- 平行四邊形教案 推薦度:
- 平行四邊形教案 推薦度:
- 平行四邊形教案 推薦度:
- 相關(guān)推薦
【精華】平行四邊形教案3篇
作為一名默默奉獻的教育工作者,就有可能用到教案,教案有利于教學(xué)水平的提高,有助于教研活動的開展?靵韰⒖冀贪甘窃趺磳懙陌!以下是小編幫大家整理的平行四邊形教案3篇,歡迎大家借鑒與參考,希望對大家有所幫助。
平行四邊形教案 篇1
教學(xué)內(nèi)容:
書本第43—45頁的例題,“試一試”和“想想做做”。
教學(xué)目標(biāo):
1、使學(xué)生在具體的活動中認識平行四邊形,知道它的基本特征,能正確判斷平行四邊形;認識平行四邊形的高和底,能正確測量和畫出它的高。
2、使學(xué)生在觀察、操作、比較、判斷等活動中,經(jīng)歷探索平行四邊形的基本特征的過程,進一步積累認識圖形的經(jīng)驗,發(fā)展空間觀念。
3、使學(xué)生體會平行四邊形在生活中的廣泛應(yīng)用,培養(yǎng)數(shù)學(xué)應(yīng)用意識,增強認識平面圖形的興趣。
教學(xué)重、難點:
認識平行四邊形的特征,畫平行四邊形的'高。
教學(xué)準(zhǔn)備:
課件、每組準(zhǔn)備小棒、釘子板、方格紙、直尺、三角尺
總課時:
28課時
教學(xué)過程:
一、生活引入,形成表象
1、教師出示生活情境圖,提問:在這些圖片中,都有一個共同的平面圖形,是什么?(平行四邊形)你能找到嗎?
指名學(xué)生指一指,課件演示。
2、師:生活中,你還在哪些地方能看到平行四邊形?
二、合作交流,探究新知
。ㄒ唬┨骄科叫兴倪呅蔚奶卣
1、小組合作,制作平行四邊形
師:你能想辦法做出一個平行四邊形嗎?
提出要求:每個同學(xué)在小組學(xué)具袋中,任選一種材料制作一個平行四邊形,做完之后,再和小組內(nèi)的同學(xué)說一說你的制作方法?
匯報交流(讓學(xué)生依次在投影上演示,并介紹制作過程)
2、對比猜測平行四邊形特征
師:同學(xué)們用不同的方法制作了許多大小不一的平行四邊形,那平行四邊形有什么特征呢?誰來猜測一下?
學(xué)生猜測,教師板書或板貼(并在后面打“?”)
3、小組探究,驗證平行四邊形的特征
師:同學(xué)們的猜測無外乎兩個方面,一方面是平行四邊形邊的特點,一方面平行四邊形角的特點。(教師同時板貼將學(xué)生的猜測進行歸類)那么就請同學(xué)們拿出你們手中的平行四邊形,小組合作,想辦法驗證黑板上的一點或幾點猜測。
學(xué)生小組活動,教師巡視指導(dǎo)。
匯報交流總結(jié):平行四邊形兩組對邊分別平行且相等,兩組對角分別相等,內(nèi)角和是360度。
4、判斷鞏固:想想做做第1題,并讓學(xué)生說說第二圖形不是平行四邊形的原因。
(二)自主學(xué)習(xí),認識底、高
1、出示一張平行四邊形的圖,提出:你能量出這個平行四邊形上下兩條邊間的距離嗎?拿出手中的作業(yè)紙,先用虛線畫出表示這組對邊距離的線段,再測量。
學(xué)生自己嘗試后交流。教師指導(dǎo)明確“平行線之間的垂直線段就是平行線之間的距離”。指出這條垂直線段是這個平行四邊形的一條高,這是它的底。標(biāo)出高和底。
2、教師平移此線段,提問是不是平行四邊形這個底上的高?有多少條?
3、什么是平行四邊形的高?什么是它的底呢?打開書44頁自學(xué)例題中的內(nèi)容。
指名匯報,通過自學(xué),你知道了什么?
4、出示試一試,你能量出下面每個平行四邊形的高和底各是多少厘米嗎?在書上完成。
匯報后,師指最后一個圖形的另外一組底,提問:如果以這條邊作底,這個還是它的高嗎?為什么?
師小結(jié):平行四邊形有兩組相對應(yīng)的底和高。
5、完成想想做做5,先指一指平行四邊形的底,再畫出這條底邊上的高。如果有錯誤,讓學(xué)生說說錯在哪里。然后讓學(xué)生說說做平行四邊形的高需要注意些什么?(底和高要對應(yīng),高畫成虛線,畫上直角標(biāo)記)
問:這節(jié)課咱們研究了哪種平面圖形?(板書課題:認識平行四邊形)你學(xué)到了哪些知識?關(guān)于平行四邊形你還想了解哪些知識?
三、實踐體驗,深化特性
1、想想做做4。師:你能把一張平行四邊形紙剪成兩部分,再拼成一個長方形嗎?先自己試一試,再在小組里交流你是怎么剪拼的。
指名匯報,你是怎樣剪的?誰來看著這個長方形,說說它的特征是什么?
2、想想做做6。剛才我們把平行四邊形變成了長方形,下面我們再做個游戲,讓長方形變成平行四邊形,想玩嗎?
出示想想做做6的幾個步驟。讓學(xué)生一步步操作,最后小組里觀察討論:長方形和平行四邊形的相同點與不同點。
3、出示集合圖,指出:如果把平行四邊形看做一個整體的話,長方形只是其中的一小部分。長方形是特殊的平行四邊形。
4、小結(jié)。
教師:出示平行四邊形演示變化過程,讓學(xué)生觀察,平行四邊形的形狀改變了,但是什么沒有改變?指出平行四邊形不改變邊長的情況下可以改變成不同形狀的平行四邊形,這就是平行四邊形的不穩(wěn)定性。請同學(xué)看書上P45頁“你知道嗎?”
提問:說一說,生活中平行四邊形的這種特點在哪些地方有應(yīng)用?大家課后做個有心人,搜集相關(guān)的資料吧。
四、全課總結(jié)師:通過這節(jié)課的學(xué)習(xí)你有哪些收獲?
平行四邊形教案 篇2
【教學(xué)目標(biāo)】
1、知識與技能:
探索與應(yīng)用平行四邊形的對角線互相平分的性質(zhì),理解平行線間的距離處處相等的結(jié)論,學(xué)會簡單推理。
2、過程與方法:
經(jīng)歷探索平行四邊形性質(zhì)的過程,進一步發(fā)展學(xué)生的邏輯推理能力及有條理的表達能力。
3、情感態(tài)度與價值觀:
在探索平行四邊形性質(zhì)的過程中,感受幾何圖形中呈現(xiàn)的數(shù)學(xué)美。讓學(xué)生學(xué)會在獨立思考的基礎(chǔ)上積極參與對數(shù)學(xué)問題的討論,享受運用知識解決問題的成功體驗,增強學(xué)好數(shù)學(xué)的自信心。
【教學(xué)重點】:
探索并掌握平行四邊形的對角線互相平分和平行線間的距離處處相等的性質(zhì)。
【教學(xué)難點】:
發(fā)展合情推理及邏輯推理能力
【教學(xué)方法】:
啟發(fā)誘導(dǎo)法,探索分析法
【教具準(zhǔn)備】:多媒體課件
【教學(xué)過程設(shè)計】
第一環(huán)節(jié)回顧思考,引入新課
什么叫平行四邊形?
平行四邊形都有哪些性質(zhì)?
利用平行四邊形的性質(zhì),我們可以解決相關(guān)的計算問題。阿凡提是傳說中很聰明的'人。一天,財主巴依遇到阿凡提,想考一考聰明的阿凡提,說:給你兩塊地,一塊是平行四邊形形狀的(如下圖,AB=10,OA=3,BC=8),還有一塊是邊長是7的正方形EFGH土地,讓你來選一下,哪一塊面積更大?
[學(xué)生活動]此時,學(xué)生的積極性被調(diào)動起來,努力試圖尋找各種途徑來求平行四邊形的面積,但找不到合適的解決辦法.
[教學(xué)內(nèi)容]教師乘機引出課題,明確學(xué)習(xí)任務(wù).
第二環(huán)節(jié)探索發(fā)現(xiàn),應(yīng)用深化
1、做一做:(電腦顯示P100“做一做”的內(nèi)容)
如圖4-2,□ABCD的兩條對角線AC,BD相交于點O,
(1)圖中有哪些三角形是全等的?有哪些線段是相等的?
(2)能設(shè)法驗證你的猜想嗎?
[教師活動]教師將前后四名同學(xué)分成一組,學(xué)生拿出事先準(zhǔn)備好的平行四邊形及實驗工具(刻度尺、剪刀、圖釘),嘗試在交流合作中動手探究平行四邊形的對角線有何性質(zhì).
2、觀察、討論:(小組交流)
通過以上活動,你能得到哪些結(jié)論?并由各小組派學(xué)生表述看法。
[教師活動]探究結(jié)束后,分組展示結(jié)果,教師利用課件展示“旋轉(zhuǎn)法”的實驗過程,增強教學(xué)的直觀性.
結(jié)論:平行四邊形的對角線互相平分。
[教師活動]“實驗都是有誤差的,我們能否對此進行理論證明?”
[學(xué)生活動]此問題難度不大.
[教師活動]教師讓學(xué)生口述證明過程.最后師生共同歸納出“平行四邊形的對角線互相平分”這條性質(zhì).
活動二
剛才財主巴依提出的問題你能解決嗎?
學(xué)生口述過程,教師最后給出規(guī)范的解題過程。
練一練:
財主不服氣,又想考阿凡提,說過點O做一直線EF,交邊AD于點E,交BC于點F.直線EF繞點O旋轉(zhuǎn)的過程中(點E與A、D不重合),你能知道這里有多少對全等三角形嗎?
[教師活動]此處組織學(xué)生搶答,互相補充完善后,學(xué)生答出了全部的全等三角形.
活動三
電腦顯示P101關(guān)于鐵軌的圖片
提出問題:“想一想”
已知,直線a//b,過直線a上任兩點A,B分別向直線b作垂線,交直線b于點C,點D,如圖,
(1)線段AC,BD所在直線有什么樣的位置關(guān)系?
(2)比較線段AC,BD的長。
引出平行線間距離的概念,并引導(dǎo)學(xué)生對比點到直線的距離,兩點間距離等概念。
(讓學(xué)生進一步感知生活中處處有數(shù)學(xué))
A.(學(xué)生思考、交流)
B.(師生歸納)
解(1)由AC⊥b,BD⊥b,得AC//BD。
(2)a//b,AC//BD,→四邊形ACDB是平行四邊形
→AC=BD
歸納:
若兩條直線平行,則其中一條直線上任意兩點到另一條直線的距離相等,這個距離稱為平行線間的距離。
即平行線間的距離相等。
[議一議]:
舉你能舉出反映“平行線之間的垂直段處處相等實例嗎”?
活動目的:
通過生活中的實例的應(yīng)用,深化對知識的理解。
第三環(huán)節(jié)鞏固反饋,總結(jié)提高
1、說一說下列說法正確嗎
、倨叫兴倪呅问禽S對稱圖形()
②平行四邊形的邊相等()
、燮叫芯間的線段相等()
、芷叫兴倪呅蔚膶蔷互相平分()
2、已知,平行四邊形ABCD的周長是28,對角線AC,BD相交于點O,且△OBC的周長比△OBA的周長大4,則AB=
3、已知P為平行四邊形ABCD的邊CD上的任意點,則△APB與平行四邊形ABCD的面積比為
4、平行四邊形ABCD中,AC,DB交于點O,AC=10。DB=12,則AB的取值范圍是什么?
5、平行四邊形ABCD的兩條對角線相交于O,OA,OB,AB的長度分別為3cm、4cm、5cm,求其它各邊以及兩條對角線的長度。
第四環(huán)節(jié)評價反思,目標(biāo)回顧
活動內(nèi)容:
本節(jié)課你有哪些收獲?你能將平行四邊形的性質(zhì)進行歸納嗎?
[布置作業(yè)]:
P102習(xí)題4.21,2,3
探究題已知如下圖,在ABCD中,AC與BD相交于點O,點E,F(xiàn)在AC上,且BE∥DF.求證:BE=DF
平行四邊形教案 篇3
教學(xué)目的:
1、深入了解平行四邊形的不穩(wěn)定性;
2、理解兩條平行線間的距離定義(區(qū)別于兩點間的距離、點到直線的距離)
3、熟練掌握平行四邊形的定義,平行四邊形性質(zhì)定理1、定理2及其推論、定理3和四個平行四邊形判定定理,并運用它們進行有關(guān)的論證和計算;
4、在教學(xué)中滲透事物總是相互聯(lián)系又相互區(qū)別的辨證唯物主義觀點,體驗“特殊--一般--特殊”的辨證唯物主義觀點。
教學(xué)重點:
平行四邊形的性質(zhì)和判定。
教學(xué)難點:
性質(zhì)、判定定理的運用。
教學(xué)程序:
一、復(fù)習(xí)創(chuàng)情導(dǎo)入
平行四邊形的性質(zhì):
邊:對邊平行(定義);對邊相等(定理2);對角線互相平分(定理3)夾在平行線間的平行線段相等。
角:對角相等(定理1);鄰角互補。
平行四邊形的判定:
邊:兩組 對邊平行(定義);兩組對邊相等(定理2);對角線互相平分(定理3);一組對邊平行且相等(定理4);兩組對角分別相等(定理1)
二、授新
1、提出問題:平行四邊形有哪些性質(zhì):判定平行四邊形有哪些方法:
2、自學(xué)質(zhì)疑:自學(xué)課本P79-82頁,并提出疑難問題。
3、分組討論:討論自學(xué)中不能解決的問題及學(xué)生提出問題。
4、反饋歸納:根據(jù)預(yù)習(xí)和討論的效果,進行點撥指導(dǎo)。
5、嘗試練習(xí):完成習(xí)題,解答疑難。
6、深化創(chuàng)新:平行四邊形的性質(zhì):
邊:對邊平行(定義);對邊相等(定理2);對角線互相平分(定理3)夾在平行線間的平行線段相等。
角:對角相等(定理1);鄰角互補。
平行四邊形的.判定:
邊:兩組 對邊平行(定義);兩組對邊相等(定理2);對角線互相平分(定理3);一組對邊平行且相等(定理4);兩組對角分別相等(定理1)
7、推薦作業(yè)
1、熟記“歸納整理的內(nèi)容”;
2、完成《練習(xí)卷》;
3、預(yù)習(xí):(1)矩形的定義?
(2)矩形的性質(zhì)定理1、2及其推論的內(nèi)容是什么?
。3)怎樣證明?
。4)例1的解答過程中,運用哪些性質(zhì)?
思考題
1、平行四邊形的性質(zhì)定理3的逆命題是否是真命題?根據(jù)題設(shè)和結(jié)論寫出已 知求證; 2、如何證明性質(zhì)定理3的逆命題? 3、有幾種方法可以證明? 4、例2的證明中,運用了哪些性質(zhì)及判定?是否有其他方法? 5、例3的證明中,運用了哪些性質(zhì)及判定?是否有其他方法?
跟蹤練習(xí)
1、在四邊形ABCD中,AC交BD 于點O,若AO=1/2AC,BO=1/2BD,則四邊形ABCD是平行四邊形。( )
2、在四邊形ABCD中,AC交BD 于點O,若OC= 且 ,則四邊形ABCD是平行四邊形。
3、下列條件中,能夠判斷一個四邊形是平行四邊形的是( )
。ˋ)一組對角相等; (B)對角線相等;
(C)兩條鄰邊相等; (D)對角線互相平分。
創(chuàng)新練習(xí)
已知,如圖,平行四邊形ABCD的AC和BD相交于O點,經(jīng)過O點的直線交BC和AD于E、F,求證:四邊形BEDF是平行四邊形。(用兩種方法)
達標(biāo)練習(xí)
1、已知如圖,O為平行四邊形ABCD的對角線AC的中點,EF經(jīng)過點O,且與AB交于E,與CD 交于F。求證:四邊形AECF是平行四邊形。
2、已知:如圖,平行四邊形ABCD的對角線AC、BD相交于點O,M、N分別是OA、OC的中點,求證:BM∥DN,且BM=DN 。
綜合應(yīng)用練習(xí)
1、下列條件中,能做出平行四邊形的是( )
。ˋ)兩邊分別是4和5,一對角線為10;
。˙)一邊為4,兩條對角線分別為2和5;
。–)一角為600,過此角的對角線為3,一邊為4;
。―)兩條對角線分別為3和5,他們所夾的銳角為450。
推薦作業(yè)
1、熟記“判定定理3”;
2、完成《練習(xí)卷》;
3、預(yù)習(xí):
(1)“平行四邊形的判定定理4”的內(nèi)容 是什么?
。2)怎樣證明?還有沒有其它證明方法?
(3)例4、例5還有哪些證明方法?
【平行四邊形教案】相關(guān)文章:
平行四邊形教案04-01
《平行四邊形的判定》教案06-03
《平行四邊形的認識》教案03-15
《平行四邊形的面積》教案02-17
平行四邊形面積教案02-09
認識平行四邊形教案03-05
平行四邊形的面積教案11-27
平行四邊形教案4篇05-12
平行四邊形和梯形教案03-11