亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

范文資料網(wǎng)>書稿范文>總結(jié)>《初中幾何知識點總結(jié)

初中幾何知識點總結(jié)

時間:2023-04-04 18:40:13 總結(jié) 我要投稿
  • 相關(guān)推薦

初中幾何知識點總結(jié)

  總結(jié)是指對某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗或情況加以總結(jié)和概括的書面材料,它可以提升我們發(fā)現(xiàn)問題的能力,讓我們一起認(rèn)真地寫一份總結(jié)吧。但是總結(jié)有什么要求呢?以下是小編收集整理的初中幾何知識點總結(jié),歡迎閱讀與收藏。

初中幾何知識點總結(jié)

初中幾何知識點總結(jié)1

  什么是幾何圖形:

  點、線、面、體這些可幫助人們有效的刻畫錯綜復(fù)雜的世界,它們都稱為幾何圖形(geometricfigure)

  幾何圖形一般分為立體圖形(solidfigure)和平面圖形(planefigure)。

  我們所熟悉的幾何圖形:

  正方形

  a-----邊長C=4aS=a2

  長方形

  a和b-----邊長C=2(a+b)S=ab

  三角形

  a,b,c-----三邊長h-----a邊上的高s-----周長的一半A,B,C-----內(nèi)角

  其中s=(a+b+c)/2S=ah/2=ab/2sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA) 四邊形

  d,D-----對角線長-----對角線夾角S=dD/2sin 平行四邊形

  a,b-----邊長h-----a邊的`高-----兩邊夾角S=ah=absin 菱形

  a-----邊長-----夾角D-----長對角線長d-----短對角線長S=Dd/2=a2sin

  梯形

  a和b-----上、下底長h-----高m-----中位線長S=(a+b)h/2=mh 圓

  r-----半徑d-----直徑C=d=2rS=r2=d2/4 扇形

  r-----扇形半徑a-----圓心角度數(shù)C=2r+2(a/360)S=r2(a/360) 弓形

  l-----弧長b-----弦長h-----矢高r-----半徑-----圓心角的度數(shù) S=r2/2(/180-sin)=r2arccos[(r-h)/r]-(r-h)(2rh-h2)1/2=r2/360-b/2[r2-(b/2)2]1/2=r(l-b)/2+bh/22bh/3

  圓環(huán)

  R-----外圓半徑r-----內(nèi)圓半徑D-----外圓直徑d-----內(nèi)圓直徑S=(R2-r2)=(D2-d2)/4

初中幾何知識點總結(jié)2

  1過兩點有且只有一條直線

  2兩點之間線段最短

  3同角或等角的補(bǔ)角相等

  4同角或等角的余角相等

  5過一點有且只有一條直線和已知直線垂直

  6直線外一點與直線上各點連接的所有線段中,垂線段最短

  7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行

  8如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9同位角相等,兩直線平行

  10內(nèi)錯角相等,兩直線平行

  11同旁內(nèi)角互補(bǔ),兩直線平行

  12兩直線平行,同位角相等

  13兩直線平行,內(nèi)錯角相等

  14兩直線平行,同旁內(nèi)角互補(bǔ)

  15定理三角形兩邊的和大于第三邊 16推論三角形兩邊的差小于第三邊

  17三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180

  18推論1直角三角形的兩個銳角互余

  19推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和

  20推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角

  21全等三角形的對應(yīng)邊、對應(yīng)角相等

  22邊角邊公理有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等

  23角邊角公理有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等

  24推論有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等

  25邊邊邊公理有三邊對應(yīng)相等的兩個三角形全等

  26斜邊、直角邊公理有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等

  27定理1在角的平分線上的點到這個角的兩邊的距離相等

  28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上

  29角的平分線是到角的兩邊距離相等的所有點的集合

  30等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等

  31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

  32等腰三角形的頂角平分線、底邊上的中線和高互相重合

  33推論3等邊三角形的各角都相等,并且每一個角都等于60

  34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

  35推論1三個角都相等的三角形是等邊三角形

  36推論2有一個角等于60的等腰三角形是等邊三角形

  37在直角三角形中,如果一個銳角等于30那么它所對的直角邊等于斜邊的一半

  38直角三角形斜邊上的中線等于斜邊上的一半

  39定理線段垂直平分線上的點和這條線段兩個端點的距離相等

  40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

  42定理1關(guān)于某條直線對稱的兩個圖形是全等形

  43定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線

  44定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上

  45逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

  46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a+b=c

  47勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a+b=c,那么這個三角形是直角三角形

  48定理四邊形的內(nèi)角和等于360

  49四邊形的外角和等于360

  50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)180

  51推論任意多邊的外角和等于360

  52平行四邊形性質(zhì)定理1平行四邊形的對角相等

  53平行四邊形性質(zhì)定理2平行四邊形的對邊相等

  54推論夾在兩條平行線間的平行線段相等

  55平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分

  56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形

  57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形

  58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形

  59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形

  60矩形性質(zhì)定理1矩形的四個角都是直角

  61矩形性質(zhì)定理2矩形的對角線相等

  62矩形判定定理1有三個角是直角的四邊形是矩形

  63矩形判定定理2對角線相等的平行四邊形是矩形

  64菱形性質(zhì)定理1菱形的四條邊都相等

  65菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角

  66菱形面積=對角線乘積的一半,即S=(ab)2

  67菱形判定定理1四邊都相等的四邊形是菱形

  68菱形判定定理2對角線互相垂直的平行四邊形是菱形

  69正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等

  70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  71定理1關(guān)于中心對稱的兩個圖形是全等的

  72定理2關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分

  73逆定理如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱

  74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等

  75等腰梯形的兩條對角線相等

  76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形

  77對角線相等的梯形是等腰梯形

  78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79推論1經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰

  80推論2經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊

  81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半

  82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)2S=Lh

  83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d

  84(2)合比性質(zhì)如果a/b=c/d,那么(ab)/b=(cd)/d

  85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n0),那么 (a+c+…+m)/(b+d+…+n)=a/b

  86平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例

  87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

  88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例

  90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

  91相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)

  92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

  93判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)

  94判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)

  95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似

  96性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比

  97性質(zhì)定理2相似三角形周長的比等于相似比

  98性質(zhì)定理3相似三角形面積的比等于相似比的平方

  99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101圓是定點的距離等于定長的點的集合

  102圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  103圓的外部可以看作是圓心的距離大于半徑的點的集合

  104同圓或等圓的半徑相等

  105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

  107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109定理不在同一直線上的三個點確定一條直線

  110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  112推論2圓的兩條平行弦所夾的弧相等

  113圓是以圓心為對稱中心的中心對稱圖形

  114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

  116定理一條弧所對的圓周角等于它所對的圓心角的一半

  117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118推論2半圓(或直徑)所對的圓周角是直角;90的圓周角所對的弦是直徑

  119推論3如果三角形一邊上的中線等于這邊的'一半,那么這個三角形是直角三角形

  120定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角

  121①直線L和⊙O相交d﹤r

 、谥本L和⊙O相切d=r

 、壑本L和⊙O相離d﹥r 122切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  123切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑

  124推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  125推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  126切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  127圓的外切四邊形的兩組對邊的和相等

  128弦切角定理弦切角等于它所夾的弧對的圓周角

  129推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

  130相交弦定理圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等

  131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

  132切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

  133推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

  134如果兩個圓相切,那么切點一定在連心線上

  135①兩圓外離d﹥R+r

 、趦蓤A外切d=R+r

  ③兩圓相交R-r﹤d﹤R+r(R﹥r)

 、軆蓤A內(nèi)切d=R-r(R﹥r)

 、輧蓤A內(nèi)含d﹤R-r(R﹥r)

  136定理相交兩圓的連心線垂直平分兩圓的公共弦

  137定理把圓分成n(n3):

 、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

 、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  138定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  139正n邊形的每個內(nèi)角都等于(n-2)180/n

  140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長

  142正三角形面積3a/4a表示邊長

  143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360,因此k(n-2)180/n=360化為(n-2)(k-2)=4

  144弧長計算公式:L=nR/180

  145扇形面積公式:S扇形=nR/360=LR/2

  146內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)

初中幾何知識點總結(jié)3

  什么是幾何圖形:

  點、線、面、體這些可幫助人們有效的刻畫錯綜復(fù)雜的世界,它們都稱為幾何圖形(geometricfigure)

  幾何圖形一般分為立體圖形(solidfigure)和平面圖形(planefigure)。

  我們所熟悉的幾何圖形:

  正方形

  a-----邊長C=4aS=a2

  長方形

  a和b-----邊長C=2(a+b)S=ab

  三角形

  a,b,c-----三邊長h-----a邊上的高s-----周長的.一半A,B,C-----內(nèi)角

  其中s=(a+b+c)/2S=ah/2=ab/2sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)

  四邊形

  d,D-----對角線長-----對角線夾角S=dD/2sin

  平行四邊形

  a,b-----邊長h-----a邊的高-----兩邊夾角S=ah=absin

  菱形

  a-----邊長-----夾角D-----長對角線長d-----短對角線長S=Dd/2=a2sin

  梯形

  a和b-----上、下底長h-----高m-----中位線長S=(a+b)h/2=mh

  

  r-----半徑d-----直徑C=d=2rS=r2=d2/4

  扇形

  r-----扇形半徑a-----圓心角度數(shù)C=2r+2(a/360)S=r2(a/360)

  弓形

  l-----弧長b-----弦長h-----矢高r-----半徑-----圓心角的度數(shù)

  S=r2/2(/180-sin)=r2arccos[(r-h)/r]-(r-h)(2rh-h2)1/2=r2/360-b/2[r2-(b/2)2]1/2=r(l-b)/2+bh/22bh/3

  圓環(huán)

  R-----外圓半徑r-----內(nèi)圓半徑D-----外圓直徑d-----內(nèi)圓直徑S=(R2-r2)=(D2-d2)/4

初中幾何知識點總結(jié)4

  三角形的知識點

  1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

  2、三角形的分類

  3、三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

  4、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

  5、中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

  6、角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

  7、高線、中線、角平分線的意義和做法

  8、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質(zhì)叫三角形的穩(wěn)定性。

  9、三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°

  推論1直角三角形的兩個銳角互余

  推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角和

  推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;三角形的內(nèi)角和是外角和的一半

  10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

  11、三角形外角的性質(zhì)

  (1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

  (2)三角形的一個外角等于與它不相鄰的兩個內(nèi)角和;

  (3)三角形的一個外角大于與它不相鄰的任一內(nèi)角; (4)三角形的外角和是360°。

  四邊形(含多邊形)知識點 、概念總結(jié)

  一、平行四邊形的定義、性質(zhì)及判定

  1、兩組對邊平行的四邊形是平行四邊形。

  2、性質(zhì):

  (1)平行四邊形的對邊相等且平行

  (2)平行四邊形的對角相等,鄰角互補(bǔ)

  (3)平行四邊形的對角線互相平分

  3、判定:

  (1)兩組對邊分別平行的四邊形是平行四邊形

  (2)兩組對邊分別相等的四邊形是平行四邊形

  (3)一組對邊平行且相等的四邊形是平行四邊形

  (4)兩組對角分別相等的四邊形是平行四邊形

  (5)對角線互相平分的四邊形是平行四邊形

  4、對稱性:平行四邊形是中心對稱圖形

  二、矩形的定義、性質(zhì)及判定

  1、定義:有一個角是直角的平行四邊形叫做矩形

  2、性質(zhì):矩形的四個角都是直角,矩形的對角線相等

  3、判定:

  (1)有一個角是直角的平行四邊形叫做矩形

  (2)有三個角是直角的四邊形是矩形

  (3)兩條對角線相等的平行四邊形是矩形

  4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。

  三、菱形的定義、性質(zhì)及判定

  1、定義:有一組鄰邊相等的平行四邊形叫做菱形

  (1)菱形的四條邊都相等

  (2)菱形的對角線互相垂直,并且每一條對角線平分一組對角

  (3)菱形被兩條對角線分成四個全等的直角三角形

  (4)菱形的面積等于兩條對角線長的積的一半

  2、s菱=爭6(n、6分別為對角線長)

  3、判定:

  (1)有一組鄰邊相等的平行四邊形叫做菱形

  (2)四條邊都相等的四邊形是菱形

  (3)對角線互相垂直的平行四邊形是菱形

  4、對稱性:菱形是軸對稱圖形也是中心對稱圖形

  四、正方形定義、性質(zhì)及判定

  1、定義:有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形

  2、性質(zhì):

  (1)正方形四個角都是直角,四條邊都相等

  (2)正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  (3)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形 (4)正方形的對角線與邊的夾角是45°

  (5)正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形

  3、判定:

  (1)先判定一個四邊形是矩形,再判定出有一組鄰邊相等 (2)先判定一個四邊形是菱形,再判定出有一個角是直角 4、對稱性:正方形是軸對稱圖形也是中心對稱圖形

  五、梯形的定義、等腰梯形的性質(zhì)及判定

  1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

  2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等

  3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形

  4、對稱性:等腰梯形是軸對稱圖形

  六、三角形的中位線平行于三角形的第三邊并等于第三邊的一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。

  七、線段的重心是線段的中點;平行四邊形的'重心是兩對角線的交點;三角形的重心是三條中線的交點。

  八、依次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形。

  九、多邊形

  1、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。

  2、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。

  3、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

  4、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

  5、多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。

  6、正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫做正多邊形。

  7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

  8、公式與性質(zhì)

  多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°

  9、多邊形外角和定理:

  (1)n邊形外角和等于n·180°-(n-2)·180°=360°

  (2)邊形的每個內(nèi)角與它相鄰的外角是鄰補(bǔ)角,所以n邊形內(nèi)角和加外角和等于n·180°

  10、多邊形對角線的條數(shù):

  (1)從n邊形的一個頂點出發(fā)可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形

  (2)n邊形共有n(n-3)/2條對角線

  圓知識點、概念總結(jié)

  1、不在同一直線上的三點確定一個圓。

  2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1:

 、(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2:

  圓的兩條平行弦所夾的弧相等

  3、圓是以圓心為對稱中心的中心對稱圖形

  4、圓是定點的距離等于定長的點的集合

  5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  6、圓的外部可以看作是圓心的距離大于半徑的點的集合

  7、同圓或等圓的半徑相等

  8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

  11、定理:圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角

  12、①直線L和⊙O相交d

 、谥本L和⊙O相切d=r

 、壑本L和⊙O相離d>r

  13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑

  15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  16、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  18、圓的外切四邊形的兩組對邊的和相等,外角等于內(nèi)對角

  19、如果兩個圓相切,那么切點一定在連心線上

  20、①兩圓外離d>R+r

 、趦蓤A外切d=R+r

 、蹆蓤A相交R-rr)

 、軆蓤A內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)

  21、定理:相交兩圓的連心線垂直平分兩圓的公共弦

  22、定理:把圓分成n(n≥3):

  (1)依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

  (2)經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  23、定理:任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  24、正n邊形的每個內(nèi)角都等于(n-2)×180°/n

  25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長

  27、正三角形面積√3a/4a表示邊長

  28、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29、弧長計算公式:L=n兀R/180

  30、扇形面積公式:S扇形=n兀R^2/360=LR/2

  31、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)

  32、定理:一條弧所對的圓周角等于它所對的圓心角的一半

  33、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  34、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  35、弧長公式l=axra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2xlxr

【初中幾何知識點總結(jié)】相關(guān)文章:

初中幾何教案09-05

初中物理知識點總結(jié)01-17

初中物理知識點總結(jié)02-06

初中化學(xué)知識點總結(jié)08-08

初中數(shù)學(xué)知識點總結(jié)04-30

初中酸堿鹽知識點總結(jié)03-03

初中語文知識點總結(jié)10-28

初中物理知識點總結(jié)(大全)10-28

人教版初中物理知識點總結(jié)10-28