- 相關(guān)推薦
高一數(shù)學(xué)教案 15篇
作為一位不辭辛勞的人民教師,通常需要準(zhǔn)備好一份教案,通過教案準(zhǔn)備可以更好地根據(jù)具體情況對(duì)教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。那么優(yōu)秀的教案是什么樣的呢?下面是小編收集整理的高一數(shù)學(xué)教案 ,歡迎閱讀與收藏。
高一數(shù)學(xué)教案 1
教學(xué)目的:要求學(xué)生初步理解集合的概念,理解元素與集合間的關(guān)系,掌握集合的表示法,知道常用數(shù)集及其記法.
教學(xué)重難點(diǎn):
1、元素與集合間的關(guān)系
2、集合的表示法
教學(xué)過程:
一、集合的概念
實(shí)例引入:
、 1~20以內(nèi)的所有質(zhì)數(shù);
、莆覈鴱1991~20xx的13年內(nèi)所發(fā)射的所有人造衛(wèi)星;
、墙鹦瞧噺S20xx年生產(chǎn)的所有汽車;
、 20xx年1月1日之前與我國建立外交關(guān)系的所有國家;
、伤械恼叫;
⑹黃圖盛中學(xué)20xx年9月入學(xué)的高一學(xué)生全體.
結(jié)論:一般地,我們把研究對(duì)象統(tǒng)稱為元素;把一些元素組成的總體叫做集合,也簡稱集.
二、集合元素的特征
。1)確定性:設(shè)A是一個(gè)給定的集合,x是某一個(gè)具體對(duì)象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立.
。2)互異性:一個(gè)給定集合中的元素,指屬于這個(gè)集合的`互不相同的個(gè)體(對(duì)象),因此,同一集合中不應(yīng)重復(fù)出現(xiàn)同一元素.
。3)無序性:一般不考慮元素之間的順序,但在表示數(shù)列之類的特殊集合時(shí),通常按照習(xí)慣的由小到大的數(shù)軸順序書寫
練習(xí):判斷下列各組對(duì)象能否構(gòu)成一個(gè)集合
、 2,3,4 ⑵(2,3),(3,4)⑶三角形
、 2,4,6,8,… ⑸ 1,2,(1,2),{1,2}
⑹我國的小河流⑺方程x2+4=0的所有實(shí)數(shù)解
⑻好心的人⑼著名的數(shù)學(xué)家⑽方程x2+2x+1=0的解
三、集合相等
構(gòu)成兩個(gè)集合的元素一樣,就稱這兩個(gè)集合相等
四、集合元素與集合的關(guān)系
集合元素與集合的關(guān)系用“屬于”和“不屬于”表示:
。1)如果a是集合A的元素,就說a屬于A,記作a∈A
。2)如果a不是集合A的元素,就說a不屬于A,記作a∈A
五、常用數(shù)集及其記法
非負(fù)整數(shù)集(或自然數(shù)集),記作N;
除0的非負(fù)整數(shù)集,也稱正整數(shù)集,記作N*或N+;
整數(shù)集,記作Z;
有理數(shù)集,記作Q;
實(shí)數(shù)集,記作R.
練習(xí):(1)已知集合M={a,b,c}中的三個(gè)元素可構(gòu)成某一三角形的三條邊,那么此三角形一定不是()
A直角三角形B銳角三角形C鈍角三角形D等腰三角形
(2)說出集合{1,2}與集合{x=1,y=2}的異同點(diǎn)?
六、集合的表示方式
。1)列舉法:把集合中的元素一一列舉出來,寫在大括號(hào)內(nèi);
。2)描述法:用集合所含元素的共同特征表示的方法.(具體方法)
例1、用列舉法表示下列集合:
。1)小于10的所有自然數(shù)組成的集合;
。2)方程x2=x的所有實(shí)數(shù)根組成的集合;
。3)由1~20以內(nèi)的所有質(zhì)數(shù)組成。
例2、試分別用列舉法和描述法表示下列集合:
(1)由大于10小于20的的所有整數(shù)組成的集合;
。2)方程x2-2=2的所有實(shí)數(shù)根組成的集合.
注意:(1)描述法表示集合應(yīng)注意集合的代表元素
(2)只要不引起誤解集合的代表元素也可省略
七、小結(jié)
集合的概念、表示;集合元素與集合間的關(guān)系;常用數(shù)集的記法.
高一數(shù)學(xué)教案 2
教材:邏輯聯(lián)結(jié)詞
目的:要求學(xué)生了解復(fù)合命題的意義,并能指出一個(gè)復(fù)合命題是有哪些簡單命題與邏輯聯(lián)結(jié)詞,并能由簡單命題構(gòu)成含有邏輯聯(lián)結(jié)詞的復(fù)合命題。
過程:
一、提出課題:簡單邏輯、邏輯聯(lián)結(jié)詞
二、命題的概念:
例:125 ① 3是12的約數(shù) ② 0.5是整數(shù) ③
定義:可以判斷真假的語句叫命題。正確的叫真命題,錯(cuò)誤的叫假命題。
如:①②是真命題,③是假命題
反例:3是12的'約數(shù)嗎? x5 都不是命題
不涉及真假(問題) 無法判斷真假
上述①②③是簡單命題。 這種含有變量的語句叫開語句(條件命題)。
三、復(fù)合命題:
1.定義:由簡單命題再加上一些邏輯聯(lián)結(jié)詞構(gòu)成的命題叫復(fù)合命題。
2.例:
(1)10可以被2或5整除④ 10可以被2整除或10可以被5整除
(2)菱形的對(duì)角線互相 菱形的對(duì)角線互相垂直且菱形的
垂直且平分⑤ 對(duì)角線互相平分
(3)0.5非整數(shù)⑥ 非0.5是整數(shù)
觀察:形成概念:簡單命題在加上或且非這些邏輯聯(lián)結(jié)詞成復(fù)合命題。
3.其實(shí),有些概念前面已遇到過
如:或:不等式 x2x60的解集 { x | x2或x3 }
且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }
四、復(fù)合命題的構(gòu)成形式
如果用 p, q, r, s表示命題,則復(fù)合命題的形式接觸過的有以下三種:
即: p或q (如 ④) 記作 pq
p且q (如 ⑤) 記作 pq
非p (命題的否定) (如 ⑥) 記作 p
小結(jié):1.命題 2.復(fù)合命題 3.復(fù)合命題的構(gòu)成形式
高一數(shù)學(xué)教案 3
數(shù)學(xué)課堂教學(xué)
三維目標(biāo)的具體內(nèi)容和層次劃分
請(qǐng)闡述數(shù)學(xué)課堂教學(xué)三維目標(biāo)的具體內(nèi)容和層次劃分
知識(shí)與技能掌握應(yīng)用,既是課堂教學(xué)的出發(fā)點(diǎn),又是課堂教學(xué)的歸宿。教與學(xué),都要通過知識(shí)與技能來體現(xiàn)的。那么,什么是三維目標(biāo)內(nèi)容呢?
所謂三維目標(biāo)是是指:“知識(shí)與技能”,“過程和方法”、“情感、態(tài)度、價(jià)值觀”。
知識(shí)與技能:既是課堂教學(xué)的出發(fā)點(diǎn),又是課堂教學(xué)的歸宿。我們?cè)诮虒W(xué)過程中,需要學(xué)生掌握什么,哪些些問題需要重點(diǎn)掌握,哪些只需簡單理解;技能是會(huì)與不會(huì)的問題。屬顯性范疇,具有可測性,大都采用定量分析與評(píng)價(jià)、知識(shí)與技能是傳統(tǒng)教學(xué)合理的內(nèi)核,是我國傳統(tǒng)教育教學(xué)的優(yōu)勢,應(yīng)該從傳統(tǒng)教學(xué)中繼承與發(fā)揚(yáng)。新課改不是不要雙基,而是不要過度的`強(qiáng)調(diào)雙基,而舍棄弱化其它有價(jià)值的東西,導(dǎo)致非全面、不和藹的發(fā)展。
過程與方法:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的操作系統(tǒng)!斑^程和方法”維度的目標(biāo)立足于讓學(xué)生會(huì)學(xué),新課程倡導(dǎo)對(duì)學(xué)與教的過程的體驗(yàn)、方法的選擇,是在知識(shí)與能力目標(biāo)基礎(chǔ)上對(duì)教學(xué)目標(biāo)的進(jìn)一步開發(fā)。過程與方法是一個(gè)體驗(yàn)的過程、發(fā)現(xiàn)的過程,不但可以讓學(xué)生體驗(yàn)到科學(xué)發(fā)展的過程,我們更多地要讓學(xué)生掌握過程,不一定要統(tǒng)一的結(jié)果。
情感、態(tài)度與價(jià)值觀:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的動(dòng)力系統(tǒng)!扒楦、態(tài)度和價(jià)值觀”,目標(biāo)立足于讓學(xué)生樂學(xué),新課程倡導(dǎo)對(duì)學(xué)與教的情感體驗(yàn)、態(tài)度形成、價(jià)值觀的體現(xiàn),是在知識(shí)與能力、過程與方法目標(biāo)基礎(chǔ)上對(duì)教學(xué)目標(biāo)深層次的開拓,只有學(xué)生充分的認(rèn)識(shí)到他們肩負(fù)的責(zé)任,就能夠激發(fā)起他們的學(xué)習(xí)熱情,他們才會(huì)有濃厚的學(xué)習(xí)興趣,才能學(xué)有所成,將來回報(bào)社會(huì)。
三維目標(biāo)不是三個(gè)目標(biāo),也不是三種目標(biāo),是一個(gè)問題的三個(gè)方面。三維目標(biāo)是三位一體不可分割的,他們是相輔相成的,相互促進(jìn)的。
高一數(shù)學(xué)教案 4
學(xué)習(xí)目標(biāo)
1.能根據(jù)拋物線的定義建立拋物線的標(biāo)準(zhǔn)方程;
2.會(huì)根據(jù)拋物線的標(biāo)準(zhǔn)方程寫出其焦點(diǎn)坐標(biāo)與準(zhǔn)線方程;
3.會(huì)求拋物線的標(biāo)準(zhǔn)方程。
一、預(yù)習(xí)檢查
1.完成下表:
標(biāo)準(zhǔn)方程
圖形
焦點(diǎn)坐標(biāo)
準(zhǔn)線方程
開口方向
2.求拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程.
3.求經(jīng)過點(diǎn)的拋物線的標(biāo)準(zhǔn)方程.
二、問題探究
探究1:回顧拋物線的定義,依據(jù)定義,如何建立拋物線的標(biāo)準(zhǔn)方程?
探究2:方程是拋物線的標(biāo)準(zhǔn)方程嗎?試將其與拋物線的標(biāo)準(zhǔn)方程辨析比較.
例1.已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在直線上,求拋物線的方程.
例2.已知拋物線的焦點(diǎn)在軸上,點(diǎn)是拋物線上的一點(diǎn),到焦點(diǎn)的距離是5,求的值及拋物線的標(biāo)準(zhǔn)方程,準(zhǔn)線方程.
例3.拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為軸,它與圓相交,公共弦的長為.求該拋物線的方程,并寫出其焦點(diǎn)坐標(biāo)與準(zhǔn)線方程.
三、思維訓(xùn)練
1.在平面直角坐標(biāo)系中,若拋物線上的點(diǎn)到該拋物線的焦點(diǎn)的距離為6,則點(diǎn)的橫坐標(biāo)為.
2.拋物線的焦點(diǎn)到其準(zhǔn)線的距離是.
3.設(shè)為拋物線的焦點(diǎn),為該拋物線上三點(diǎn),若,則=.
4.若拋物線上兩點(diǎn)到焦點(diǎn)的距離和為5,則線段的中點(diǎn)到軸的距離是.
5.(理)已知拋物線,有一個(gè)內(nèi)接直角三角形,直角頂點(diǎn)在原點(diǎn),斜邊長為,一直角邊所在直線方程是,求此拋物線的'方程。
四、課后鞏固
1.拋物線的準(zhǔn)線方程是.
2.拋物線上一點(diǎn)到焦點(diǎn)的距離為,則點(diǎn)到軸的距離為.
3.已知拋物線,焦點(diǎn)到準(zhǔn)線的距離為,則.
4.經(jīng)過點(diǎn)的拋物線的標(biāo)準(zhǔn)方程為.
5.頂點(diǎn)在原點(diǎn),以雙曲線的焦點(diǎn)為焦點(diǎn)的拋物線方程是.
6.拋物線的頂點(diǎn)在原點(diǎn),以軸為對(duì)稱軸,過焦點(diǎn)且傾斜角為的直線被拋物線所截得的弦長為8,求拋物線的方程.
7.若拋物線上有一點(diǎn),其橫坐標(biāo)為,它到焦點(diǎn)的距離為10,求拋物線方程和點(diǎn)的坐標(biāo)。
高一數(shù)學(xué)教案 5
教學(xué)目標(biāo)
1、掌握平面向量的數(shù)量積及其幾何意義;
2、掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;
3、了解用平面向量的數(shù)量積可以處理垂直的問題;
4、掌握向量垂直的條件、
教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):平面向量的數(shù)量積定義
教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的`應(yīng)用
教學(xué)過程
1、平面向量數(shù)量積(內(nèi)積)的定義:已知兩個(gè)非零向量a與b,它們的夾角是θ,
則數(shù)量|a||b|cosq叫a與b的數(shù)量積,記作a×b,即有a×b=|a||b|cosq,(0≤θ≤π)、
并規(guī)定0向量與任何向量的數(shù)量積為0、
×探究:1、向量數(shù)量積是一個(gè)向量還是一個(gè)數(shù)量?它的符號(hào)什么時(shí)候?yàn)檎?什么時(shí)候?yàn)樨?fù)?
2、兩個(gè)向量的數(shù)量積與實(shí)數(shù)乘向量的積有什么區(qū)別?
(1)兩個(gè)向量的數(shù)量積是一個(gè)實(shí)數(shù),不是向量,符號(hào)由cosq的符號(hào)所決定、
(2)兩個(gè)向量的數(shù)量積稱為內(nèi)積,寫成a×b;今后要學(xué)到兩個(gè)向量的外積a×b,而a×b是兩個(gè)向量的數(shù)量的積,書寫時(shí)要嚴(yán)格區(qū)分、符號(hào)“·”在向量運(yùn)算中不是乘號(hào),既不能省略,也不能用“×”代替、
(3)在實(shí)數(shù)中,若a?0,且a×b=0,則b=0;但是在數(shù)量積中,若a?0,且a×b=0,不能推出b=0、因?yàn)槠渲衏osq有可能為0、
高一數(shù)學(xué)教案 6
【摘要】鑒于大家對(duì)數(shù)學(xué)網(wǎng)十分關(guān)注,小編在此為大家整理了此文空間幾何體的三視圖和直觀圖高一數(shù)學(xué)教案,供大家參考!
本文題目:空間幾何體的三視圖和直觀圖高一數(shù)學(xué)教案
第一課時(shí) 1.2.1中心投影與平行投影 1.2.2空間幾何體的三視圖
教學(xué)要求:能畫出簡單幾何體的三視圖;能識(shí)別三視圖所表示的空間幾何體.
教學(xué)重點(diǎn):畫出三視圖、識(shí)別三視圖.
教學(xué)難點(diǎn):識(shí)別三視圖所表示的空間幾何體.
教學(xué)過程:
一、新課導(dǎo)入:
1. 討論:能否熟練畫出上節(jié)所學(xué)習(xí)的幾何體?工程師如何制作工程設(shè)計(jì)圖紙?
2. 引入:從不同角度看廬山,有古詩:橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同。不識(shí)廬山真面目,只緣身在此山中。 對(duì)于我們所學(xué)幾何體,常用三視圖和直觀圖來畫在紙上.
三視圖:觀察者從不同位置觀察同一個(gè)幾何體,畫出的空間幾何體的圖形;
直觀圖:觀察者站在某一點(diǎn)觀察幾何體,畫出的空間幾何體的圖形.
用途:工程建設(shè)、機(jī)械制造、日常生活.
二、講授新課:
1. 教學(xué)中心投影與平行投影:
、 投影法的提出:物體在光線的`照射下,就會(huì)在地面或墻壁上產(chǎn)生影子。人們將這種自然現(xiàn)象加以科學(xué)的抽象,總結(jié)其中的規(guī)律,提出了投影的方法。
、 中心投影:光由一點(diǎn)向外散射形成的投影。其投影的大小隨物體與投影中心間距離的變化而變化,所以其投影不能反映物體的實(shí)形.
、 平行投影:在一束平行光線照射下形成的投影. 分正投影、斜投影.
討論:點(diǎn)、線、三角形在平行投影后的結(jié)果.
2. 教學(xué)柱、錐、臺(tái)、球的三視圖:
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖
討論:三視圖與平面圖形的關(guān)系? 畫出長方體的三視圖,并討論所反應(yīng)的長、寬、高
結(jié)合球、圓柱、圓錐的模型,從正面(自前而后)、側(cè)面(自左而右)、上面(自上而下)三個(gè)角度,分別觀察,畫出觀察得出的各種結(jié)果. 正視圖、側(cè)視圖、俯視圖.
、 試畫出:棱柱、棱錐、棱臺(tái)、圓臺(tái)的三視圖. (
、 討論:三視圖,分別反應(yīng)物體的哪些關(guān)系(上下、左右、前后)?哪些數(shù)量(長、寬、高)
正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;
側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
、 討論:根據(jù)以上的三視圖,如何逆向得到幾何體的形狀.
(試變化以上的三視圖,說出相應(yīng)幾何體的擺放)
3. 教學(xué)簡單組合體的三視圖:
、 畫出教材P16 圖(2)、(3)、(4)的三視圖.
、 從教材P16思考中三視圖,說出幾何體.
4. 練習(xí):
① 畫出正四棱錐的三視圖.
畫出右圖所示幾何體的三視圖.
③ 右圖是一個(gè)物體的正視圖、左視圖和俯視圖,試描述該物體的形狀.
5. 小結(jié):投影法;三視圖;順與逆
三、鞏固練習(xí): 練習(xí):教材P17 1、2、3、4
第二課時(shí) 1.2.3 空間幾何體的直觀圖
教學(xué)要求:掌握斜二測畫法;能用斜二測畫法畫空間幾何體的直觀圖.
教學(xué)重點(diǎn):畫出直觀圖.
高一數(shù)學(xué)教案 7
教學(xué)目標(biāo)
1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.
(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.
(2)能從數(shù)和形兩個(gè)角度認(rèn)識(shí)單調(diào)性和奇偶性.
(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.
2.通過函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.
3.通過對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.
教學(xué)建議
一、知識(shí)結(jié)構(gòu)
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.
二、重點(diǎn)難點(diǎn)分析
(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識(shí).教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的'學(xué)生來說是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒有意識(shí)到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn).
三、教法建議
(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識(shí)出發(fā),通過問題逐步向抽象的定義靠攏.如可以設(shè)計(jì)這樣的問題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來.在這個(gè)過程中對(duì)一些關(guān)鍵的詞語(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識(shí)就可以融入其中,將概念的形成與認(rèn)識(shí)結(jié)合起來.
(2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.
函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動(dòng)起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來.經(jīng)歷了這樣的過程,再得到等式時(shí),就比較容易體會(huì)它代表的是無數(shù)多個(gè)等式,是個(gè)恒等式.關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱性,同時(shí)還可以借助圖象說明定義域關(guān)于原點(diǎn)對(duì)稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.
高一數(shù)學(xué)教案 8
【內(nèi)容與解析】
本節(jié)課要學(xué)的內(nèi)容有函數(shù)的概念指的是函數(shù)的概念及符號(hào)的理解,理解它關(guān)鍵就是能用集合與對(duì)應(yīng)的語言刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用。學(xué)生已經(jīng)學(xué)過了集合并且初中對(duì)函數(shù)的概念已經(jīng)作了介紹,本節(jié)課的內(nèi)容函數(shù)的概念就是在此基礎(chǔ)上的發(fā)展的。由于它還與基本初等函數(shù)和函數(shù)模型等內(nèi)容有必要的聯(lián)系,所以在本學(xué)科有著很重要的地位,是學(xué)習(xí)后面知識(shí)的基礎(chǔ),是本學(xué)科的核心內(nèi)容。教學(xué)的重點(diǎn)是函數(shù)的概念,函數(shù)的三要素,所以解決重點(diǎn)的關(guān)鍵是通過實(shí)例領(lǐng)悟構(gòu)成函數(shù)的三個(gè)要素;會(huì)求一些簡單函數(shù)的定義域和值域。
【教學(xué)目標(biāo)與解析】
1、教學(xué)目標(biāo)
。1)理解函數(shù)的概念;
(2)了解區(qū)間的概念;
2、目標(biāo)解析
(1)理解函數(shù)的概念就是指能用集合與對(duì)應(yīng)的語言刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的`作用;
(2)了解區(qū)間的概念就是指能夠體會(huì)用區(qū)間表示數(shù)集的意義和作用;
【問題診斷分析】
在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號(hào)的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對(duì)學(xué)生來說一個(gè)難點(diǎn)。要解決這一問題,就要在通過從實(shí)際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。
【教學(xué)過程】
問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時(shí)間變量t之間的對(duì)應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計(jì)意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會(huì)用解析式或圖象刻畫兩個(gè)變量之間的依賴關(guān)系,從問題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的對(duì)應(yīng)關(guān)系,都有唯一的一個(gè)高度h與之對(duì)應(yīng)。
問題2:分析教科書中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有唯一的一個(gè)臭氧層空洞面積S與之相對(duì)應(yīng)。
問題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的關(guān)系。
設(shè)計(jì)意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
問題4:上述三個(gè)實(shí)例中變量之間的關(guān)系都是函數(shù),那么從集合與對(duì)應(yīng)的觀點(diǎn)分析,函數(shù)還可以怎樣定義?
4.1在一個(gè)函數(shù)中,自變量x和函數(shù)值y的變化范圍都是集合,這兩個(gè)集合分別叫什么名稱?
4.2在從集合A到集合B的一個(gè)函數(shù)f:A→B中,集合A是函數(shù)的定義域,集合B是函數(shù)的值域嗎?怎樣理解f(x)=1,x∈R?
4.3一個(gè)函數(shù)由哪幾個(gè)部分組成?如果給定函數(shù)的定義域和對(duì)應(yīng)關(guān)系,那么函數(shù)的值域確定嗎?兩個(gè)函數(shù)相等的條件是什么?
【例題】:
例1求下列函數(shù)的定義域
分析:求定義域就是使式子有意義的x的取值所構(gòu)成的集合;定義域一定是集合!
例2已知函數(shù)
分析:理解函數(shù)f(x)的意義
例3下列函數(shù)中哪個(gè)與函數(shù)相等?
例4在下列各組函數(shù)中與是否相等?為什么?
分析:
(1)兩個(gè)函數(shù)相等,要求定義域和對(duì)應(yīng)關(guān)系都一致;
。2)用x還是用其它字母來表示自變量對(duì)函數(shù)實(shí)質(zhì)而言沒有影響.
【課堂目標(biāo)檢1測】
教科書第19頁1、2.
【課堂小結(jié)】
1、理解函數(shù)的定義,函數(shù)的三要素,會(huì)球簡單的函數(shù)的定義域和函數(shù)值;
2、理解區(qū)間是表示數(shù)集的一種方法,會(huì)把不等式轉(zhuǎn)化為區(qū)間。
高一數(shù)學(xué)教案 9
一、教學(xué)目標(biāo)
1、知識(shí)與技能
。1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。
(3)會(huì)用語言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。
。4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類。
2、過程與方法
。1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。
3、情感態(tài)度與價(jià)值觀
。1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。
。2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。 難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。
三、教學(xué)用具
。1)學(xué)法:觀察、思考、交流、討論、概括。
(2)實(shí)物模型、投影儀 四、教學(xué)思路
(一)創(chuàng)設(shè)情景,揭示課題
1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對(duì)學(xué)生的活動(dòng)及時(shí)給予評(píng)價(jià)。
2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對(duì)這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
(二)、研探新知
1、引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對(duì)物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。
2、觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?
3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
(1)有兩個(gè)面互相平行;
(2)其余各面都是平行四邊形;
。3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對(duì)棱柱分類?
請(qǐng)列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的`幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?
6、以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7、讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
8、引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。
9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。
10、現(xiàn)實(shí)世界中,我們看到的物體大多由具有柱、錐、臺(tái)、球等幾何結(jié)構(gòu)特征的物體組合而成。請(qǐng)列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。
1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)
2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?
3、課本P8,習(xí)題1.1 A組第1題。
4、圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
5、棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?
四、鞏固深化
練習(xí):課本P7 練習(xí)1、2(1)(2) 課本P8 習(xí)題1.1 第2、3、4題 五、歸納整理
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容 六、布置作業(yè)
課本P8 練習(xí)題1.1 B組第1題
課外練習(xí) 課本P8 習(xí)題1.1 B組第2題
高一數(shù)學(xué)教案 10
教學(xué)目標(biāo)
1.理解等比數(shù)列的概念,掌握等比數(shù)列的通項(xiàng)公式,并能運(yùn)用公式解決簡單的問題.
。1)正確理解等比數(shù)列的定義,了解公比的概念,明確一個(gè)數(shù)列是等比數(shù)列的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是等比數(shù)列,了解等比中項(xiàng)的概念;
。2)正確認(rèn)識(shí)使用等比數(shù)列的表示法,能靈活運(yùn)用通項(xiàng)公式求等比數(shù)列的首項(xiàng)、公比、項(xiàng)數(shù)及指定的項(xiàng);
。3)通過通項(xiàng)公式認(rèn)識(shí)等比數(shù)列的性質(zhì),能解決某些實(shí)際問題.
2.通過對(duì)等比數(shù)列的研究,逐步培養(yǎng)學(xué)生觀察、類比、歸納、猜想等思維品質(zhì).
3.通過對(duì)等比數(shù)列概念的歸納,進(jìn)一步培養(yǎng)學(xué)生嚴(yán)密的思維習(xí)慣,以及實(shí)事求是的科學(xué)態(tài)度.
教學(xué)建議
教材分析
。1)知識(shí)結(jié)構(gòu)
等比數(shù)列是另一個(gè)簡單常見的數(shù)列,研究內(nèi)容可與等差數(shù)列類比,首先歸納出等比數(shù)列的定義,導(dǎo)出通項(xiàng)公式,進(jìn)而研究圖像,又給出等比中項(xiàng)的概念,最后是通項(xiàng)公式的應(yīng)用.
(2)重點(diǎn)、難點(diǎn)分析
教學(xué)重點(diǎn)是等比數(shù)列的定義和對(duì)通項(xiàng)公式的認(rèn)識(shí)與應(yīng)用,教學(xué)難點(diǎn)在于等比數(shù)列通項(xiàng)公式的推導(dǎo)和運(yùn)用.
、倥c等差數(shù)列一樣,等比數(shù)列也是特殊的數(shù)列,二者有許多相同的性質(zhì),但也有明顯的區(qū)別,可根據(jù)定義與通項(xiàng)公式得出等比數(shù)列的特性,這些是教學(xué)的重點(diǎn).
、陔m然在等差數(shù)列的學(xué)習(xí)中曾接觸過不完全歸納法,但對(duì)學(xué)生來說仍然不熟悉;在推導(dǎo)過程中,需要學(xué)生有一定的觀察分析猜想能力;第一項(xiàng)是否成立又須補(bǔ)充說明,所以通項(xiàng)公式的推導(dǎo)是難點(diǎn).
、蹖(duì)等差數(shù)列、等比數(shù)列的綜合研究離不開通項(xiàng)公式,因而通項(xiàng)公式的.靈活運(yùn)用既是重點(diǎn)又是難點(diǎn).
教學(xué)建議
(1)建議本節(jié)課分兩課時(shí),一節(jié)課為等比數(shù)列的概念,一節(jié)課為等比數(shù)列通項(xiàng)公式的應(yīng)用.
。2)等比數(shù)列概念的引入,可給出幾個(gè)具體的例子,由學(xué)生概括這些數(shù)列的相同特征,從而得到等比數(shù)列的定義.也可將幾個(gè)等差數(shù)列和幾個(gè)等比數(shù)列混在一起給出,由學(xué)生將這些數(shù)列進(jìn)行分類,有一種是按等差、等比來分的,由此對(duì)比地概括等比數(shù)列的定義.
。3)根據(jù)定義讓學(xué)生分析等比數(shù)列的公比不為0,以及每一項(xiàng)均不為0的特性,加深對(duì)概念的理解.
(4)對(duì)比等差數(shù)列的表示法,由學(xué)生歸納等比數(shù)列的各種表示法. 啟發(fā)學(xué)生用函數(shù)觀點(diǎn)認(rèn)識(shí)通項(xiàng)公式,由通項(xiàng)公式的結(jié)構(gòu)特征畫數(shù)列的圖象.
。5)由于有了等差數(shù)列的研究經(jīng)驗(yàn),等比數(shù)列的研究完全可以放手讓學(xué)生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn).
。6)可讓學(xué)生相互出題,解題,講題,充分發(fā)揮學(xué)生的主體作用.
教學(xué)設(shè)計(jì)示例
課題:等比數(shù)列的概念
教學(xué)目標(biāo)
1.通過教學(xué)使學(xué)生理解等比數(shù)列的概念,推導(dǎo)并掌握通項(xiàng)公式.
2.使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力.
3.培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度.
教學(xué)重點(diǎn),難點(diǎn)
重點(diǎn)、難點(diǎn)是等比數(shù)列的定義的歸納及通項(xiàng)公式的推導(dǎo).
教學(xué)用具
投影儀,多媒體軟件,電腦.
教學(xué)方法
討論、談話法.
教學(xué)過程
一、提出問題
給出以下幾組數(shù)列,將它們分類,說出分類標(biāo)準(zhǔn).(幻燈片)
、伲2,1,4,7,10,13,16,19,…
、8,16,32,64,128,256,…
、1,1,1,1,1,1,1,…
、243,81,27,9,3,1, , ,…
⑤31,29,27,25,23,21,19,…
、1,-1,1,-1,1,-1,1,-1,…
⑦1,-10,100,-1000,10000,-100000,…
、0,0,0,0,0,0,0,…
由學(xué)生發(fā)表意見(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無妨,得出定義后再考察③是否為等比數(shù)列).
二、講解新課
請(qǐng)學(xué)生說出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲分裂問題.假設(shè)每經(jīng)過一個(gè)單位時(shí)間每個(gè)變形蟲都分裂為兩個(gè)變形蟲,再假設(shè)開始有一個(gè)變形蟲,經(jīng)過一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲,經(jīng)過兩個(gè)單位時(shí)間就有了四個(gè)變形蟲,…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲個(gè)數(shù)得到了一列數(shù) 這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——等比數(shù)列. (這里播放變形蟲分裂的多媒體軟件的第一步)
等比數(shù)列(板書)
1.等比數(shù)列的定義(板書)
根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義.學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來的.教師寫出等比數(shù)列的定義,標(biāo)注出重點(diǎn)詞語.
請(qǐng)學(xué)生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是等比數(shù)列.學(xué)生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學(xué)生再舉兩例.而后請(qǐng)學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說形如 的數(shù)列都滿足既是等差又是等比數(shù)列,讓學(xué)生討論后得出結(jié)論:當(dāng) 時(shí),數(shù)列 既是等差又是等比數(shù)列,當(dāng) 時(shí),它只是等差數(shù)列,而不是等比數(shù)列.教師追問理由,引出對(duì)等比數(shù)列的認(rèn)識(shí):
2.對(duì)定義的認(rèn)識(shí)(板書)
。1)等比數(shù)列的首項(xiàng)不為0;
。2)等比數(shù)列的每一項(xiàng)都不為0,即 ;
問題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為等比數(shù)列的什么條件?
(3)公比不為0.
用數(shù)學(xué)式子表示等比數(shù)列的定義.
是等比數(shù)列 ①.在這個(gè)式子的寫法上可能會(huì)有一些爭議,如寫成 ,可讓學(xué)生研究行不行,好不好;接下來再問,能否改寫為 是等比數(shù)列 ?為什么不能?
式子 給出了數(shù)列第 項(xiàng)與第 項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)等比數(shù)列?(不能)確定一個(gè)等比數(shù)列需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式.
3.等比數(shù)列的通項(xiàng)公式(板書)
問題:用 和 表示第 項(xiàng) .
、俨煌耆珰w納法
、诏B乘法
,… , ,這 個(gè)式子相乘得 ,所以 .
。ò鍟1)等比數(shù)列的通項(xiàng)公式
得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式.
。ò鍟2)對(duì)公式的認(rèn)識(shí)
由學(xué)生來說,最后歸結(jié):
、俸瘮(shù)觀點(diǎn);
②方程思想(因在等差數(shù)列中已有認(rèn)識(shí),此處再復(fù)習(xí)鞏固而已).
這里強(qiáng)調(diào)方程思想解決問題.方程中有四個(gè)量,知三求一,這是公式最簡單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類問題).解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)
如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究.同學(xué)可以試著編幾道題.
三、小結(jié)
1.本節(jié)課研究了等比數(shù)列的概念,得到了通項(xiàng)公式;
2.注意在研究內(nèi)容與方法上要與等差數(shù)列相類比;
3.用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用.
高一數(shù)學(xué)教案 11
1、如果把數(shù)學(xué)比作一個(gè)成長中的生氣勃勃的人,把問題比作人身體的一個(gè)重要的器官,那么你將用什么器官比喻問題的重要性呢
2、“問題是數(shù)學(xué)的心臟”,是一切科學(xué)發(fā)現(xiàn)與發(fā)明的源泉、在數(shù)學(xué)學(xué)習(xí)中,提出問題比解決問題具有同等甚至是更高的價(jià)值、因此在進(jìn)入初中數(shù)學(xué)學(xué)習(xí)的時(shí)候,同學(xué)們要高度重視發(fā)現(xiàn)和提出數(shù)學(xué)問題,把這看作是提升自己數(shù)學(xué)能力的最重要的途徑、
3、看到《有理數(shù)》這一章的標(biāo)題,你想到的第一個(gè)問題是什么?接下來你又會(huì)提出什么問題呢?
4、“有理數(shù)”這個(gè)名詞有點(diǎn)怪,難道還有“無理數(shù)”嗎?”這個(gè)問題提得好!既然有“有理數(shù)”,當(dāng)然會(huì)有“無理數(shù)”、要回答什么是“有理數(shù)”的問題,一個(gè)途徑就是先回答“什么是無理數(shù)的問題”、
5、我們?cè)谛W(xué)所學(xué)的數(shù)中,就有無理數(shù),那就是無限不循環(huán)小數(shù)、有限小數(shù)、無限循環(huán)小數(shù)都是有理數(shù)、大家想一想下面的問題:
、儆邢扌(shù)、無限循環(huán)小數(shù)與分?jǐn)?shù)是什么關(guān)系?
、谡麛(shù)能不能化成分?jǐn)?shù)的形式?
③由此你能不能聯(lián)想出有理數(shù)的“理”是什么?也就是說,什么樣的數(shù)是有理數(shù)?
1、1正數(shù)和負(fù)數(shù)
一、教學(xué)目標(biāo)
知識(shí)與技能:了解正數(shù)和負(fù)數(shù)是怎樣產(chǎn)生的,會(huì)識(shí)別正數(shù)和負(fù)數(shù),理解0表示的量的意義;學(xué)會(huì)用正數(shù)和負(fù)數(shù)表示相反意義的量;
過程與方法:在形成負(fù)數(shù)概念的過程中,培養(yǎng)觀察、歸納與概括能力、情感、態(tài)度與價(jià)值觀:通過師生合作,聯(lián)系實(shí)際,感受數(shù)學(xué)與生活的聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情、
重點(diǎn)難點(diǎn)
重點(diǎn):形成負(fù)數(shù)概念;學(xué)會(huì)用正數(shù)和負(fù)數(shù)表示相反意義的量、
難點(diǎn):負(fù)數(shù)的意義及0的內(nèi)涵、
二、精講預(yù)設(shè):
1、其實(shí),在進(jìn)入初中之前,我們就有同學(xué)初步學(xué)習(xí)過“負(fù)數(shù)”概念,知道什么是正數(shù)和負(fù)數(shù),但在跨入初中數(shù)學(xué)的大門的時(shí)候,我們還是要隆重地引入負(fù)數(shù)概念,因?yàn)樗俏覀兘⒂欣頂?shù)概念不可缺少的基礎(chǔ)、
2、什么叫做正數(shù)?什么叫做負(fù)數(shù)?負(fù)數(shù)的概念是建立在什么基礎(chǔ)上的?你能換一種方式解釋負(fù)數(shù)這個(gè)概念嗎?請(qǐng)注意,給概念下定義的表達(dá)方式:……叫做……、
3、①把0以外的數(shù)分成正數(shù)和負(fù)數(shù),起源于什么?
②表示相反意義的量,數(shù)的性質(zhì)(正與負(fù))是怎樣規(guī)定的?有幾種方式?
、郾硎鞠喾匆饬x的量,要特別注意量的表達(dá),也就是一定不能忽略單位!否則就不是量,而是數(shù)了、
、苷龜(shù)可以省略“+”號(hào),負(fù)數(shù)可以省略“—”號(hào)嗎?為什么?
4、還記得我在前面提出的關(guān)于“問題”在數(shù)學(xué)學(xué)習(xí)中地位的話嗎?請(qǐng)你提出關(guān)于“正數(shù)和負(fù)數(shù)”的概念與應(yīng)用的問題,我們來開一次“數(shù)學(xué)記者招待會(huì)”、
三、教學(xué)反思
1、這次嘗試著從無理數(shù)的概念入手,“曲線教學(xué)”,一步到位,導(dǎo)出有理數(shù)的概念,從后續(xù)效果上看,還是比較成功的這一點(diǎn)在今后的教學(xué)中還可以延續(xù)、
2、在學(xué)生自主學(xué)習(xí)與嘗試展示的過程中,采用事前精心設(shè)計(jì)的連續(xù)追問的方式,可以起到打通思維,貫通知識(shí),加深理解的作用、
1、2、1有理數(shù)
一、教學(xué)目標(biāo)
知識(shí)與技能:理解有理數(shù)的意義;能把有理數(shù)按要求分類;了解0在分類中作用、
過程與方法:初步了解分類的思想方法,能正確地對(duì)有理數(shù)進(jìn)行分類、情感、態(tài)度與價(jià)值觀:在體系中理解知識(shí)的內(nèi)涵,在分類中了解概念之間的聯(lián)系,在學(xué)生的頭腦中初步建立起對(duì)立與統(tǒng)一的`思考方法、
重點(diǎn)難點(diǎn)
重點(diǎn):理解有理數(shù)的分類方法、
難點(diǎn):掌握有理數(shù)的兩種分類,避免混淆、
二、精講預(yù)設(shè)
1、在羅列出所學(xué)過的有理數(shù),并對(duì)有理數(shù)給出定義之后,提出“你能把所有的這些有理數(shù)作出分類嗎?”的問題、
2、在讓學(xué)生充分嘗試對(duì)有理數(shù)作出分類之后,講解數(shù)學(xué)學(xué)習(xí)的效益與分類討論的標(biāo)準(zhǔn)問題、數(shù)學(xué)學(xué)習(xí)的效益,不僅體現(xiàn)在數(shù)學(xué)知識(shí)與數(shù)學(xué)方法的掌握上,更體現(xiàn)在對(duì)數(shù)學(xué)數(shù)學(xué)思想方法的理解與運(yùn)用上,這才是數(shù)學(xué)學(xué)習(xí)最重要的價(jià)值所在、分類討論就是一種重要的數(shù)學(xué)學(xué)習(xí)方法、在分類時(shí)首先要確定分類的標(biāo)準(zhǔn),其次要注意遵循不重復(fù)、不遺漏的原則、
3、在解把有理數(shù)填入集合圈的習(xí)題時(shí),會(huì)出現(xiàn)哪些問題?原因何在?怎么解決?
、僭诋嫾先r(shí)忽略省略號(hào);
、谠谔罘?jǐn)?shù)集合時(shí),把遺漏有限小數(shù)和無限循環(huán)小數(shù);
③把無限循環(huán)小數(shù)誤成分?jǐn)?shù)、補(bǔ)充分類練習(xí),采用《鼎新教案》P10例2,以加深學(xué)生對(duì)分類討論的理解
三、教學(xué)反思
1、這是學(xué)生在初中數(shù)學(xué)學(xué)習(xí)中第一次接觸分類思想,課本在這方面的處理太過簡略,幾乎到忽略不計(jì)的地步、為了彌補(bǔ)教材的不足,有必要加以補(bǔ)充、
2、因?yàn)橛欣頂?shù)的概念在本章教學(xué)的開篇就與學(xué)生進(jìn)行過比較深入的討論,所以本節(jié)教學(xué)的重點(diǎn)還是以放在對(duì)分類的標(biāo)準(zhǔn)與原則上為宜,在這方面對(duì)學(xué)生進(jìn)行訓(xùn)練的后續(xù)教學(xué)效益應(yīng)該是比較高的,今后還應(yīng)堅(jiān)持、
1、2、2數(shù)軸
一、教學(xué)目標(biāo)
知識(shí)與技能:了解數(shù)軸的概念,知道數(shù)軸的三要素,會(huì)畫數(shù)軸;能將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上已知點(diǎn)表示的數(shù)、
過程與方法:通過對(duì)數(shù)軸的學(xué)習(xí)體會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想、情感、態(tài)度與價(jià)值觀:通過對(duì)數(shù)軸的直觀認(rèn)識(shí),對(duì)數(shù)形結(jié)合思想的體會(huì),認(rèn)識(shí)不同事物之間的內(nèi)在關(guān)系,感受數(shù)學(xué)與生活的聯(lián)系、
重點(diǎn)難點(diǎn)
重點(diǎn):數(shù)軸的概念、
難點(diǎn):數(shù)軸的畫法與應(yīng)用、
二、精講預(yù)設(shè)
1、畫數(shù)軸注意事項(xiàng)歌訣
直線要直切勿曲,原點(diǎn)方向單位齊;
右為箭頭左出頭,無限延伸要留意;
。ㄩL度)正負(fù)分布須對(duì)稱,位置長度要適宜
、數(shù)軸畫在格子中,舒展大方貴清晰、 (數(shù)) (原點(diǎn))(單位長度)
2、在數(shù)軸上表示有理數(shù)的方法歌訣
先畫數(shù)軸要素全,數(shù)點(diǎn)描成實(shí)心圓;注意方向與距離,負(fù)數(shù)分?jǐn)?shù)思慮全;點(diǎn)在線上勿飄起,數(shù)據(jù)標(biāo)在點(diǎn)上面、
3、應(yīng)用歸類、提出問題,組織學(xué)生完成、
三、教學(xué)反思
1、數(shù)軸是學(xué)生所接觸的數(shù)形結(jié)合的第一個(gè)實(shí)例,因?yàn)閷?duì)數(shù)軸概念的理解的不足,也因?yàn)榻虒W(xué)中對(duì)數(shù)軸畫法的練習(xí)設(shè)計(jì)數(shù)量偏少,導(dǎo)致形形色色的畫法上的問題、對(duì)此一方面要在后續(xù)教學(xué)中加以彌補(bǔ),另一方面在修改導(dǎo)學(xué)案的時(shí)候要對(duì)這一環(huán)節(jié)予以加強(qiáng)、
2、在數(shù)軸上表示分?jǐn)?shù)與小數(shù),尤其是負(fù)分?jǐn)?shù)與負(fù)小數(shù)時(shí),學(xué)生出現(xiàn)了較多的錯(cuò)誤,方向性的錯(cuò)誤有,距離上的錯(cuò)誤更多、對(duì)此要反復(fù)加以強(qiáng)調(diào)與來練習(xí)、
1、2、3相反數(shù)
一、教學(xué)目標(biāo)
知識(shí)與技能:借助數(shù)軸理解相反數(shù)的概念,知道互為相反數(shù)的兩個(gè)數(shù)在數(shù)軸上的位置關(guān)系,給出一個(gè)數(shù),能說出和寫出它的相反數(shù)、
過程與方法:經(jīng)歷操作、對(duì)比,發(fā)現(xiàn)、提出、解決問題的過程,從形和數(shù)兩個(gè)不同的側(cè)面來理解相反數(shù)的意義,領(lǐng)會(huì)數(shù)形結(jié)合的思想,培養(yǎng)分析問題與解決問題的能力、
情感、態(tài)度與價(jià)值觀:讓學(xué)生充分參與問題的解決過程,體驗(yàn)參與的快樂與成就感、
重點(diǎn)難點(diǎn)重點(diǎn):相反數(shù)的概念、難點(diǎn):相反數(shù)的識(shí)別與理解、
二、精講預(yù)設(shè)
1、如何理解“兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱”?位置關(guān)系,數(shù)量關(guān)系、
2、如何理解互為相反數(shù)的概念? “只有符號(hào)不同”,什么必須相同?
3、怎樣表示一個(gè)數(shù)的相反數(shù)?在一個(gè)數(shù)的前面添上“—”時(shí),要注意哪些問題?
、偃绻麛(shù)不帶符號(hào),直接在數(shù)的前面添加“—”號(hào);
、谌绻麛(shù)本身帶有符號(hào),首先要用括號(hào)將這個(gè)數(shù)括起來,再在括號(hào)前前面;
、廴绻麛(shù)是幾個(gè)數(shù)的和或差的形式,參照第②條處理;
4、的相反數(shù)怎樣表示?的相反數(shù)怎樣表示?的相反數(shù)呢?你能提出更復(fù)雜的問題并自己解決嗎?這里面的規(guī)律是什么?
三、教學(xué)反思
1、相反數(shù)是相對(duì)簡單的概念,對(duì)于這個(gè)簡單的知識(shí),通過從形到數(shù)的認(rèn)識(shí)過程,可以培養(yǎng)學(xué)生的數(shù)學(xué)認(rèn)識(shí)能力,對(duì)此如果重視不夠,將是一個(gè)損失、
2、相反數(shù)的表示方法其實(shí)是一個(gè)有一定難度的問題,解決的最好方法不是直接教給學(xué)生要注意什么,而是與學(xué)生一起探討解決的方法、讓學(xué)生參與解決問題的過程,也許是解決問題的最有效的方法、
1、2、4絕對(duì)值
一、教學(xué)目標(biāo)
知識(shí)與技能:理解絕對(duì)值的意義,會(huì)求一個(gè)數(shù)的絕對(duì)值;會(huì)比較兩個(gè)有理數(shù)的大小、
過程與方法:通過對(duì)正數(shù)、負(fù)數(shù)、0的絕對(duì)值的學(xué)習(xí),體驗(yàn)分類討論的數(shù)學(xué)思想、通關(guān)對(duì)有理數(shù)大小比較的學(xué)習(xí),體驗(yàn)數(shù)形結(jié)合的數(shù)學(xué)思想、
情感、態(tài)度與價(jià)值觀:在充分的參與中體驗(yàn)數(shù)學(xué)的美與價(jià)值、
重點(diǎn)難點(diǎn)
重點(diǎn):絕對(duì)值的意義;有理數(shù)的大小的比較、
難點(diǎn):絕對(duì)值的意義與兩個(gè)負(fù)數(shù)的大小比較、
二、精講預(yù)設(shè)
1、串講相反數(shù)和絕對(duì)值問題提綱:
、傧喾磾(shù)的幾何意義是什么?(借助數(shù)軸解釋相反數(shù))
、谠跀(shù)軸上表示互為相反數(shù)的兩個(gè)點(diǎn)的異同點(diǎn)分別是什么?
、凼裁唇凶鰯(shù)的絕對(duì)值?數(shù)的絕對(duì)值是什么?
、芤罁(jù)絕對(duì)值的定義,怎樣求一個(gè)數(shù)的絕對(duì)值?
、萸蠼^對(duì)值的方法體現(xiàn)了什么數(shù)學(xué)思想方法?(分類討論)
、耷笠粋(gè)數(shù)的絕對(duì)值時(shí)要注意哪些問題?
2、有理數(shù)大小比較的方法講解提綱:
⑴試用分類討論的方法分解有理數(shù)大小的比較問題:
、俦容^兩個(gè)正數(shù)的大;
②比較正數(shù)和0的大;
、郾容^0和負(fù)數(shù)的大。
、鼙容^正數(shù)和負(fù)數(shù)的大;
、荼容^兩個(gè)負(fù)數(shù)的大小、
⑵上述問題中,真正需要解決的問題是什么?怎么解決?解決的程序是什么
⑶解決一般的有理數(shù)大小問題的思維與表達(dá)程序是什么?(先分類,后表述)一看能不能直接比較大?二看需不需化簡后再比較大小?三要注意比較結(jié)果的表達(dá)要求(答案保持?jǐn)?shù)的原有形式與排列順序)、
三、教學(xué)反思
1、誘導(dǎo)學(xué)生分析相反數(shù)的幾何意義的共同特征,從而引出絕對(duì)值的概念,借助于知識(shí)之間的聯(lián)系,使新知識(shí)在“出場”的時(shí)候,就與學(xué)生建立起“親密”的聯(lián)系、這一點(diǎn)是本節(jié)教學(xué)的亮點(diǎn)之一、
高一數(shù)學(xué)教案 12
一、教學(xué)目標(biāo)
1.知識(shí)與技能
。1)解二分法求解方程的近似解的思想方法,會(huì)用二分法求解具體方程的近似解;
。2)體會(huì)程序化解決問題的思想,為算法的學(xué)習(xí)作準(zhǔn)備。
2.過程與方法
。1)讓學(xué)生在求解方程近似解的實(shí)例中感知二分發(fā)思想;
。2)讓學(xué)生歸納整理本節(jié)所學(xué)的知識(shí)。
3.情感、態(tài)度與價(jià)值觀
①體會(huì)二分法的程序化解決問題的思想,認(rèn)識(shí)二分法的價(jià)值所在,使學(xué)生更加熱愛數(shù)學(xué);
②培養(yǎng)學(xué)生認(rèn)真、耐心、嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)品質(zhì)。
二、 教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):用二分法求解函數(shù)f(x)的零點(diǎn)近似值的步驟。
難點(diǎn):為何由︱a - b ︳< 便可判斷零點(diǎn)的近似值為a(或b)?
三、 學(xué)法與教學(xué)用具
1.想-想。
2.教學(xué)用具:計(jì)算器。
四、教學(xué)設(shè)想
(一)、創(chuàng)設(shè)情景,揭示課題
提出問題:
。1)一元二次方程可以用公式求根,但是沒有公式可以用來求解放程 ㏑x+2x-6=0的根;聯(lián)系函數(shù)的零點(diǎn)與相應(yīng)方程根的關(guān)系,能否利用函數(shù)的有關(guān)知識(shí)來求她的根呢?
。2)通過前面一節(jié)課的學(xué)習(xí),函數(shù)f(x)=㏑x+2x-6在區(qū)間內(nèi)有零點(diǎn);進(jìn)一步的問題是,如何找到這個(gè)零點(diǎn)呢?
。ǘ、研討新知
一個(gè)直觀的想法是:如果能夠?qū)⒘泓c(diǎn)所在的范圍盡量的縮小,那么在一定的精確度的要求下,我們可以得到零點(diǎn)的近似值;為了方便,我們通過“取中點(diǎn)”的`方法逐步縮小零點(diǎn)所在的范圍。
取區(qū)間(2,3)的中點(diǎn)2.5,用計(jì)算器算得f(2.5)≈-0.084,因?yàn)閒(2.5)xf(3)<0,所以零點(diǎn)在區(qū)間(2.5,3)內(nèi);
再取區(qū)間(2.5,3)的中點(diǎn)2.75,用計(jì)算器算得f(2.75)≈0.512,因?yàn)閒(2.75)xf(2.5)<0,所以零點(diǎn)在(2.5,2.75)內(nèi);
由于(2,3),(2.5,3),(2.5,2.75)越來越小,所以零點(diǎn)所在范圍確實(shí)越來越小了;重復(fù)上述步驟,那么零點(diǎn)所在范圍會(huì)越來越小,這樣在有限次重復(fù)相同的步驟后,在一定的精確度下,將所得到的零點(diǎn)所在區(qū)間上任意的一點(diǎn)作為零點(diǎn)的近似值,特別地可以將區(qū)間的端點(diǎn)作為零點(diǎn)的近似值。例如,當(dāng)精確度為0.01時(shí),由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我們可以將x=2.54作為函數(shù)f(x)=㏑x+2x-6零點(diǎn)的近似值,也就是方程㏑x+2x-6=0近似值。
這種求零點(diǎn)近似值的方法叫做二分法。
1.師:引導(dǎo)學(xué)生仔細(xì)體會(huì)上邊的這段文字,結(jié)合課本上的相關(guān)部分,感悟其中的思想方法.
生:認(rèn)真理解二分法的函數(shù)思想,并根據(jù)課本上二分法的一般步驟,探索其求法。
2.為什么由︱a - b ︳<便可判斷零點(diǎn)的近似值為a(或b)?
先由學(xué)生思考幾分鐘,然后作如下說明:
設(shè)函數(shù)零點(diǎn)為x0,則a<x0<b,則:
0<x0-a<b-a,a-b<x0-b<0;
由于︱a - b ︳<,所以
︱x0 - a ︳<b-a<,︱x0 - b ︳<∣ a-b∣<,
即a或b 作為零點(diǎn)x0的近似值都達(dá)到了給定的精確度。
(三)、鞏固深化,發(fā)展思維
1.學(xué)生在老師引導(dǎo)啟發(fā)下完成下面的例題
例2.借助計(jì)算器用二分法求方程2x+3x=7的近似解(精確到0.01)
問題:原方程的近似解和哪個(gè)函數(shù)的零點(diǎn)是等價(jià)的?
師:引導(dǎo)學(xué)生在方程右邊的常數(shù)移到左邊,把左邊的式子令為f(x),則原方程的解就是f(x)的零點(diǎn)。
生:借助計(jì)算機(jī)或計(jì)算器畫出函數(shù)的圖象,結(jié)合圖象確定零點(diǎn)所在的區(qū)間,然后利用二分法求解.
。ㄋ模w納整理,整體認(rèn)識(shí)
在師生的互動(dòng)中,讓學(xué)生了解或體會(huì)下列問題:
。1)本節(jié)我們學(xué)過哪些知識(shí)內(nèi)容?
(2)你認(rèn)為學(xué)習(xí)“二分法”有什么意義?
。3)在本節(jié)課的學(xué)習(xí)過程中,還有哪些不明白的地方?
。ㄎ澹、布置作業(yè)
P92習(xí)題3.1A組第四題,第五題。
高一數(shù)學(xué)教案 13
教材分析:函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,同時(shí)還用集合與對(duì)應(yīng)的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想.
教學(xué)目的:
。1)通過豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語言來刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;
。2)了解構(gòu)成函數(shù)的要素;
(3)會(huì)求一些簡單函數(shù)的定義域和值域;
(4)能夠正確使用“區(qū)間”的符號(hào)表示某些函數(shù)的定義域;
教學(xué)重點(diǎn):理解函數(shù)的模型化思想,用合與對(duì)應(yīng)的語言來刻畫函數(shù);
教學(xué)難點(diǎn):符號(hào)“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;
教學(xué)過程:
一、引入課題
1.復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;
2.閱讀課本引例,體會(huì)函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:
(1)炮彈的射高與時(shí)間的變化關(guān)系問題;
。2)南極臭氧空洞面積與時(shí)間的.變化關(guān)系問題;
(3)“八五”計(jì)劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系問題
備用實(shí)例:
我國xxxx年4月份非典疫情統(tǒng)計(jì):
日期222324252627282930
新增確診病例數(shù)1061058910311312698152101
3.引導(dǎo)學(xué)生應(yīng)用集合與對(duì)應(yīng)的語言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴關(guān)系;
4.根據(jù)初中所學(xué)函數(shù)的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的關(guān)系是否是函數(shù)關(guān)系.
二、新課教學(xué)
。ㄒ唬┖瘮(shù)的有關(guān)概念
1.函數(shù)的概念:
設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù)(function).
記作:y=f(x),x∈A.
其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).
注意:
○1“y=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;
○2函數(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x.
2.構(gòu)成函數(shù)的三要素:
定義域、對(duì)應(yīng)關(guān)系和值域
3.區(qū)間的概念
。1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;
。2)無窮區(qū)間;
。3)區(qū)間的數(shù)軸表示.
4.一次函數(shù)、二次函數(shù)、反比例函數(shù)的定義域和值域討論
。ㄓ蓪W(xué)生完成,師生共同分析講評(píng))
。ǘ┑湫屠}
1.求函數(shù)定義域
課本P20例1
解:(略)
說明:
○1函數(shù)的定義域通常由問題的實(shí)際背景確定,如果課前三個(gè)實(shí)例;
○2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合;
○3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.
鞏固練習(xí):課本P22第1題
2.判斷兩個(gè)函數(shù)是否為同一函數(shù)
課本P21例2
解:(略)
說明:
○1構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))
○2兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。
鞏固練習(xí):
○1課本P22第2題
○2判斷下列函數(shù)f(x)與g(x)是否表示同一個(gè)函數(shù),說明理由?
。1)f(x)=(x-1)0;g(x)=1
。2)f(x)=x;g(x)=
。3)f(x)=x2;f(x)=(x+1)2
(4)f(x)=|x|;g(x)=
。ㄈ┱n堂練習(xí)
求下列函數(shù)的定義域
。1)
。2)
。3)
。4)
(5)
。6)
三、歸納小結(jié),強(qiáng)化思想
從具體實(shí)例引入了函數(shù)的的概念,用集合與對(duì)應(yīng)的語言描述了函數(shù)的定義及其相關(guān)概念,介紹了求函數(shù)定義域和判斷同一函數(shù)的典型題目,引入了區(qū)間的概念來表示集合。
四、作業(yè)布置
課本P28習(xí)題1.2(A組)第1—7題(B組)第1題
高一數(shù)學(xué)教案 14
一、教材分析
1、 教材的地位和作用:
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿在中學(xué)數(shù)學(xué)的始終,概念是數(shù)學(xué)的基礎(chǔ),概念性強(qiáng)是函數(shù)理論的一個(gè)顯著特點(diǎn),只有對(duì)概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中對(duì)函數(shù)概念理解的程度會(huì)直接影響其它知識(shí)的學(xué)習(xí),所以函數(shù)的第一課時(shí)非常的重要。
2、 教學(xué)目標(biāo)及確立的依據(jù):
教學(xué)目標(biāo):
(1) 教學(xué)知識(shí)目標(biāo):了解對(duì)應(yīng)和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對(duì)函數(shù)抽象符號(hào)的理解。
(2) 能力訓(xùn)練目標(biāo):通過教學(xué)培養(yǎng)的抽象概括能力、邏輯思維能力。
(3) 德育滲透目標(biāo):使懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀點(diǎn)。
教學(xué)目標(biāo)確立的依據(jù):
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿整個(gè)中學(xué)數(shù)學(xué),如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強(qiáng)函數(shù)教學(xué)可幫助學(xué)好其他的內(nèi)容。而掌握好函數(shù)的概念是學(xué)好函數(shù)的基石。
3、教學(xué)重點(diǎn)難點(diǎn)及確立的依據(jù):
教學(xué)重點(diǎn):映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號(hào)的理解。
教學(xué)難點(diǎn):映射的概念,函數(shù)近代概念,及函數(shù)符號(hào)的理解。
重點(diǎn)難點(diǎn)確立的依據(jù):
映射的概念和函數(shù)的近代定義抽象性都比較強(qiáng),要求學(xué)生的理性認(rèn)識(shí)的能力也比較高,對(duì)于剛剛升入高中不久的來說不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來有一種“函數(shù)熱”的趨勢,所以本節(jié)的重點(diǎn)難點(diǎn)必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號(hào)的理解與運(yùn)用上。
二、教材的處理:
將映射的定義及類比手法的運(yùn)用作為本課突破難點(diǎn)的關(guān)鍵。 函數(shù)的定義,是以集合、映射的觀點(diǎn)給出,這與初中教材變量值與對(duì)應(yīng)觀點(diǎn)給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來更大的困難。為解決這難點(diǎn),主要是從實(shí)際出發(fā)調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情與參與意識(shí),運(yùn)用引導(dǎo)對(duì)比的手法,啟發(fā)引導(dǎo)學(xué)生進(jìn)行有目的的反復(fù)比較幾個(gè)概念的異同,使真正對(duì)函數(shù)的概念有很準(zhǔn)確的認(rèn)識(shí)。
三、教學(xué)方法和學(xué)法
教學(xué)方法:講授為主,自主預(yù)習(xí)為輔。
依據(jù)是:因?yàn)橐孕碌挠^點(diǎn)認(rèn)識(shí)函數(shù)概念及函數(shù)符號(hào)與運(yùn)用時(shí),更重要的是必須給學(xué)生講清楚概念及注意事項(xiàng),并通過師生的共同討論來幫助學(xué)生深刻理解,這樣才能使函數(shù)的概念及符號(hào)的運(yùn)用在學(xué)生的思想和知識(shí)結(jié)構(gòu)中打上深刻的烙印,為能學(xué)好后面的知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。
學(xué)法:四、教學(xué)程序
一、課程導(dǎo)入
通過舉以下一個(gè)通俗的例子引出通過某個(gè)對(duì)應(yīng)法則可以將兩個(gè)非空集合聯(lián)系在一起。
例1:把高一(12)班和高一(11)全體同學(xué)分別看成是兩個(gè)集合,問,通過“找好朋友”這個(gè)對(duì)應(yīng)法則是否能將這兩個(gè)集合的某些元素聯(lián)系在一起?
二. 新課講授:
(1) 接著再通過幻燈片給出六組學(xué)生熟悉的數(shù)集的對(duì)應(yīng)關(guān)系引導(dǎo)學(xué)生歸納它們的`共同性質(zhì)(一對(duì)一,多對(duì)一),進(jìn)而給出映射的概念,表示符號(hào)f:a→b,及原像和像的定義。強(qiáng)調(diào)指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的對(duì)應(yīng)法則 f。進(jìn)一步引導(dǎo)判斷一個(gè)從a到b的對(duì)應(yīng)是否為映射的關(guān)鍵是看a中的任意一個(gè)元素通過對(duì)應(yīng)法則f在b中是否有唯一確定的元素與之對(duì)應(yīng)。
(2)鞏固練習(xí)課本52頁第八題。
此練習(xí)能讓更深刻的認(rèn)識(shí)到映射可以“一對(duì)多,多對(duì)一”但不能是“一對(duì)多”。
例1. 給出學(xué)生初中學(xué)過的函數(shù)的傳統(tǒng)定義和幾個(gè)簡單的一次、二次函數(shù),通過畫圖表示這些函數(shù)的對(duì)應(yīng)關(guān)系,引導(dǎo)發(fā)現(xiàn)它們是特殊的映射進(jìn)而給出函數(shù)的近代定義(設(shè)a、b是兩個(gè)非空集合,如果按照某種對(duì)應(yīng)法則f,使得a中的任何一個(gè)元素在集合b中都有唯一的元素與之對(duì)應(yīng)則這樣的對(duì)應(yīng)叫做集合a到集合b的映射,它包括非空集合a和b以及從a到b的對(duì)應(yīng)法則f),并說明把函f:a→b記為y=f(x),其中自變量x的取值范圍a叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{ f(x):x∈a}叫做函數(shù)的值域。
并把函數(shù)的近代定義與映射定義比較使認(rèn)識(shí)到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的映射)。
再以讓判斷的方式給出以下關(guān)于函數(shù)近代定義的注意事項(xiàng):2. 函數(shù)是非空數(shù)集到非空數(shù)集的映射。
3. f表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中f的具體含義不一樣。
4. f(x)是一個(gè)符號(hào),不表示f與x的乘積,而表示x經(jīng)過f作用后的結(jié)果。
5. 集合a中的數(shù)的任意性,集合b中數(shù)的唯一性。
66. “f:a→b”表示一個(gè)函數(shù)有三要素:法則f(是核心),定義域a(要優(yōu)先),值域c(上函數(shù)值的集合且c∈b)。
三.講解例題
例1.問y=1(x∈a)是不是函數(shù)?
解:y=1可以化為y=0*x+1
畫圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對(duì)應(yīng)是“多對(duì)一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。
[注]:引導(dǎo)從集合,映射的觀點(diǎn)認(rèn)識(shí)函數(shù)的定義。
四.課時(shí)小結(jié):
1. 映射的定義。
2. 函數(shù)的近代定義。
3. 函數(shù)的三要素及符號(hào)的正確理解和應(yīng)用。
4. 函數(shù)近代定義的五大注意點(diǎn)。
五.課后作業(yè)及板書設(shè)計(jì)
書本p51 習(xí)題2.1的1、2寫在書上3、4、5上交。
預(yù)習(xí)函數(shù)三要素的定義域,并能求簡單函數(shù)的定義域。
函數(shù)(一)
一、映射:
2.函數(shù)近代定義: 例題練習(xí)
二、函數(shù)的定義 [注]1—5
1.函數(shù)傳統(tǒng)定義
三、作業(yè):
高一數(shù)學(xué)教案 15
1.1集合含義及其表示
教學(xué)目標(biāo):理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號(hào)及術(shù)語。
教學(xué)過程:
一、閱讀下列語句:
1)全體自然數(shù)0,1,2,3,4,5,2)代數(shù)式.
3)拋物線上所有的點(diǎn)
4)今年本校高一(1)(或(2))班的全體學(xué)生
5)本校實(shí)驗(yàn)室的所有天平
6)本班級(jí)全體高個(gè)子同學(xué)
7)著名的科學(xué)家
上述每組語句所描述的對(duì)象是否是確定的?
二、1)集合:
2)集合的元素:
3)集合按元素的個(gè)數(shù)分,可分為1)__________2)_________
三、集合中元素的三個(gè)性質(zhì):
1)___________2)___________3)_____________
四、元素與集合的關(guān)系:1)____________2)____________
五、特殊數(shù)集專用記號(hào):
1)非負(fù)整數(shù)集(或自然數(shù)集)______2)正整數(shù)集_____3)整數(shù)集_______
4)有理數(shù)集______5)實(shí)數(shù)集_____ 6)空集____
六、集合的表示方法:
1)
2)
3)
七、例題講解:
例1、中三個(gè)元素可構(gòu)成某一個(gè)三角形的三邊長,那么此三角形一定不是( )
A,直角三角形B,銳角三角形C,鈍角三角形D,等腰三角形
例2、用適當(dāng)?shù)姆椒ū硎鞠铝屑,然后說出它們是有限集還是無限集?
1)地球上的四大洋構(gòu)成的集合;
2)函數(shù)的全體值的集合;
3)函數(shù)的全體自變量的集合;
4)方程組解的.集合;
5)方程解的集合;
6)不等式的解的集合;
7)所有大于0且小于10的奇數(shù)組成的集合;
8)所有正偶數(shù)組成的集合;
例3、用符號(hào)或填空:
1) ______Q,0_____N,_____Z,0_____
2) ______,_____
3)3_____,4)設(shè),,則
例4、用列舉法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的數(shù)
2.圖中陰影部分點(diǎn)(含邊界)的坐標(biāo)的集合
課堂練習(xí):
例6、設(shè)含有三個(gè)實(shí)數(shù)的集合既可以表示為,也可以表示為,則的值等于___________
例7、已知:,若中元素至多只有一個(gè),求的取值范圍。
思考題:數(shù)集A滿足:若,則,證明1):若2,則集合中還有另外兩個(gè)元素;2)若則集合A不可能是單元素集合。
小結(jié):
作業(yè)班級(jí)姓名學(xué)號(hào)
1.下列集合中,表示同一個(gè)集合的是( )
A . M=,N= B. M=,N=
C. M=,N= D. M=,N=
2. M= ,X=,Y=,, .則( )
A . B. C. D.
3.方程組的解集是____________________.
4.在(1)難解的題目,(2)方程在實(shí)數(shù)集內(nèi)的解,(3)直角坐標(biāo)平面內(nèi)第四象限的一些點(diǎn),(4)很多多項(xiàng)式。能夠組成集合的序號(hào)是________________.
5.設(shè)集合A=,B=,C=,D=,E= 。
其中有限集的個(gè)數(shù)是____________.
6.設(shè),則集合中所有元素的和為
7.設(shè)x,y,z都是非零實(shí)數(shù),則用列舉法將所有可能的值組成的集合表示為
8.已知f(x)=x2-ax+b,(a,b R),A=,B= ,若A=,試用列舉法表示集合B=
9.把下列集合用另一種方法表示出來:
10.設(shè)a,b為整數(shù),把形如a+b的一切數(shù)構(gòu)成的集合記為M,設(shè),試判斷x+y,x-y,xy是否屬于M,說明理由。
11.已知集合A=
(1)若A中只有一個(gè)元素,求a的值,并求出這個(gè)元素;
(2)若A中至多只有一個(gè)元素,求a的取值集合。
12.若-3,求實(shí)數(shù)a的值。
【總結(jié)】20xx年已經(jīng)到來,新的一年數(shù)學(xué)網(wǎng)會(huì)為您整理更多更好的文章,希望本文高一數(shù)學(xué)教案:集合含義及其表示能給您帶來幫助!
【高一數(shù)學(xué)教案 】相關(guān)文章:
高一數(shù)學(xué)教案12-08
高一數(shù)學(xué)教案15篇12-11