- 實用平行四邊形教案 推薦度:
- 平行四邊形教案 推薦度:
- 平行四邊形教案 推薦度:
- 相關(guān)推薦
平行四邊形教案模板九篇
作為一名辛苦耕耘的教育工作者,常常要寫一份優(yōu)秀的教案,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當?shù)慕虒W方法。我們應(yīng)該怎么寫教案呢?以下是小編為大家整理的平行四邊形教案9篇,希望對大家有所幫助。
平行四邊形教案 篇1
教學內(nèi)容:教科書第12—13頁的例1、例2、例3,“試一試”和“練一練”,第14頁的練習二。
教學目標:
1.知識目標:使學生通過實際操作和討論思考,探索并掌握平行四邊形的面積公式,并能應(yīng)
用公式正確計算平行四邊形的面積。
2.能力目標:使學生經(jīng)歷觀察、操作、測量、填表、討論、分析、歸納等數(shù)學活動過程,進一步體會“等積變形”的思想方法。
3.情感目標:培養(yǎng)空間觀念,發(fā)展初步的推理能力。
教學過程:
一、復習導入。
1.說出下面每個圖形的名稱。(電腦出示)
2.在這幾個圖形中,你會求哪些圖形的面積呢?
3.大家想不想知道平行四邊形的面積怎么求?今天我們一起來研究“平行四邊形面積的計算”。(揭示課題)
二、探究新知。
1.教學例1。
(1)出示例l中的第一組圖形。
提出要求:這兒有兩個圖形,這兩個圖形的面積相等嗎?在小組里說一說你準備怎樣比較這兩個圖形的面積。學生分組活動后組織交流。
對學生的交流作適當點評,使學生明白兩種不同的比較方法都是可以的:即數(shù)方格比較大小或把左邊的圖形轉(zhuǎn)化后與右邊的圖形進行比較。
(2)出示例l中的第二組圖形。
提出要求:你能用剛才的方法比較這兩個圖形的大小嗎?
學生分組活動后組織交流,在學生的交流中,教師適當強調(diào)“轉(zhuǎn)化”的方法。
(3)小結(jié):把不熟悉的圖形轉(zhuǎn)化成學過的圖形,并用學過的知識解決問題,這是數(shù)學上一種很重要的方法——轉(zhuǎn)化。這種方法在數(shù)學學習中經(jīng)常要用到。
2.教學例2。
(1)出示畫在方格紙上的平行四邊形。提問:你能想辦法把圖中的.平行四邊形轉(zhuǎn)化成長方形嗎?
(2)學生操作,教師巡視指導。
(3)學生交流操作情況。
提出要求:誰愿意把你的轉(zhuǎn)化方法說給大家聽聽?(讓學生用實物投影演示剪、拼過程)
提問:有沒有不同的剪、拼方法? (繼續(xù)請學生演示)
教師用課件演示各種轉(zhuǎn)化方法,進行小結(jié)。
(4)討論:剛才大家把平行四邊形轉(zhuǎn)化成長方形時,都是沿著平行四邊形的一條高剪的。大家為什么要沿著高剪開?
啟發(fā)學生在討論中理解:沿著高剪開,能使拼成的圖形出現(xiàn)直角,從而符合長方形的特征。
(5)小結(jié):沿著平行四邊形的任意一條高剪開,再通過平移,都可以把平行四邊形轉(zhuǎn)化成一個長方形。
3.教學例3。
(1)提問:是不是任意一個平行四邊形都能轉(zhuǎn)化成長方形?平行四邊形轉(zhuǎn)化成長方形后,它的面積大小有沒有變?與原來的平行四邊形之間有什么聯(lián)系?
(2)操作:請大家從教科書第123頁上選一個平行四邊形剪下來,先把它轉(zhuǎn)化成長方形,并求出面積,再填寫下表:
轉(zhuǎn)化成的長方形 平行四邊形
長(cm) 寬(cm) 面積(c㎡) 底(cm) 高(cm) 面積(c㎡)
(3)小組討論:
、俎D(zhuǎn)化成的長方形與平行四邊形面積相等嗎?
、陂L方形的長和寬與平行四邊形的底和高有什么關(guān)系?
、鄹鶕(jù),長方形的面積公式,怎樣求平行四邊形的面積?
(4)反饋、交流,抽象出面積公式。
根據(jù)學生的討論進行如.下的板書:
因為 長方形的面積二長×寬
所以 平行四邊形的面積二底×高
(5)用字母表示公式。
如果用S表示平行四邊形的面積,用a和h分別表示平行四邊形的底和高,那么你能用字母寫出平行四邊形的面積公式嗎?
結(jié)合學生的回答,板書:
S=ah
(6)指導完成“試一試”。
先讓學生根據(jù)題意獨立解答,再通過指名板演和評點,明確應(yīng)用公式求平行四邊形面積一般要有兩個條件,即底和高。
三、鞏固深化。
1.指導完成“練一練”。先讓學生獨立計算,再讓學生說說每個平行四邊形的底和高分別是多少,計算時應(yīng)用了什么公式。
2.指導完成練習二第1題。
(1)明確要求,鼓勵學生嘗試操作。
(2)討論:長方形的長、寬、面積各是多少?要使畫出的平行四邊形面積與長方形相等,它的底和高可以分別是多少?
(3)學生繼續(xù)操作后展示作品。引導學生對展示的平行四邊形進行判斷,是否符合題目的要求。
3.指導完成練習二第2題。
先讓學生指出每個平行四邊形的底和高,再讓學生各自測量計算。
提醒學生:測量的結(jié)果取整厘米數(shù)。
4.指導完成練習二第3、4兩題。
先讓學生獨立解答,再通過交流說說自己解決問題的思路。
5.指導完成練習二第5題。
(1)同桌兩人分別按要求做出長12厘米,寬7厘米的長方形。一個長方形不動,另一個長方形拉成平行四邊形,平放在桌上。
(2)指導觀察、思考。
要求學生認真觀察做成的長方形和用長方形拉成的平行四邊形,想一想,它們的周長相等嗎?為什么?面積呢?
(3)指導測量、計算,驗證猜想。
(4)連續(xù)拉動長方形,啟發(fā)思考面積的變化有什么特點。
四、全課小結(jié)。
通過今天的學習活動,你學會了什么?有哪些收獲?
教學后記
通過平移轉(zhuǎn)化成長方形計算面積, 使學生了解用數(shù)方格方法計算面積時不滿整格的都按半格計算,同時初步學會用這方法估計并計算不規(guī)則物體表面的面積。 使學生體會平移后圖形的面積不變,感受轉(zhuǎn)化的策略。體會平移后圖形的面積不變。
平行四邊形教案 篇2
《平行四邊形的初步認識》第1課時教案分析
備課時間:20xx年9月5日
上課時間: 年 月 日
教學內(nèi)容:教材第12~16頁例1和“想想做做”第1~5題。
教學目標:
1、使學生通過觀察、比較、分類,認識四邊形、五邊形、六邊形等平面圖形,能判斷一個由線段圍成的圖形是幾邊形,能按要求圍出或剪出多邊形。
2、使學生經(jīng)歷從實際中抽象出圖形,以及觀察、實踐操作等數(shù)學活動,進一步感受分類的思想,積累學習平面圖形的初步經(jīng)驗;體會不同圖形邊數(shù)的'特點,發(fā)展相應(yīng)的空間觀念。
3、使學生逐步形成參與數(shù)學活動的意識,培養(yǎng)獨立思考、主動交流的學習習慣。
教學重點:
認識四邊形、五邊形、六邊形等平面圖形。
教學難點:
能根據(jù)要求把一個多邊形分成不同的圖形或者是數(shù)圖形的個數(shù)。
教具或?qū)W具準備:
師生每人準備小棒若干根,釘子板1個,四邊形紙片2張,正方形紙片1張,剪刀1把。
教學過程:
一、初步感知
1.回顧已知圖形。
今天,老師帶大家到有趣的“圖形王國”去游一游、看一看。(出示如下圖形)請看,這里有一些我們學過的圖形。你能說出它們的名稱嗎?
(1)讓學生明確第(1)題的要求。
出示兩張四邊形紙片,讓學生想想怎樣剪成兩個三角形,怎樣剪成一個三角形和一個四邊形。
學生操作剪圖形,教師巡視。
(2)讓學生明確第(2)題的要求。
出示正方形紙片,要求學生想想怎樣可以剪下一個三角形。
學生操作剪下一個三角形。
展示交流:你是怎樣剪的?剩下的部分是什么圖形?
6、做“想想做做”第5題。
讓學生找一找、數(shù)一數(shù),能找到幾個就找?guī)讉;然后交流自己找到了幾個四邊形。
四、總結(jié)評價
交流:今天我們又去了圖形王國,你有哪些新收獲?你是怎樣學習這些知識的?
五、布置作業(yè)
《補充習題》第 頁。
板書設(shè)計:
課后筆記:
平行四邊形教案 篇3
教學內(nèi)容:
教科書數(shù)學第八冊第22~26頁
教學目標:
1.通過觀察操作認識平行四邊形的特征,使學生在理解的基礎(chǔ)上掌握平行四邊形的面積計算公式,能正確地計算平行四邊形的面積。
2.經(jīng)歷探索平行四邊形面積計算公式的過程,使學生初步認識轉(zhuǎn)化的思考方法在研究平行四邊形面積時的運用。
3.培養(yǎng)觀察、比較、推理和概括能力,滲透轉(zhuǎn)化思想的空間觀念。
教學重難點:
探索平行四邊形面積計算公式的推導過程。
教具準備:
1.課件
2.教師準備一個平行四邊形的紙片。
3.學生準備好學具
教學過程:
活動一:認識平行四邊形的特征。
信息窗1,學生觀察。
師:你發(fā)現(xiàn)了什么信息?你想提一個什么數(shù)學問題?學生以小組為單位討論。
。ㄉ涣饔懻摰那闆r)
平行四邊形的特征:對邊平行且相等,對角相等。
師:什么叫平行四邊形?(兩組對邊分別平行的四邊形叫做平行四邊形。)
師:先領(lǐng)學生復習平行四邊形的底和高。再讓學生指出平行四邊形的底,指出它的高來。然后讓每個學生在自己準備的平行四邊形上畫高。(教師巡視,注意畫得是否正確。)
活動二:學習平行四邊形面積的計算公式。
師:解決1號蝦池的面積是多少。
我們已經(jīng)知道1號蝦池的形狀是平行四邊形的,要求1號蝦池的面積,就是求平行四邊形的'面積,那么怎樣求平行四邊形的面積?請大家猜測一下。
學生活動:用手中的學具操作一下。
師:現(xiàn)在交流你們想出的方法。
師:同學們有各自的猜想,到底誰的對呢?用什么辦法來驗證。
師:哪個小組來匯報一下你們是怎樣來驗證的 ,你們的結(jié)論是什么?
提問:它們的面積怎么樣?平行四邊形的底和長方形的長怎么樣?平行四邊形的高和長方形的寬呢?
啟發(fā)學生把比較的結(jié)果重復說一遍。平行四邊形的底和長方形的長,平行四邊形的高和長方形的寬分別相等,它們的面積也相等。
通過操作總結(jié)平行四邊形面積的計算公式。
。1)從上面的比較中,你發(fā)現(xiàn)平行四邊形的底、高和面積與長方形的長、寬和面積之間有什么聯(lián)系?你能不能把一個平行四邊形轉(zhuǎn)化成一個長方形呢?想一想,該怎么做?讓學生拿出準備好的平行四邊形進行剪拼。(學生剪拼時,教師巡視。)然后指名到前邊演示。
。2)教師示范平行四邊形轉(zhuǎn)化成長方形的過程。
剛才發(fā)現(xiàn)同學們把平行四邊形轉(zhuǎn)化成長方形時,就把從平行四邊形左邊剪下的直角三角形直接放在剩下的梯形的右邊,拼成長方形。在變換圖形的位置時,怎樣按照一定的規(guī)律做呢?現(xiàn)在看老師在演示。
教師歸納整理:任意一個平行四邊形都可以轉(zhuǎn)化成一個長方形,它的面積和原來的平行四邊形的面積相等,它的長、寬分別和原來的平行四邊形的底、高相等。
引導學生總結(jié)平行四邊形面積計算公式。
這個長方形的面積怎么求?(指名回答后,在長方形右面板書:長方形的面積=長寬)
那么,平行四邊形的面積怎么求?(指名回答后,在平行四邊形右面板書:平行四邊形的面積=底高。)
教學用字母表示平行四邊形的面積公式。
板書:S=ah,
S=ah,或者S=ah。
應(yīng)用總結(jié)出的面積公式計算平行四邊形的面積。
師:現(xiàn)在來求:1號蝦池的面積是多少?
學生列式:90X60=5400(平方米)
活動三:
解決2號蝦池能放養(yǎng)多少尾蝦苗?
交流答案,交流解題思路。
活動四:鞏固練習
自主練習的1、2、5
活動五:
課堂小結(jié):
這節(jié)課我們共同研究了什么?
怎樣求平行四邊形的面積?
平行四邊形的面積計算公式是怎樣推導出來的?
平行四邊形教案 篇4
教學目標:
結(jié)合生活情境和實際操作,直觀地認識平行四邊形。
教學設(shè)計:
(一)創(chuàng)設(shè)活動情境
師:同學們,你們喜歡變魔術(shù)嗎?
(生自由回答。)
師:現(xiàn)在老師要變魔術(shù)給你們看一看。
(教師拿出一個長方形教具,拉動長方形框架對角使其變?yōu)榱硪粋圖形。向不同的方向拉,這樣反復做幾次。)
師:你們想不想試一試? (學生躍躍欲試。)
(二)探索新知
1.做一做
(1)師:同學們,你們可以親自動手做一做。你在拉動時注意觀察拉動后的長方形發(fā)生了哪些變化?這個新圖形又是什么樣的?并把自己的想法與同伴說一說。
(以小組為單位開始活動,教師在小組內(nèi)隨時指導。)
(通過動手操作,學生不難發(fā)現(xiàn)長方形拉動后角不再是直角了或是角的大小變了,但邊的長短沒有變。)
(2)以小組匯報方式在全班反饋:新圖形與長方形的聯(lián)系與區(qū)別,描述新圖形的形狀。
(學生語言表達不一定清楚,但只要意思對,教師這時都要給予鼓勵。)
(3)你們知道長方形變化后得到的是什么圖形嗎?
(學生回答。這時有的學生能結(jié)合自己的'生活經(jīng)驗說出這是平行四邊形,如說不出教師可以直接揭示。)
(設(shè)計意圖通過動手操作,讓學生根據(jù)自己的活動體驗、小組交流自主發(fā)現(xiàn)平行四邊形與長方形的聯(lián)系與區(qū)別。)
2.說一說
(1)師:這樣的圖形你們在生活中見過嗎?在哪兒?
(給學生思考時間,引導學生在小組內(nèi)說一說。)
(設(shè)計意圖讓學生先獨立思考是為了有較完整的思維,小組交流是讓每個學生都能參與進來。)
(2)小組形式匯報反饋。
當學生語言表達不清時,要在尊重學生的基礎(chǔ)上,鼓勵他把話說完整。
(3)課件演示生活中見到的平行四邊形。
(設(shè)計意圖通過真實的生活情境進一步認識平行四邊形,讓學生感到平行四邊形離我們并不遠。)
3.畫一畫
(1)師:你們想把剛才在生活中找到的這些平行四邊形在點子圖中畫出來嗎?
(2)出示附頁3中的點子圖。學生動手畫一畫。
(對有困難的學生,教師要隨機指導。)
(3)展示作品,引導學生參與評價。
(設(shè)計意圖尊重學生的個性發(fā)展,在評價中自我反思。)
4.拼一拼
(以游戲的方式進行。)
(1)師:現(xiàn)在我們來做拼圖游戲,用你們手中的七巧板來拼一拼今天我們認識的平行四邊形。
(2)生進行拼圖游戲,教師巡視指導。
(鼓勵學生用多種組合拼出平行四邊形。學生拼圖過程中可以與同伴隨意交流。)
(設(shè)計意圖學生經(jīng)過以上的數(shù)學活動,可能已經(jīng)疲勞了,根據(jù)兒童的心理特點,此活動以游戲的方式進行,讓學生在輕松、愉快的氣氛中拼一拼,進一步直觀認識平行四邊形。)
(三)小結(jié)本節(jié)課內(nèi)容,布置實踐作業(yè)
這節(jié)課我們認識了一個新圖形――平行四邊形,并知道在我們的生活中可以找到它。請你們對生活中物體再進行觀察,去找一找我們今天認識的這個新圖形。
平行四邊形教案 篇5
一、學習目標
。、經(jīng)歷探索多項式與多項式相乘的運算法則的過程,發(fā)展有條理的思考及語言表達能力。
2、 會進行簡單的多項式與多項式的乘法運算
二、學習過程
。ㄒ唬┳詫W導航
1、創(chuàng)設(shè)情境
某地區(qū)在退耕還林期間,將一塊長m米、寬a米的長方形林區(qū)的長、寬分別增加n米和b米,用兩種方法表示這塊林區(qū)現(xiàn)在的面積。
這塊林區(qū)現(xiàn)在的長為 米,寬為 米。因而面積為________米2。
還可以把這塊林地分為四小塊,它們的面積分別為 米2, 米2,_______米2, 米2。故這塊地的面積為 。
由于這兩個算式表示的都是同一塊地的面積,則有 =
如果把(m+n)看作一個整體,你還能用別的方法得到這個等式嗎?
2、概括:
多項式乘以多項式的法則:
3、計算
。1) (2)
4、練一練
(1)
。ǘ┖献鞴リP(guān)
1、某酒店的廚房進行改造,在廚房的中間設(shè)計一個準備臺,要求四面的過道寬都為x米,已知廚房的長寬分別為8米和5米,用代數(shù)式表示該廚房過道的總面積。
2、解方程
(三)達標訓練
1、填空題:
。1) = =
。2) = 。
2、計算
。1) (2)
。3) (4)
。ㄋ模┨嵘
1、怎樣進行多項式與多項式的乘法運算?
2、若 的乘積中不含 和 項,則a= b=
應(yīng)用題
第三十五講 應(yīng)用題
在本講中將介紹各類應(yīng)用題的解法與技巧.
當今數(shù)學已經(jīng)滲入到整個社會的各個領(lǐng)域,因此,應(yīng)用數(shù)學去觀察、分析日常生活現(xiàn)象,去解決日常生活問題,成為各類數(shù)學競賽的一個熱點.
應(yīng)用性問題能引導學生關(guān)心生活、關(guān)心社會,使學生充分到數(shù)學與自然和人類社會的密切聯(lián)系,增強對數(shù)學的理解和應(yīng)用數(shù)學的信心.
解答應(yīng)用性問題,關(guān)鍵是要學會運用數(shù)學知識去觀察、分析、概括所給的實際問題,揭示其數(shù)學本質(zhì),將其轉(zhuǎn)化為數(shù)學模型.其求解程序如下:
在初中范圍內(nèi)常見的數(shù)學模型有:數(shù)式模型、方程模型、不等式模型、函數(shù)模型、平面幾何模型、圖表模型等.
例題求解
一、用數(shù)式模型解決應(yīng)用題
數(shù)與式是最基本的數(shù)學語言,由于它能夠有效、簡捷、準確地揭示數(shù)學的本質(zhì),富有通用性和啟發(fā)性,因而成為描述和表達數(shù)學問題的重要方法.
【例1】(20xx年安徽中考題)某風景區(qū)對5個旅游景點的門票價格進行了調(diào)整,據(jù)統(tǒng)計,調(diào)價前后各景點的游客人數(shù)基本不變。有關(guān)數(shù)據(jù)如下表所示:
景點ABCDE
原價(元)1010152025
現(xiàn)價(元)55152530
平均日人數(shù)(千人)11232
。1)該風景區(qū)稱調(diào)整前后這5個景點門票的平均收費不變,平均日總收入持平。問風景區(qū)是怎樣計算的?
。2)另一方面,游客認為調(diào)整收費后風景區(qū)的平均日總收入相對于調(diào)價前,實際上增加了約9.4%。問游客是 怎樣計算的?
。3)你認為風景區(qū)和游客哪一個的說法較能反映整體實際?
思路點撥 (1)風景區(qū)是這樣計算的:
調(diào)整前的平均價格: ,設(shè)整后的平均價格:
∵調(diào)整前后的平均價格不變,平均日人數(shù)不變.
∴平均日總收入持平.
。 2)游客是這樣計算的:
原平均日總收入:10×1+10×1+15×2+20×3+25×2=160(千元)
現(xiàn)平均日總收入:5×1+5×1+15×2+25×3+30×2=175(千元)
∴平均日總收入增加了
(3)游客的說法較能反映整體實際.
二、用方程模型解應(yīng)用題
研究和解決生產(chǎn)實際和現(xiàn)實生恬中有關(guān)問題常常要用到方程<組)的知識,它可以幫助人們從數(shù)量關(guān)系和相等關(guān)系的角度去認識和理解現(xiàn)實世界.
【例2】 (重慶中考題)某中學新建了一棟4層的教學大樓,每層樓有8間教室,進出這棟大樓共有4道門,其中兩道正門大小相同,兩道側(cè)門大小也相同.安全檢查中,對4道門進行了測試:當同時開啟一道正門和兩道側(cè)門時,2min內(nèi)可以通過560名學生;當同時開啟一道正門和一道側(cè)門時,4mln內(nèi)可以通過800名學生.
(1)求平均每分鐘一道正門和一道側(cè)門各可以通過多少名學生?
(2)檢查中發(fā)現(xiàn),緊急情況時因?qū)W生擁擠,出門的效率降低20%.安全檢查規(guī)定:在緊急情況下全大樓的學生應(yīng)在5min內(nèi)通過這4道門安全撤離.假設(shè)這棟教學大樓每間教室最多有45名學生,問:建造的這4道門整否符合安全規(guī)定?請說明理由.
思路點撥 列方程(組)的關(guān)鍵是找到題中等量關(guān)系:兩種測試中通過的學生數(shù)量.設(shè)未知數(shù)時一般問什么設(shè)什么.“符合安全規(guī)定”之義為最大通過量不小于學生總數(shù).
(1)設(shè)平均每分鐘一道正門可以通過x名學生,一道側(cè)門可以通過y名學生,由題意得:
,解得:
(2)這棟樓最多有學生4×8×4 5=1440(名).
擁擠時5min4道門能通過.
5×2(120+80)(1-20%)=1600(名),
因1600>1440,故建造的4道門符合安全規(guī)定.
三、用不等式模型解應(yīng)用題
現(xiàn)實世界中的不等關(guān)系是普遍存在的,許多問題有時并不需要研究它們之間的相等關(guān)系,只需要確定某個量的變化范圍,即可對所研究的問題有比較清楚的認識.
【例3】 (蘇州中考題)我國東南沿海某地的風力資源豐富,一年內(nèi)月平均的風速不小于3m/s的時間共約160天,其中日平均風速不小于6m/s的時間占60天.為了充分利用“風能”這種“綠色資源”,該地擬建一個小型風力發(fā)電場,決定選用A、B兩種型號的風力發(fā)電機,根據(jù)產(chǎn)品說明,這兩種風力發(fā)電機在各種風速下的日發(fā)電量(即一天的發(fā)電量)如下表:一天的發(fā)電量)如下表:
日平均風速v(米/秒)v<33≤v<6v≥6
日發(fā)電量 (千瓦?時)A型發(fā)電機O≥36≥150
B型發(fā)電機O≥24≥90
根據(jù)上面的數(shù)據(jù)回答:
(1)若這個發(fā)電場購x臺A型風力發(fā)電機,則預(yù)計這些A型風力發(fā)電機一年的發(fā)電總量至少為 千瓦?時;
(2)已知A型風力發(fā)電機每臺O.3萬元,B型風力發(fā)電機每臺O.2萬元.該發(fā)電場擬購置風力發(fā)電機共10臺,希望購機的費用不超過2.6萬元,而建成的風力發(fā)電場每年的發(fā)電總量不少于102000千瓦?時,請你提供符合條件的購機方案.
根據(jù)上面的數(shù)據(jù)回答:
思路點撥 (1) (100×36+60×150)x=12600x;
(2)設(shè)購A型發(fā)電機x臺,則購B型發(fā)電機(10—x)臺,
解法一根據(jù)題意得:
解得5≤x ≤6.
故可購A型發(fā)電機5臺,B型發(fā)電機5臺;或購A型發(fā)電機6臺,B型發(fā)電視4臺.
四、用函數(shù)知識解決的應(yīng)用題
函數(shù)類應(yīng)用問題主要有以下兩種類型:(1)從實際問題出發(fā),引進數(shù)學符號,建立函數(shù)關(guān)系;(2)由提供的基本模型和初始條件去確定函數(shù)關(guān)系式.
【例4】 (揚州)楊嫂在再就業(yè)中心的扶持下,創(chuàng)辦了“潤楊”報刊零售點.對經(jīng)營的某種晚報,楊嫂提供丁如下信息:
、儋I進每份0.20元,賣出每份0.30元;
②一個月內(nèi)(以30天計),有20天每天可以賣出200份,其余10天每天只能賣出120份;
、垡粋月內(nèi),每天從報社買進的報紙份數(shù)必須相同.當天賣不掉的報紙,以每份0.10元退回給報社;
(1)填表:
一個月內(nèi)每天買進該種晚報的份數(shù)100150
當月利潤(單位:元)
(2)設(shè)每天從報社買進該種晚報x份,120≤x≤200時,月利潤為y元,試求出y與x的函數(shù)關(guān)系式,并求月利潤的最大值.
思路點撥(1)填表:
一個月內(nèi)每天買進該種晚報的份數(shù)100150
當月利潤(單位:元)300390
(2)由題意可知,一個月內(nèi)的20天可獲利潤:
20×=2x(元);其余10天可獲利潤:
10=240—x(元);
故y=x+240,(120≤x≤200), 當x=200時,月利潤y的最大值為440元.
注 根據(jù)題意,正確列出函數(shù)關(guān)系式,是解決問題的關(guān)鍵,這里特別要注意自變量x的取值范圍.
另外,初三還會提及統(tǒng)計型應(yīng)用題,幾何型應(yīng)用題.
【例5】 (桂林市)某公司需在一月(31天)內(nèi)完成新建辦公樓的裝修工程.如果由甲、乙兩個工程隊合做,12天可完成;如果由甲、乙兩隊單獨做,甲隊比乙隊少用10天完成.
(1)求甲、乙兩工程隊單獨完成此項工程所需的天數(shù).
(2)如果請甲工程隊施工,公司每日需付費用200 0元;如果請乙工程隊施工,公司每日需付費用1400元.在規(guī)定時間內(nèi):A.請甲隊單獨完成此項工程;B.請乙隊單獨完成此項工 程; C.請甲、乙兩隊合作完成此項工程.以上方案哪一種花錢最少?
思路點撥 這是一道策略優(yōu)選問題.工程問題中:工作量=工作效率×工時.
(1)設(shè)乙工程隊單獨完成此項工程需x天,根據(jù)題意得:
, x=30合題意,
所以,甲工程隊單獨完成此項工程需用20天,乙隊需30天.
(2)各種方案所需的費用分別為:
A.請甲隊需20xx×20=40000元;
B.請乙隊需1400×30=4200元;
C.請甲、乙兩隊合作需(20xx+1400)×12=40800元.
所隊單獨請甲隊完成此項工程花錢最少.
【例6】 (2全國聯(lián)賽初賽題)一支科學考察隊前往某條河流的上游去考察一個生態(tài)區(qū),他們以每天17km的速度出發(fā),沿河岸向上游行進若干天后到達目的地,然后在生態(tài)區(qū)考察了若干天,完成任務(wù)后以每天25km的速度返回,在出發(fā)后的第60天,考察隊行進了24km后回到出發(fā)點,試問:科學考察隊的生態(tài)區(qū)考察了多少天?
思路點撥 挖掘題目中隱藏條件是關(guān)鍵!
設(shè)考察隊到 生態(tài)區(qū)去用了x天,返回用了y天,考察用了z天,則x+y+z=60,
17x-25y=-1,即25y-17x=1. ①
這里x、y是正整數(shù),現(xiàn)設(shè) 法求出①的一組合題意的解,然后計算出z的值.
為此,先求出①的一組特殊解(x0,y0),(這里x0,y0可以是負整數(shù)).用輾轉(zhuǎn)相除法.
25=l ×17+8,17=2×8+1,故1=17—2×8=17-2×(25—17)=3 ×17-2×25.
與①的左端比較可知,x0 =-3,y0=-2.
下面再求出①的合題意的解.
由不定方程的知識可知,①的一切整數(shù)解可表示為x=-3+25t,y=-2+17t,
∴ x+y=42t-5,t為整數(shù).按題意0 ∴z=60—(x+y)=23. 答:考察隊在生態(tài)區(qū)考察的天數(shù)是23天. 注 本題涉及到的未知量多,最終轉(zhuǎn)化為二元一次不定方程來解,希讀者仔細咀嚼所用方法. 【例7】 (江蘇省第17屆初中競賽題)華鑫超市對顧客實行優(yōu)惠購物,規(guī)定如下: (1)若一次購物少于200元,則不予優(yōu)惠; (2)若一次購物滿200元,但不超過500元,按標價給予九折優(yōu)惠; (3)若一次購物超過500元,其中500元部分給予九折優(yōu)惠,超過500元部分給予八折 優(yōu)惠. 小明兩次去該超市購物,分別付款198元與554元.現(xiàn)在小亮決定一次去購 買小明分兩次購買的同樣多的物品,他需付款多少? 思路點撥 應(yīng)付198元購物款討論: 第一次付款198元,可是所購物品的實價,未 享受優(yōu)惠;也可能是按九折優(yōu)惠后所付的款.故應(yīng)分兩種情況加以討論. 情形1 當198元為購物不打折付的錢時,所購物品的原價為198元 . 又554=450+104,其中450元為購物500元打九折付的錢,104元為購物打八折付的錢;104÷0. 8 =130(元). 因此,554元所購物品的原價為130+500=630(元),于是購買小呀花198 +630=828(元)所購的全部物品,小亮一次性購買應(yīng)付500×0.9+(828-500)×0.8=712.4(元). 情形2 當198元為購物打九折付的錢時,所購物品的原價為198 ÷0.9=220(元) .仿情形1的討論,,購220+630=850{元}物品一次性付款應(yīng)為500×0.9+(850-500)×0.8=730(元). 綜上所述,小亮一次去超市購買小明已購的同樣多的物品,應(yīng)付款712.40元或730元 【例8】 (20xx年全國數(shù)學競賽題)某項工程,如果由甲、乙兩隊承包,2 天完成,需180000元;由乙、丙兩隊承包,3 天完成,需付150000元;由甲、丙兩隊承包,2 天完成,需付160000元.現(xiàn)在工程由一個隊單獨承包,在保證一周完成的前提下,哪個隊承包費用最少? 思路點撥 關(guān)鍵問題是甲、乙、丙單獨做各需的天數(shù)及獨做時各方日付工資.分兩個層次考慮: 設(shè)甲、乙、丙單獨承包各需x、y、z天完成. 則 ,解得 再設(shè)甲、乙、丙單獨工作一天,各需付u、v、w元, 則 ,解得 于是,由甲隊單獨承包,費用是45500×4=182000 (元). 由乙隊單獨承包,費用是29500×6= 177000 (元). 而丙隊不能在一周內(nèi)完成.所以由乙隊承包費用最少. 學歷訓練 (A級) 1.(河南)在防治“SARS”的戰(zhàn)役中,為防止疫情擴散,某制藥廠接到了生產(chǎn)240箱過氧乙酸消毒液的任務(wù).在生產(chǎn)了60箱后,需要加快生產(chǎn),每天比原來多生產(chǎn)15箱,結(jié)果6天就完成了任務(wù).求加快速度后每天生產(chǎn)多少箱消毒液? 2.(山東省競賽題)某市為鼓勵節(jié)約用水,對自來水妁收費標準作如下規(guī)定:每月每戶用水中不超過10t部分按0.45元/噸收費;超過10t而不超過20t部分按每噸0.8元收費;超過20t部分按每噸1.50元收費,某月甲戶比乙戶多繳水費7.10元,乙戶比丙戶多繳水費3.75元,問甲、乙、丙該月各繳水費多少?(自來水按整噸收費) 3.(江蘇省競賽題)甲、乙、丙三人共解出100道數(shù)學題,每人都解出了其中的60道題,將其中只有1人解出的題叫做難題,3人都解出的題叫做容易題.試問:難題多還是容易題多?多的比少的多幾道題? 4.某人從A地到B地乘坐出租車有兩種方案,一種出租車收費標準是起步價10元,每千米1.2元;另一種出租車收費標準是起步價8元,每千米1.4元,問選擇哪一種出租車比較合適? (提示:根據(jù)目前出租車管理條例,車型不同,起步價可以不同,但起步價的最大行駛里程是相同的,且此里程內(nèi)只收起步價而不管其行駛里程是多少) 。˙級) 1.(全國初中數(shù)學競賽題)江堤邊一洼地發(fā)生了管涌,江水不斷地涌出,假定每分鐘涌出的水量相等,如果用兩臺抽水機抽水,40min可抽完;如果用4臺抽水機抽,16min可抽完.如果要在10min抽完水,那么至少需要抽水機 臺. 2.(希望杯)有一批影碟機(VCD)原售價:800元/臺.甲商場用如下辦法促銷: 購買臺數(shù)1~5臺6~10臺11~15臺16~20臺20臺以上 每臺價格760元720元680元640元600元 乙商場用如下辦法促銷:每次購買1~8臺,每臺打九折;每次購買9~16臺,每臺打八五折; 每次購買17~24臺,每臺打八折;每次購買24臺以上,每臺打七五折. 。1)請仿照甲商場的促銷列表,列出到乙商場購買VCD的購買臺數(shù)與每臺價格的對照表; (2)現(xiàn)在有A、B、C三個單位,且單位要買10臺VCD,B單位要買16臺VCD,C單位要買20臺VCD,問他們到哪家商場購買花費較少? 3.(河北創(chuàng)新與知識應(yīng)用競賽題)某錢幣收藏愛好者想把3.50元紙幣兌換成1分、2分、5分的硬幣,他要求硬幣總數(shù)為150枚,且每種硬幣不少于20枚,5分的硬幣要多于2分的硬幣.請你據(jù)此設(shè)計兌換方案. 4.從自動扶梯上走到二樓(扶梯本身也在行駛),如果男孩和女孩都做勻速運動且男孩每分鐘走動的級數(shù)是女孩的兩倍,已知男孩走了27級到達扶梯頂部,而女孩走了18級到達扶梯頂部(設(shè)男孩、女孩每次只踏—級).問: (1)扶梯露在外面的部分有多少級? (2)如果扶梯附近有一從二樓到一樓的樓梯,樓梯的級數(shù)和扶梯的級數(shù)相等,兩孩子各自到扶梯頂部后按原速度再下樓梯,到樓梯底部再乘扶梯(不考慮扶梯與樓梯間距離)則男孩第一次追上女孩時走了多少級臺階? 5.某化肥廠庫存三種不同的混合肥,第一種 含磷60%,鉀40%,第二種含鉀10%,氮90%;第三種含鉀50%,磷20%,氮30%,現(xiàn)將三種肥混合成含氮45%的混合肥100?(每種肥都必須取),試問在這三種不同混合肥的不同取量中,新混合肥含鉀的取值范圍. 6.(黃岡競賽題)有麥田5塊A、B、C、D、E,它們的產(chǎn)量,(單位:噸)、交通狀況和每相鄰兩塊麥田的距離如圖21-2所示,要建一座永久性打麥場,這5塊麥田生產(chǎn)的麥子都在此打場.問建在哪快麥田上(不允許建在除麥田以外的其他地方)才能使總運輸量最小?圖中圓圈內(nèi)的數(shù)字為產(chǎn)量,直線段上的字母a、b、d表示距離,且b < a 多邊形的邊角與對角線 j.Co M 第十四講 多邊形的邊角與對角線 邊、角、對角線是多邊形中最基本的概念,求多邊形的邊數(shù) 、內(nèi)外角度數(shù)、對角線條數(shù)是解與多邊形相關(guān)的基本問題,常用到三角形內(nèi)角和、多邊形內(nèi)、外角和定理、不等式、方程等知識. 多邊形 的內(nèi)角和定理反映出一定的規(guī)律性:(n-2)×180°隨n的變化而變化;而多邊形的外角和定理反映出更本質(zhì)的規(guī)律;360°是一個常數(shù),把內(nèi)角問題轉(zhuǎn)化為外角問題,以靜制動是解多邊形有關(guān)問題的常用技巧. 將多邊形問題轉(zhuǎn)化為三角形問題來處理是解多邊形問題的基本策略,連對角線或向外補形、對內(nèi)分割是轉(zhuǎn)化的常用方法,從凸 邊形的一個頂點引出的對角線把 凸 邊形分成 個多角形,凸n邊形一共可引出 對角線. 例題求解 【例1】在一個多邊形中,除了兩個內(nèi)角外,其余內(nèi)角之和為20xx°,則這個多邊形的邊數(shù)是 . (江蘇省競賽題) 思路點撥 設(shè)除去的角為°,y°,多邊形的邊數(shù) 為 ,可建立關(guān)于x、y的不定方程;又0° 鏈接 世界上的萬事萬物是一個不斷地聚合和分裂的過程,點是幾何學最原始的概念,點生線、線生面、面生體,幾何元素的聚合不斷產(chǎn)生新的圖形,另一方面,不斷地分割已有的圖形可得到新的幾何圖形,發(fā)現(xiàn)新的幾何性質(zhì),多邊形可分成三角形,三角形可以合成其他 一些幾何圖形. 【例2】 在凸10邊形的所有內(nèi)角中,銳角的個數(shù)最多是( ) A.0 B.1 C.3 D.5 (全國初中數(shù)學競賽題) 思路點撥 多邊形的內(nèi)角和是隨著多邊形的邊數(shù)變化而變化的,而外角和卻總是不變的,因此,可把內(nèi)角為銳角的個數(shù)討論轉(zhuǎn)化為 外角為鈍角的個數(shù)的探討. 【例3】 如圖,已知在△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若將此三角形沿AD剪開成為兩個三角形,在平面上把這兩個三角形拼成一個四邊形,你能拼出所有的不同形狀的四邊形嗎?畫出所拼四邊形的示意圖(標出圖中直角),并分別寫出所拼四邊形的對角線的長. (烏魯木齊市中考題) 思路點撥 把動手操作與合情想象相結(jié)合 ,解題的關(guān)鍵是能注意到重合的邊作為四邊形對角線有不同情形. 注 教學建模是當今教學教育、考試改革最熱門的一個話題,簡單地說,“數(shù)學建!本褪峭ㄟ^數(shù)學化(引元、畫圖等)把實際問題特化為一個數(shù)學問題,再運用相應(yīng)的數(shù)學知識方法(模型)解決問題. 本例通過設(shè)元,把“沒有重疊、沒有空隙”轉(zhuǎn)譯成等式,通過不定方程求解. 【例4】 在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案.也就是說,使用給定的某些正多邊形,能夠拼成一個平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌),這顯然與正多邊形的內(nèi)角大小有關(guān),當圍繞一點拼在一起的幾個多邊形的內(nèi)角加在一起恰好組成一個周角(360°)時,就拼成了一個平面圖形. (1)請根據(jù)下列圖形,填寫表中空格: (2)如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個平面圖形? (3)從正三角形、正四邊形,正六邊形中選一種,再在其他正多邊形中選一種,請畫出用這兩種不同的正多邊形鑲嵌成的一個平面圖形(草圖);并探索這兩種正多邊形共能鑲嵌成幾種不同的平面 圖形?說明你的理由. (陜西省中考題) 思路點撥 本例主要研究兩個問題:①如果限用一種正多邊形鑲嵌,可選哪些正多邊形;②選用兩種正多邊形鑲嵌,既具有開放性,又具有探索性.假定正n邊形滿足鋪砌要求,那么在它的頂點接合的地方,n個內(nèi)角的和為360°,這樣,將問題的討論轉(zhuǎn)化為求不定方程的正整數(shù)解. 【例5】 如圖,五邊形ABCDE的每條邊所在直線沿該邊垂直方向向外平移4個單位,得到新的五邊形A'B'C'D'E'. 。1)圖中5塊陰影部分即四邊形AHA'G、BFB'P、COC'N、DMD'L、EKE'I能拼成一個五邊形嗎?說明理由. (2)證明五邊形A'B'C'D'E'的周長比五邊形ABCD正的周長至少增加25個單位. (江蘇省競賽題) 思路點撥 (1)5塊陰影部分要能拼成一個五邊形須滿足條件:,A'GB'; B'PC'; C'ND';D'LE';E'IA'三點分別共線;∠1+∠2+∠3+∠4+∠5=360°;(2)增加的周長等于A'H+A'G+B'F+B'P+C'O+C'N+D'M+D'L+E'K+E'I,用圓的周長逼近估算. 1.如圖,用硬紙片剪一個長為16cm、寬為12cm的長方形,再沿對角線把它分成兩個三角形,用這兩個三角形可拼出各種三角形和四邊形來,其中周長最大的是 ?,周長最小的是 cm. (選6《莢國中小學數(shù)學課程標準》) 2.如圖,∠1+∠2+∠3+∠4+∠5+∠6= . 3.如圖,ABCD是凸四邊形,AB=2,BC=4,CD=7,則線段AD的取值范圍是 . 4.用黑白兩種顏色的正六邊形地面磚按如下所示的規(guī)律,拼成若干個圖案: (1)第4個圖案中有白色地面磚 塊; (2)第n個圖案中有白色地面磚 塊. (江西省中考題) 5.凸n邊形中有且僅有兩個內(nèi)角為鈍角,則n的最大值是( ) A.4 B.5 C. 6 D.7 ( “希望杯”邀請賽試題) 6.一個凸多邊 形的每一內(nèi)角都等于140°,那么,從這個多邊形的一個頂點出發(fā)的對角線的條數(shù)是( ) A.9條 B.8條 C.7條 D. 6條 7.有一個邊長為4m的正六邊形客廳,用邊長為50cm的正三角形瓷磚鋪滿,則需要這種瓷磚( ) A.216塊 B.288塊 C.384塊 D.512塊 ( “希望杯”邀請賽試題) 8.已知△ABC是邊長為2的等邊三角形,△ACD是一個含有30°角的直角三角形,現(xiàn)將△ABC和△ACD拼成一個凸四邊形ABCD. 。1))畫出四邊形ABCD; (2)求出四邊形ABCD的對角線BD的長. (上海市閔行區(qū)中考題) 9.如圖,四邊形ABCD中,AB=BC=CD,∠ABC=90°,∠BCD=150°,求∠BAD的度數(shù). (北京市競賽題) 10.如圖,在五邊形A1A2A3A4A5中,Bl是A1的對邊A3A4的中點,連結(jié)A1B1,我們稱A1B1是這個五邊形的一條中對線,如果五邊形的每條中對線都將五邊形的面積分成相等的兩部分,求證:五邊形的每條邊都有一條對角線和它平行. (安徽省中考題) 11.如圖,凸四邊形有 個;∠A+∠B+∠C+∠D+∠E+∠F+∠G= . (重慶市競賽題) 12.如圖,延長凸五邊形A1A2A3A4A5的各邊相交得到5個角,∠B1,∠B2,∠B3,∠B4,∠B5,它們的和等于 ;若延長凸n邊形(n≥5)的`各邊相交,則得到的n個角的和等于 . ( “希望杯”邀請賽試題) 13.設(shè)有一個邊長為1的正三角形,記作A1(圖a),將每條邊三等分,在中間的線段上向外作正三角形,去掉中間的線段后所得到的圖形記作A 2(圖b),再將每條邊三等分,并重復上述過程,所得到的圖形記作A3(圖c);再將每條邊三 等分,并重復上述過程,所得到的圖形記作A4,那么,A4的周長是 ;A4這個多邊形的面積是原三角形面積的 倍. (全國初中數(shù)學聯(lián)賽題) 14.如圖,六邊形ABCDEF中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,F(xiàn)A—CD=3,則BC+DC= . (北京市競賽題) 15.在一個n邊形中,除了一個內(nèi)角外,其余(n一1)個內(nèi)角的和為2750°,則這個內(nèi)角的度數(shù)為( ) A.130° D.140° C .105° D.120° 16.如圖,四邊形ABCD中,∠BAD=90°,AB=BC=2 ,AC=6,AD=3,則CD的長為( ) A.4 B.4 C.3 D. 3 (江蘇省競賽題) 注 按題中的方法'不斷地做下去,就會成為下圖那樣的圖形,它的邊界有一個美麗的名稱——雪花曲線或 科克曲線(瑞典數(shù)學家),這類圖形稱為“分形”,大量的物理、生物與數(shù)學現(xiàn)象都導致分形,分形是新興學科“混沌”的重要分支. 17.如圖,設(shè)∠CGE=α,則∠A+∠B+∠C+∠D+∠C+∠F=( ) A.360°一α B.270°一αC.180°+α D.2α (山東省競賽題) 18.平面上有A、B,C、D四點,其中任何三點都不在一直線上,求證:在△ABC、△ABD、△ACD、△BDC中至少有一個三角形的內(nèi)角不超過45°. 19.一塊地能被n塊相同的正方形地磚所覆蓋,如果用較小的相同正方形地磚,那么需n+76塊這樣的地磚才能覆蓋該塊地,已知n及地磚的邊長都是整數(shù),求n. (上海市競賽題) 20.如圖,凸八邊形ABCDEFGH的8 個內(nèi)角都相等,邊AB、BC、CD、DE、EF、FG的長分別為7,4,2,5,6,2,求該八邊形的周長. 21.如圖l是一張可折疊的鋼絲床的示意圖,這是展開后支撐起來放在地面上的情況,如果折疊起來,床頭部分被折到了床面之下(這里的A、B、C、D各點都是活動的),活動床頭是根據(jù)三角形的穩(wěn)定性和四邊形的不穩(wěn)定性設(shè)計而成的,其折疊過程可由圖2的變換反映出來. 如果已知四邊形ABCD中,AB=6,CD=15,那么BC、AD取多長時,才能實現(xiàn)上述的折疊變化? (淄博市中考題) 22.一個凸n邊形由若干個邊長為1的正方形或正三角形無重疊、無間隙地拼成,求此凸n邊形各個內(nèi)角的大小,并畫出這樣的 凸n邊形的草圖. 圖形的平移與旋轉(zhuǎn) 前蘇聯(lián)數(shù)學家亞格龍將幾何學定義為:幾何學是研究幾何圖形在運動中不變的那些性質(zhì)的學科. 幾何變換是指把一個幾何圖形Fl變換成另一個幾何圖形F2的方法,若僅改變圖形的位置,而不改變圖形的形狀和大小,這種變換稱為合同變換,平移、旋轉(zhuǎn)是常見的合同變換. 如圖1,若把平面圖形Fl上的各點按一定方向移動一定距離得到圖形F2后,則由的變換叫平移變換. 平移前后的圖形全等,對應(yīng)線段平行且相等,對應(yīng)角相等. 如圖2,若把平面圖Fl繞一定點旋轉(zhuǎn)一個角度得到圖形F2,則由Fl到F2的變換叫旋轉(zhuǎn)變換,其中定點叫旋轉(zhuǎn)中心,定角叫旋轉(zhuǎn)角. 旋轉(zhuǎn)前后的圖形全等,對應(yīng)線段相等,對應(yīng)角相等,對應(yīng)點到旋轉(zhuǎn)中心的距離相等. 通過平移或旋轉(zhuǎn),把部分圖形搬到新的位置,使問題的條件相對集中,從而使條件與待求結(jié)論之間的關(guān)系明朗化,促使問題的解決. 注 合同變換、等積變換、相似變換是基本的幾何變換.等積變換,只是圖形在保持面積不變情況下的形變'而相似變換,只保留線段間的比例關(guān)系,而線段本身的大小要改變. 例題求解 【例1】如圖,P為正方形ABCD內(nèi)一點,PA:PB:PC=1:2:3,則∠APD= . 思路點撥 通過旋轉(zhuǎn),把PA、PB、PC或關(guān)聯(lián)的線段集中到同一個三角形. 【例2】 如圖,在等腰Rt△ABC的斜邊AB上取兩點M,N,使∠MCN=45°,記AM=m,MN= x,DN=n,則以線 段x、m、n為邊長的三角形的形狀是( ) A.銳角三角形 B.直角三角形 C.鈍角三角形 D.隨x、m、n的變化而改變 思路點撥 把△ACN繞C點順時針旋轉(zhuǎn)45°,得△CBD,這樣∠ACM+∠BCN=45°就集中成一個與∠MCN相等的角,在一條直線上的m、 x、n 集中為△DNB,只需判定△DNB的形狀即可. 注 下列情形,常實施旋轉(zhuǎn)變換: (1)圖形中出現(xiàn)等邊三角形或正方形,把旋轉(zhuǎn)角分別定為60°、90°; (2)圖形中有線段的中點,將圖形繞中點旋轉(zhuǎn)180°,構(gòu)造中心對稱全等三角形; (3)圖形中出現(xiàn)有公共端點的線段,將含有相等線段的圖形繞公共端點,旋轉(zhuǎn)兩相等線段的夾角后與另一相等線段重合. 【例3】 如圖,六邊形ADCDEF中,AN∥DE,BC∥EF,CD∥AF,對邊之差BC-EF=ED?AB=AF?CD>0,求證:該六邊形的各角相等. (全俄數(shù)學奧林匹克競賽題) 思路點撥 設(shè)法將復雜的條件BC?FF=ED?AB=AF?CD>0用一個基本圖形表示,題設(shè)中有平行條件,可考慮實施平移變換. 注 平移變換常與平行線相關(guān),往往要用到平行四邊形的性質(zhì),平移變換可將角,線段移到適當?shù)奈恢,使分散的條件相對集中,促使問題的解決. 【例4】 如圖,在等腰△ABC的兩腰AB、AC上分別取點E和F,使AE=CF.已知BC=2,求證:EF≥1. (西安市競賽題) 思路點撥 本例實際上就是證明2EF≥BC,不便直接證明,通過平移把BC與EF集中到同一個三角形中. 注 三角形中的不等關(guān)系,涉及到以下基本知識: (1)兩點間線段最短,垂線段最短; (2)三角形兩邊之和大于第三邊,兩邊之差小于第三邊; (3)同一個三角形中大邊對大角(大角對大邊),三角形的一個外角大于任何一個和它不相鄰的內(nèi)角. 【例5】 如圖,等邊△ABC的邊長為 ,點P是△ABC內(nèi)的一點,且PA2+PB2=PC2,若PC=5,求PA、PB的長. (“希望杯”邀請賽試題) 思路點撥 題設(shè)條件滿足勾股關(guān)系PA2+PB2=PC2的三邊PA、PB、PC不構(gòu)成三角形,不能直接應(yīng)用,通過旋轉(zhuǎn)變換使其集中到一個三角形中,這是解本例的關(guān) 鍵. 學歷訓練 1.如圖,P是正方形ABCD內(nèi)一點,現(xiàn)將△ABP繞點B顧時針方向旋轉(zhuǎn)能與△CBP′重合,若PB=3,則PP′= . 2.如圖,P是等邊△ABC內(nèi)一點,PA=6,PB=8,PC=10,則∠APB . 3.如圖,四邊形ABC D中,AB∥CD,∠D=2∠B,若AD=a,AB=b,則CD的長為 . 4.如圖,把△ABC沿AB邊平移到△A'B'C'的位置,它們的重疊部分(即圖中陰影部分)的面積是△ABC的面積的一半,若AB= ,則此三角形移動的距離AA'是( ) A. B. C.l D. (20xx年荊州市中考題) 5.如圖,已知△ABC中,AB=AC,∠BAC=90°,直角EPF的頂點P是BC中點,兩邊PE、PF分別交AB、AC于點C、F,給出以下四個結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③S四邊形AEPF= S△ABC;④EF=AP. 當∠EPF在△ABC內(nèi)繞頂點P旋轉(zhuǎn)時(點E不與A、B重合),上述結(jié)論中始終正確的有( ) A.1個 B.2個 C .3個 D.4個 (20xx年江蘇省蘇州市中考題) 6.如圖,在四邊形 ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于E, S四邊形ABCD d=8,則BE的長為( ) A.2 B.3 C . D. (20xx年武漢市選拔賽試題) 7.如圖,正方形ABCD和正方形EFGH的邊長分別為 和 ,對角線BD、FH都在直線 上,O1、O2分別為正方形的中心,線段O1O2的長叫做兩個正方形的中心距,當中心O2在直線 上平移時,正方形EFGH也隨之平移,在平移時正方形EFGH的形狀、大小沒有變化. (1)計算:O1D= ,O2F= ; (2)當中心O2在直線 上平移到兩個正方形只有一個公共點時,中心距O1O2= ; (3)隨著中心O2在直線 上平移,兩個正方形的公共點的個數(shù)還有哪些變化?并求出相對應(yīng)的中心距的值或取值范圍(不必寫出計算過程). (徐州市中考題) 8.圖形的操做過程(本題中四個矩形的水平方向的邊長均為a,豎直 方向的邊長均為b): 在圖a中,將線段A1A2向右平移1個單位到B1B2,得到封閉圖形A1A2B1B2(即陰影部分); 在圖b中, 將折線A1A2A3向右平移1個單位到B1B2B3,得到封閉圖形A1A2A3B1B2B3(即陰影部分); (1)在圖c中,請你類似地畫一條有兩個折點的折線,同樣向右平移1個單位,從而得到一個封閉圖形,并用斜線畫出陰影; (2)請你分別寫出上述三個圖形中除去陰影部分后剩余部分的面積:S1= ,,S2= ,S3= ; (3)聯(lián)想與探索: 如圖d,在一塊矩形草地上,有一條彎曲的柏油小路(小路任何地方的水平寬度都是1個單位),請你猜想空白部分表示的草地面積是多少?并說明你的猜想是正確的. (20xx年河北省中考題) 9.如圖,已知點C為線段AB上一點,△ACM、△CBN是等邊三角形,求證:AN=BM. 說明及要求:本題是《幾何》第二冊幾15中第13題,現(xiàn)要求: (1)將△ACM繞C點按逆時針方向旋轉(zhuǎn)180°,使A點落在CB上,請對照原題圖在圖中畫出符合要求的圖形(不寫作法,保留作圖痕跡). (2)在①所得的圖形中,結(jié)論“AN=BM”是否還成立?若成立,請證明;若不成立,請說明理由. (3)在①得到的圖形中,設(shè)MA的延長線與BN相交于D點,請你判斷△ABD與四邊形MDNC的形狀,并證明你的結(jié)論. 10.如圖,在Rt△ABC中,∠A=90°,AB=3cm,AC=4cm,以斜邊BC上距離B點3cm的點P為中心,把這個三角形按逆時針方向旋轉(zhuǎn)90°至△DEF,則旋轉(zhuǎn)前后兩個直角三角形重疊部分的面積是 cm2. 11.如圖,在梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE=45°,點E在DC上,AE、BC的延長線交于點F,若AE=10,則S△ADE+S△CEF的值是 . (紹興市中考題) 12.如圖,在△ABC中,∠BAC=120°,P是△ABC內(nèi)一點,則PA+PB+PC與AB+AC的大小關(guān)系是( ) A.PA+PB+PC>AB+AC B.PA+PB+PCC. PA+PB+PC=AB+AC D.無法確定 13.如圖,設(shè)P到等邊三角形ABC兩頂點A、B的距離分別為2、3,則PC所能達到的最大值為( ) A. B. C .5 D.6 (20xx年武漢市選拔賽試題) 14.如圖,已知△ABC中,AB=AC,D為AB上一點,E為AC 延長線上一點,BD=CE,連DE,求證:DE>DC. 15.如圖,P為等邊△ABC內(nèi)一點,PA、PB、PC的長為正整數(shù),且PA2+PB2=PC2,設(shè)PA=m,n為大于5的實數(shù),滿 ,求△ABC的面積. 16.如圖,五羊大學建立分校,校本部與分校隔著兩條平行的小河, ∥ 表示小河甲, ∥ 表示小河乙,A為校本部大門,B為分校大門,為方便人員來往,要在兩條小河上各建一座橋,橋面垂直于河岸.圖中的尺寸是:甲河寬8米,乙河寬10米,A到甲河垂直距離為40米,B到乙河垂直距離為20米,兩河距離100米,A、B兩點水平距離(與小河平行方向)120米,為使A、B兩點間來往路程最短,兩座橋都按這個目標而建,那么,此時A、D兩點間來往的路程是多少米? (“五羊杯”競賽題) 17.如圖,△ABC是等腰直角三角形,∠C=90°,O是△ABC內(nèi)一點,點O到△ABC各邊的距離都等于1,將△ABC繞 點O順時針旋轉(zhuǎn)45°,得△A1BlC1 ,兩三角形公共部分為多邊形KLMNPQ. (1)證明:△AKL、△BMN、△CPQ都是等腰直角三角形; (2)求△ABC與△A1BlC1公共部分的面積. (山東省競賽題) 18.(1)操作與證明:如圖1,O是邊長為a的正方形ACBD的中心,將一塊半徑足夠長,圓心角為直角的扇形紙板的圓心放在O點處,并將紙板繞O點旋轉(zhuǎn),求證:正方形ABCD的邊被紙板覆蓋部分的總長度為定值. (2)嘗試與思考:如圖2,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正三角形或正五邊形的中心O點處,并將紙板繞O點旋轉(zhuǎn), 當扇形紙板的圓心角為 時,正三角形的邊被紙板覆蓋部分的總長度為定值a;當扇形紙板的圓心角為 時,正五邊形的邊被紙板覆蓋部分的總長度也為定值a. (3)探究與引申:一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點處,并將紙板繞O點旋轉(zhuǎn).當扇形紙板的圓心角為 時,正n邊形的邊被紙板覆蓋部分 的總長度為定值a;這時正n邊形被紙板覆蓋部分的面積是否也為定值?若為定值,寫出它與正n邊形面積S之間的關(guān)系;若不是定值,請說明理由. 導學目標: 1、經(jīng)歷并了解平行四邊形的判別方法探索過程,使學生逐步掌握說理的基本方法。 2、探索并了解平行四邊形的判別方法:兩條對角線互相平分的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形。能根據(jù)判別方法進行有關(guān)的應(yīng)用。 3、在探索過程中發(fā)展學生的合理推理意識、主動探究的習慣。 4、體驗數(shù)學活動來源于生活又服務(wù)于生活,提高學生的學習興趣。 導學重點:平行四邊形的判別方法。 導學難點:根據(jù)判別方法進行有關(guān)的應(yīng)用 導學準備:多媒體課件 導學過程: 一、快速反應(yīng) 1.如圖,四邊形ABCD,AC、BD相交于點O,若OA=OC,OB=OD,則四邊形ABCD是__________,根據(jù)是_____________________ 2.如圖,四邊形ABCD中,AB//CD,且AB=CD,則四邊形ABCD是___________,理由是__________________________ 3.小明拼成的四邊形如圖所示,圖中的'四邊形ABCD是平行四邊形嗎? 結(jié)論:______________________________________ 符號表示: 4. 如圖:在四邊形ABCD中,2,4.四邊形ABCD是平行四邊形嗎?為什么? 在圖中,AC=BD=16, AB=CD=EF=15, CE=DF=9。 圖中有哪些互相平行的線段? 二、議一議 1.一組對邊平行,另一組對邊相等的四邊形一定是平行四邊形嗎? 三、平行四邊形的判別方法: (1)兩組對邊分別平行的四邊形是平行四邊形。 (2)兩組對邊分別相等的四邊形是平行四邊形。 (3)一組對邊平行且相等的四邊形是平行四邊形。 (4)兩條對角線互相平分的四邊形是平行四邊形。 四、練一練: 1.判斷下列說法是否正確 (1)一組對邊平行且另一組對邊相等的四邊形是平行四邊形 ( ) (2)兩組對角都相等的四邊形是平行四邊形 ( ) (3)一組對邊平行且一組對角相等的四邊形是平行四邊形 ( ) (4)一組對邊平行,一組鄰角互補的四邊形是平行四邊形 ( ) 2.有兩條邊相等,并且另外的兩條邊也相等的四邊形一定是平行四邊形嗎? 3.比一比:如圖,四個全等三角形拼成一個大的三角形,找出圖中所有的平行四邊形,并說明理由。 五、師生共同小結(jié),主要圍繞下列幾個問題: (1)判定一個四邊形是平行四邊形的方法有哪幾種? (2)我們是通過什么方法得出平行四邊形的這幾種判定方法的,這樣的探索過程對你有什么啟發(fā)? (3)平行四邊形判定的應(yīng)用 六、課后鞏固:課本P107習題4.4第1題和第2題 七、課后反思: 一、教學目標 經(jīng)歷探索平行四邊形判別條件的過程,培養(yǎng)學生操作、觀察和說理能力;掌握兩組對邊分別相等的四邊形是平行四邊形這一判別條件。 二、教材分析 本節(jié)課是在學生學習了平行四邊形的兩個判定定理之后即將學習的第三個判定定理——兩組對邊分別相等的四邊形是平行四邊形。 三、教學重難點 重點: 探索并掌握平行四邊形的判別條件。 難點: 對平行四邊形判別條件的理解及說理的基本方法的掌握。 四、教學準備 兩根長40厘米 和兩根長30厘米的木條 五、教學設(shè)計 首先復習平行四邊形的定義,然后通過學生活動發(fā)現(xiàn)平行四邊形的另一判定定理,然后借助各種方法加以驗證。最后依靠課本所設(shè)計的“做一做” ,“議一議” 以及“隨堂練習”加深對平行四邊形判定定理的理解。 六、教學過程 1、復習平行四邊形的定義。(旨在為證明一個四邊形是平行四邊形做鋪墊) 2、小組活動 用兩根長40厘米和兩根30厘米的木條作為四邊形的四條邊,能否拼成平行四邊形?與同伴進行交流。 (通過小組活動,學生親自動手操作,得出結(jié)論——當兩組對邊相等時,四邊形是平行四邊形;對邊不相等時,所圍成的四邊形不是平行四邊形)。 平行四邊形的判定定理——兩組對邊相等的四邊形是平行四邊形。 3、課本91頁的“做一做” (其目的'是鞏固和應(yīng)用“兩組對邊相等的四邊形是平行四邊形”的判定定理。) 4、“議一議” 問題1、一組對邊平行,另一組對邊相等的四邊形一定是平行四邊形嗎?說說你的想法。 (先鼓勵學生自主探索,再分組討論,最后全班交流得出正確結(jié)論) 問題2、要判別一個四邊形是平行四邊形,你有哪些方法? 5、通過課本的“隨堂練習”,使學生對平行四邊形的判別條件加以應(yīng)用和鞏固 教學過程 一、課堂引入 1.平行四邊形的性質(zhì);平行四邊形的判定;它們之間有什么聯(lián)系? 2.你能說說平行四邊形性質(zhì)與判定的用途嗎? 。ù穑浩叫兴倪呅沃R的運用包括三個方面:一是直接運用平行四邊形的性質(zhì)去解決某些問題.例如求角的度數(shù),線段的長度,證明角相等或線段相等等;二是判定一個四邊形是平行四邊形,從而判定直線平行等;三是先判定一個四邊形是平行四邊形,然后再眼再用平行四邊形的性質(zhì)去解決某些問題.) 3.創(chuàng)設(shè)情境 實驗:請同學們思考:將任意一個三角形分成四個全等的三角形,你是如何切割的?(答案如圖) 圖中有幾個平行四邊形?你是如何判斷的? 二、例習題分析 例1(教材P98例4)如圖,點D、E、分別為△ABC邊AB、AC的中點,求證:DE∥BC且DE=BC. 分析:所證明的結(jié)論既有平行關(guān)系,又有數(shù)量關(guān)系,聯(lián)想已學過的知識,可以把要證明的內(nèi)容轉(zhuǎn)化到一個平行四邊形中,利用平行四邊形的對邊平行且相等的`性質(zhì)來證明結(jié)論成立,從而使問題得到解決,這就需要添加適當?shù)妮o助線來構(gòu)造平行四邊形. 方法1:如圖(1),延長DE到F,使EF=DE,連接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四邊形BCFD是平行四邊形.所以DF∥BC,DF=BC,因為DE=DF,所以DE∥BC且DE=BC. (也可以過點C作CF∥AB交DE的延長線于F點,證明方法與上面大體相同) 方法2:如圖(2),延長DE到F,使EF=DE,連接CF、CD和AF,又AE=EC,所以四邊形ADCF是平行四邊形.所以AD∥FC,且AD=FC.因為AD=BD,所以BD∥FC,且BD=FC.所以四邊形ADCF是平行四邊形.所以DF∥BC,且DF=BC,因為DE=DF,所以DE∥BC且DE=BC. 定義:連接三角形兩邊中點的線段叫做三角形的中位線. 【思考】: 。1)想一想:①一個三角形的中位線共有幾條?②三角形的中位線與中線有什么區(qū)別? (2)三角形的中位線與第三邊有怎樣的關(guān)系? (答:(1)一個三角形的中位線共有三條;三角形的中位線與中線的區(qū)別主要是線段的端點不同.中位線是中點與中點的連線;中線是頂點與對邊中點的連線.(2)三角形的中位線與第三邊的關(guān)系:三角形的中位線平行與第三邊,且等于第三邊的一半.) 三角形中位線的性質(zhì):三角形的中位線平行與第三邊,且等于第三邊的一半。 教學內(nèi)容:教材第16-15頁例2及“想想做做”1—5題。 教學目標: 1.使學生通過觀察、比較、操作等實踐活動,感知平行四邊形的特點,初步認識平行四邊形,能指出平行四邊形和圍出平行四邊形。 2.使學生經(jīng)歷從直觀、操作中抽象出平行四邊形的過程,形成平行四邊形的直觀表象,并能操作再現(xiàn)平行四邊形的形狀,積累通過多種感官學習平面圖形的經(jīng)驗,發(fā)展初步的空間觀念。 3.使學生逐步形成參與數(shù)學活動的意識,培養(yǎng)獨立思考、主動交流的學習習慣。 教學重點: 平行四邊形的直觀認識 教學難點: 平行四邊形的直觀表象 教具或?qū)W具準備: 三角尺、釘子板、小棒、長方形木框(教具) 教學過程: 一、直觀認識 1.觀察圖形:三角形、四邊形、五邊形、六邊形 你準備怎樣把這些圖形分類? 說明:有四條邊的圖形是四邊形,四邊形有各種各樣的形狀,今天我們認識一種特殊的四邊形(出示例2) 2.學習例2 1.這是生活里常見的情境。你能在這些情境中找出四邊形并用手沿四條邊指一指嗎?小朋友在課本例2的圖上用筆描出這樣的四邊形。 交流:生活里一定看到過這樣的四邊形,你還在哪里看到過? 2.操作 請同學們拿出兩個完全一樣的三角尺。你能拼出這樣的四邊形嗎? 交流:把你的拼法介紹給大家。 說明:小朋友都拼出了生活里見到的這樣的四邊形,像這樣的.四邊形是平行四邊形(板書課題) 3.抽象出圖形 引導:像這樣的圖形是平行四邊形,你能在釘子板上圍一個平行四邊形嗎? 學生操作,老師引導,讓學生交流圍法,老師適當引導(對邊的方向、長短完全一樣)。 二、練習鞏固: 1.想想做做第1題 學生獨立完成。交流:哪些是平行四邊形?第一個為什么不是,說說你的理由。 2.想想做做第3題 學生畫圖,老師巡視指導。 交流所畫的平行四邊形,指出這些圖形雖然大小不同,位置形狀不一 樣,但都是平行四邊形。 3.想想做做第4題 同桌合作,動手操作,老師指導。 交流操作方法,想想平行四邊形對邊的要求。 4.想想做做第5題 演示,讓學生注意觀察,你有什么發(fā)現(xiàn)。 說明:一個長方形,不管怎樣拉,雖然形狀、大小會發(fā)生變化,但都是平行四邊形。 三、回顧總結(jié): 今天我們學習了什么?請你說說認識平行四邊形的過程。 你有什么收獲和體會。 四、布置作業(yè) 《補充習題》第 頁。 【平行四邊形教案】相關(guān)文章: 平行四邊形教案04-01 《平行四邊形的認識》教案03-15 認識平行四邊形教案03-05 平行四邊形面積教案02-09 《平行四邊形的面積》教案02-17 《平行四邊形的判定》教案06-03 平行四邊形的面積教案11-27 【精選】平行四邊形教案三篇05-20 【精選】平行四邊形教案四篇05-14 平行四邊形教案三篇05-14平行四邊形教案 篇6
平行四邊形教案 篇7
平行四邊形教案 篇8
平行四邊形教案 篇9