子:

  (1)(x 5)(x—5)=,(2)(3x y)(3x—y)=,(3)(1 3a)(1—13a)=

  他們有什么共同的特點(diǎn)?你可以得出什么結(jié)論?

 。ǘ┨剿餍轮

  學(xué)生獨(dú)立思考或者與同桌討論。

  引導(dǎo)學(xué)生得出:

  ①有兩項(xiàng)組成

 、趦身(xiàng)的符號(hào)相反

 、蹆身(xiàng)都可以寫成數(shù)或式的平方的形式。

  提問(wèn)1:能否用語(yǔ)言以及數(shù)學(xué)公式將其特征表述出來(lái)?