- 平行四邊形教案 推薦度:
- 平行四邊形教案 推薦度:
- 平行四邊形教案 推薦度:
- 相關(guān)推薦
實(shí)用的平行四邊形教案范文集錦6篇
作為一名老師,往往需要進(jìn)行教案編寫工作,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。那么大家知道正規(guī)的教案是怎么寫的嗎?下面是小編為大家整理的平行四邊形教案6篇,歡迎閱讀與收藏。
平行四邊形教案 篇1
【教材分析】
本節(jié)課是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)五年級(jí)上冊(cè)第五單元《多邊形的面積》第1課時(shí)《平行四邊形的面積》。平行四邊形面積的計(jì)算是在學(xué)生已經(jīng)掌握并能靈活運(yùn)用長(zhǎng)方形、正方形面積計(jì)算公式,理解平行四邊形特征的基礎(chǔ)上,進(jìn)行教學(xué)的。教材在編排上非常重視讓學(xué)生經(jīng)歷知識(shí)的探索過程,使學(xué)生不僅掌握面積計(jì)算的方法,更要參與面積計(jì)算公式的推導(dǎo)過程,在操作中,積累基本的數(shù)學(xué)思想方法和基本的活動(dòng)經(jīng)驗(yàn),完成對(duì)新知的建構(gòu)。本節(jié)課首先通過具體的情境提出計(jì)算平行四邊形面積的問題。這樣安排的目的是讓學(xué)生面對(duì)一個(gè)新的問題,思考如何去解決,使學(xué)生感到學(xué)習(xí)新知識(shí)的必要性;其次,對(duì)學(xué)生進(jìn)行動(dòng)手操作,自主探索的培養(yǎng),使學(xué)生能尋求解決問題的方法;最后,讓學(xué)生歸納計(jì)算平行四邊形面積的基本方法。根據(jù)學(xué)生的多種剪法,組織學(xué)生討論這些剪法的共同特點(diǎn),并比較長(zhǎng)方形與平行四邊形之間的關(guān)系,從而推導(dǎo)出計(jì)算平行四邊形面積的公式。
【教學(xué)目標(biāo)】
知識(shí)與能力目標(biāo):使學(xué)生能運(yùn)用數(shù)方格、割補(bǔ)等方法探索平行四邊形面積的計(jì)算公式,初步感受轉(zhuǎn)化思想;讓學(xué)生掌握平行四邊形面積的計(jì)算公式,能夠運(yùn)用公式正確計(jì)算平行四邊形的面積。
過程與方法目標(biāo):通過操作、觀察、比較,發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生運(yùn)用轉(zhuǎn)化的思想方法解決問題的能力;創(chuàng)設(shè)自主、和諧的探究情境,讓學(xué)生自我展示、自我激勵(lì),體驗(yàn)成功,在不斷嘗試中激發(fā)求知欲,陶冶情操。
情感態(tài)度與價(jià)值觀目標(biāo):通過活動(dòng),培養(yǎng)學(xué)生的合作意識(shí)和探索創(chuàng)新精神,感受數(shù)學(xué)知識(shí)的奇妙。
【學(xué)情分析】
平行四邊形的面積是在學(xué)生已經(jīng)掌握并能靈活運(yùn)用長(zhǎng)方形面積計(jì)算公式,理解平行四邊形特征的基礎(chǔ)上進(jìn)行教學(xué)的,而且,這部分知識(shí)的學(xué)習(xí)運(yùn)用會(huì)為學(xué)生學(xué)習(xí)后面的三角形,梯形等平面圖形的面積奠定良好的基礎(chǔ)。由此可見,本節(jié)課是促進(jìn)學(xué)生空間觀念發(fā)展,滲透轉(zhuǎn)化、等積變形等數(shù)學(xué)思想方法的重要環(huán)節(jié)。學(xué)好這部分內(nèi)容,對(duì)于解決生活中的實(shí)際問題的.能力有重要的作用。這節(jié)課,讓他們動(dòng)手實(shí)踐,在做中學(xué),經(jīng)歷平行四邊形面積公式的得出過程,讓孩子們體會(huì)數(shù)學(xué)就在身邊,培養(yǎng)學(xué)生發(fā)散思維,進(jìn)一步激發(fā)學(xué)生學(xué)習(xí)思維,進(jìn)一步激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情。
【教學(xué)重點(diǎn)】
掌握平行四邊形面積計(jì)算公式。
【教學(xué)難點(diǎn)】
平行四邊形面積計(jì)算公式的推導(dǎo)過程。
【教具】
兩個(gè)完全一樣的平行四邊形、不規(guī)則圖形、小黑板、剪刀、多媒體及課件。
【教學(xué)過程】
一、創(chuàng)設(shè)情境,引入課題。
1、游戲:小小魔術(shù)師。教師出示不規(guī)則圖形。
(1)師:你能直接計(jì)算出這個(gè)圖形的面積嗎?
(2)師:你能計(jì)算出這個(gè)圖形的面積嗎?說一說用什么方法?
(3)師:現(xiàn)在變成了一個(gè)什么圖形?你能求出這個(gè)圖形的面積嗎?怎樣計(jì)算長(zhǎng)方形的面積?
2、小結(jié):剛才同學(xué)們先將不平整的部分剪下,再平移補(bǔ)到缺口處,就將不規(guī)則的圖形轉(zhuǎn)化成學(xué)過的長(zhǎng)方形,這是一種很重要的數(shù)學(xué)思考方法轉(zhuǎn)化。把不認(rèn)識(shí)的圖形變成了認(rèn)識(shí)的圖形。轉(zhuǎn)化后的圖形什么變了,什么是相同的?(形狀變了,面積相同)
(設(shè)計(jì)思路:溫故是課堂教學(xué)起始的重要環(huán)節(jié),它起到承上啟下的作用。通過出示復(fù)習(xí)題,喚起學(xué)生對(duì)已有知識(shí)的回顧,拓寬學(xué)生的學(xué)習(xí)渠道,促進(jìn)學(xué)生全面、持續(xù)、和諧的發(fā)展,為后面探究平行四邊形面積公式的推導(dǎo)打下堅(jiān)實(shí)的基礎(chǔ)。)
二、激趣引思,導(dǎo)入新課。
師:同學(xué)們,昨天早上我聽校長(zhǎng)說,學(xué)校要建一個(gè)宣傳欄,其中要用一塊底是5米,高是4米的平行四邊形膠合板。我覺得這是一件好事,因?yàn)槠叫兴倪呅问且环N漂亮的圖形,你們聽了校長(zhǎng)的話,想知道些什么?
生1:我想知道要花多少錢才可以做成。
生2:我想這個(gè)宣傳欄建起來一定很漂亮,會(huì)把我們的校園點(diǎn)綴得更加美麗!
生3:我想知道這塊膠合板的面積有多大。
師:我聽出來了,大部分同學(xué)都想知道這塊平行四邊形膠合板的面積,這節(jié)課我們就來探究平行四邊形的面積。(板書課題:平行四邊行的面積)
(設(shè)計(jì)思路:教師選取發(fā)生在學(xué)生身邊的事來創(chuàng)設(shè)情境,導(dǎo)入新課,學(xué)生感到親切,從中體會(huì)到數(shù)學(xué)與生活的聯(lián)系,更能激發(fā)求知欲望。)
三、動(dòng)手操作,探究發(fā)現(xiàn)。
1、用數(shù)方格的方法啟發(fā)學(xué)生猜想平行四邊形面積的計(jì)算方法。
師:同學(xué)們回憶一下,我們以前是怎么學(xué)習(xí)長(zhǎng)方形面積公式的?(指名復(fù)述過程)下面我們用數(shù)方格的方法來數(shù)出平行四邊形的面積。
教師用課件演示:先出示一個(gè)畫有方格(每個(gè)方格的面積是1平方厘米)的長(zhǎng)方形,再將一個(gè)平行四邊形放在方格圖上面,讓學(xué)生用數(shù)方格(不滿一格的按半格計(jì)算)的方法回答問題。
(1)這個(gè)平行四邊形的面積是多少平方厘米?
(2)它的底是多少厘米?
(3)它的高是多少厘米?
(4)這個(gè)平行四邊形的面積跟它的高與底有什么關(guān)系?
(5)請(qǐng)同學(xué)們猜一猜:怎樣計(jì)算平行四邊形的面積?
2、引導(dǎo)學(xué)生把平行四邊形轉(zhuǎn)化為長(zhǎng)方形,驗(yàn)證猜想推出平行四邊形的面積公式。
我們用數(shù)方格的方法得到一個(gè)平行四邊形的面積,但是用這個(gè)方法計(jì)算面積方便嗎?
生:不方便。
師:既然不方便,我們能不能用更方便的方法來解決呢?
小組交流,學(xué)生討論,發(fā)表意見。
生:用剪和拼的方法。
師:(出示一個(gè)平行四邊形)這個(gè)平行四邊形也可以轉(zhuǎn)化長(zhǎng)方形嗎?怎樣剪呢?剪歪了怎么辦?(可以先用尺子畫一條虛線。)
師:這條虛線也就是平行四邊形的哪部分?(高)還記得怎樣畫高嗎?
師:第一步:畫;第二步:剪;第三步:移。那我們就動(dòng)手來剪一剪吧。▽W(xué)生動(dòng)手操作)
師:拼成長(zhǎng)方形了嗎?拼好了擺在桌面給老師看看,請(qǐng)兩個(gè)同學(xué)來前面展示他們的作品,(指名上黑板前)說說你是怎樣操作的?
。ㄉ何蚁犬嫍l高,沿著高剪開,把這部分移過去,就拼成了一個(gè)長(zhǎng)方形。)
師:怎樣移過去呀?平著移到右邊,這種方法我們把它叫做平移。
師:再請(qǐng)一個(gè)同學(xué)展示一下,他的剪法有什么不一樣嗎?
。ㄉ何以谥虚g剪的)剪成兩個(gè)完全一樣的梯形,可以嗎?平移過去也拼成了一個(gè)長(zhǎng)方形。 (展示學(xué)生的成果)
師:老師有幾個(gè)問題,我們把平行四邊形轉(zhuǎn)化成了長(zhǎng)方形,原來平行四邊形的面積和這個(gè)長(zhǎng)方形的面積相等嗎?平行四邊形的底和高分別與長(zhǎng)方形的長(zhǎng)和寬有什么關(guān)系呢?
小組討論:
、 原來平行四邊形的面積和拼成的長(zhǎng)方形的面積相等嗎?
、 原來平行四邊形的底與拼成的長(zhǎng)方形的長(zhǎng)有什么關(guān)系?
、 原來平行四邊形的高與拼成的長(zhǎng)方形的寬有什么關(guān)系?
師:誰來說說你的想法。它的面積沒有多,也沒有少,平行四邊形的面積等于剪拼后的長(zhǎng)方形的面積。(板書)平行四邊形的底和高與長(zhǎng)方形的長(zhǎng)和寬有什么關(guān)系?我們看課件演示。(板書:底=長(zhǎng), 寬=高)
師:長(zhǎng)方形的面積=長(zhǎng)寬,那么平行四邊形的面積怎樣求?
生:平行四邊形的面積=底高(板書)
師:同意嗎?誰能講一講,為什么平行四邊形的面積=底高?結(jié)合剛才一剪一拼的過程說說。(生敘述方法)
教師小結(jié)方法指名讓生敘述。
師:如果用S表示平行四邊形的面積,用a表示平行四邊形的底,用h表示平行四邊形的高,那么平行四邊形的面積計(jì)算公式可以寫成S=ah(板書:S=ah)。
師:現(xiàn)在我們可以確定當(dāng)初的猜想誰是正確的?
。ㄔO(shè)計(jì)思路:讓學(xué)生對(duì)平行四邊形面積的計(jì)算方法提出猜想,再進(jìn)行驗(yàn)證。學(xué)生通過自主探索,合作交流,既體現(xiàn)了學(xué)生的主體地位,又有助于培養(yǎng)學(xué)生觀察能力、抽象概括能力,為進(jìn)一步發(fā)展空間觀念打下基礎(chǔ)。在本環(huán)節(jié)中,學(xué)生體會(huì)到獨(dú)立探究獲得的成功喜悅。在教學(xué)中給學(xué)生留足了自主探索的空間,最終達(dá)到學(xué)習(xí)的目的,讓學(xué)生體驗(yàn)到成功的喜悅。)
四、實(shí)踐應(yīng)用,鞏固提高。
師:同學(xué)們,現(xiàn)在你們可以算出建宣傳欄要的那塊膠合板的面積了嗎?(學(xué)生獨(dú)立完成。)
教師板書:54=20(平方米)
出示例1 (同桌討論,獨(dú)立完成,最后全班交流。)
教師板書:S=ah=64=24(平方米)
師:同學(xué)們真會(huì)動(dòng)腦筋,能運(yùn)用所學(xué)知識(shí)解決生活中的問題。
(設(shè)計(jì)思路:將學(xué)生帶回到了生活中,練習(xí)由易到難,符合兒童的心理需求,大多數(shù)學(xué)生在運(yùn)用知識(shí)解決問題的時(shí)候感覺沒什么難處。學(xué)生就在運(yùn)用所學(xué)知識(shí)給別人幫忙的過程中著實(shí)體驗(yàn)了把成功的快樂。)
五、分層練習(xí), 強(qiáng)化應(yīng)用。
1、填空。
。1)把一個(gè)平行四邊形轉(zhuǎn)化成一個(gè)長(zhǎng)方形,它的面積與原來的平行四邊形( )。這個(gè)長(zhǎng)方形的長(zhǎng)與平形四邊形的底( ),寬與平行四邊形的高( )。平行四邊形的面積等于( ),用字母表示是( )。
。2)0.85公頃=( )平方0.56平方千米=( )公頃
2、計(jì)算下面各個(gè)平行四邊形的面積。
。1)底=2.5cm,高=3.2cm。 (2)底=6.4dm,高=7.5dm。
3、解決問題。
。1)小明家有一塊平行四邊形的菜地,面積是120平方米,量得底是20米,它的高是多少?
(2)一塊平行四邊形鋼板,底8.5m,高6m,它的面積是多少?如果每平方米的鋼板重38千克,這塊鋼板重多少千克?
(設(shè)計(jì)思路:幾道練習(xí)題從易到難有一定坡度,通過練習(xí),既鞏固了本節(jié)課所學(xué)的知識(shí),又使不同層次的學(xué)生都得到了發(fā)展,拓展了學(xué)生的思維。)
六、總結(jié)升華,拓展延伸。
1、教學(xué)小結(jié):同學(xué)們,這節(jié)課你們學(xué)會(huì)了什么?說一說你知道哪些解決問題的方法?
(設(shè)計(jì)思路:通過說一說,使學(xué)生對(duì)本節(jié)課所學(xué)知識(shí)有個(gè)系統(tǒng)的認(rèn)識(shí),可以提高學(xué)生的歸納、總結(jié)、概括、表達(dá)等多方面的能力。)
2、課后練習(xí)
。1)、練習(xí)十五第1題,第2題。(任選一題)
。2)、解決問題:選一個(gè)平行四邊形的實(shí)物,量出它的底和高,并計(jì)算出面積。
(設(shè)計(jì)思路:分層次布置作業(yè),讓學(xué)生根據(jù)自己的能力,適當(dāng)選擇作業(yè)。這樣做,一來可以提高學(xué)生的學(xué)習(xí)興趣,二來體現(xiàn)了讓學(xué)生在數(shù)學(xué)上得到不同的發(fā)展。)
【教學(xué)反思】:
一、調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性和主動(dòng)性
這節(jié)課我使用了多媒體教學(xué)課件,通過圖文并茂,把靜止的問題活動(dòng)話,激發(fā)了學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,節(jié)省了課堂教學(xué)的時(shí)間。學(xué)生將兩個(gè)不規(guī)則的圖形轉(zhuǎn)化成了長(zhǎng)方形求出了不規(guī)則圖形的面積,接著出示一個(gè)平行四邊形,如何求平行四邊形的面積呢?這樣引入新課,調(diào)動(dòng)了學(xué)生學(xué)習(xí)的興趣。
二、創(chuàng)造出寬松和諧的環(huán)境,引導(dǎo)學(xué)生探究。
課堂上為學(xué)生創(chuàng)設(shè)了一種民主、寬松、和諧的學(xué)習(xí)氛圍,給了學(xué)生充分的思考問題的時(shí)間與空間,在這樣的課堂教學(xué)中教師始終是學(xué)生學(xué)習(xí)活動(dòng)的組織者、指導(dǎo)者、合作者,在這樣的課堂學(xué)習(xí)中學(xué)生樂想、善思、敢說,他們可以自由地思考、猜想、實(shí)踐、驗(yàn)證。
這節(jié)課組織學(xué)生進(jìn)行自主探究、合作交流是本節(jié)課的重點(diǎn)環(huán)節(jié),教師在放手讓學(xué)生從自己的思維實(shí)際出發(fā),給學(xué)生以獨(dú)立思考時(shí)間的基礎(chǔ)上讓學(xué)生進(jìn)行交流是十分必要的。由于學(xué)生的學(xué)習(xí)活動(dòng)是獨(dú)立自主的,因此面對(duì)同樣的問題學(xué)生會(huì)出現(xiàn)不同的思維方式,讓學(xué)生在獨(dú)立思考的基礎(chǔ)上進(jìn)行合作交流能滿足學(xué)生展示自我的心理需要,同時(shí)通過師生互動(dòng)、生生互動(dòng),相互討論,各種不同觀點(diǎn)相互碰撞的過程中才能迸發(fā)出創(chuàng)造性思維的火花,發(fā)現(xiàn)問題、提出問題、解決問題的能力才能不斷得到增強(qiáng),能夠?qū)ψ约汉退说挠^點(diǎn)進(jìn)行反思與批判,在合作交流中互相啟發(fā)、互相激勵(lì)、共同發(fā)展。
平行四邊形教案 篇2
教學(xué)目標(biāo)
1.通過生活情景與實(shí)踐操作,直觀認(rèn)識(shí)平行四邊形。
2.在觀察與比較中,使學(xué)生在頭腦里建成長(zhǎng)方形與四邊形間的區(qū)別與聯(lián)系。
3.體會(huì)平行四邊形與生活的密切聯(lián)系。
教學(xué)重難點(diǎn)
通過生活情景與實(shí)踐操作,直觀認(rèn)識(shí)平行四邊形。
教學(xué)準(zhǔn)備
教具:活動(dòng)長(zhǎng)方形框架點(diǎn)子圖。
學(xué)具:七巧板。課時(shí)
安排1
教學(xué)過程
一、利用學(xué)具逐步探究
1.拉一拉
發(fā)給每位學(xué)生一個(gè)長(zhǎng)方形的學(xué)具。輕輕地動(dòng)手拉一拉,看看它發(fā)生了什么變化?
生動(dòng)手操作,交流自己的發(fā)現(xiàn)。學(xué)生會(huì)發(fā)現(xiàn)長(zhǎng)方形向一邊傾斜了,角的大小發(fā)生了變化等等。程度較好的學(xué)生會(huì)說出長(zhǎng)方形變成了平行四邊形。
教師將拉成的平行四邊形貼在黑板上。引出課題并板書:平形四邊形
長(zhǎng)方形和平行四邊形哪些地方相同,哪些地方不同呢?利用你們的學(xué)具,在四人小組里討論。
。1)小組觀察、討論。教師到各個(gè)小組中指導(dǎo),引導(dǎo)他們從邊和角兩個(gè)方面探究。
(2)分組匯報(bào),小組之間互相補(bǔ)充。得出:平行四邊形和長(zhǎng)方形一樣,都有四條邊,四個(gè)角,對(duì)邊相等。不同的是,長(zhǎng)方形四個(gè)角都是直角,而平行四邊形一組對(duì)角是鈍角,一組對(duì)角是銳角。
。ㄔO(shè)計(jì)意圖:讓學(xué)生親自動(dòng)手操作,經(jīng)歷將長(zhǎng)方形拉成平行四邊形的過程。在學(xué)生初步感知平行四邊的基礎(chǔ)上,探索平行四邊形與長(zhǎng)方形的聯(lián)系和區(qū)別,幫助學(xué)生建立平行四邊形的模型。)
2.猜一猜:[課件出示如果這些圖形都是可活動(dòng)的,估計(jì)哪些能拉成平行四邊形,哪些不能拉成平行四邊形,為什么?
讓學(xué)生安安靜靜的思考后,交流看法。平行四邊形有四條邊,所以三角形和五邊形不能拉成。普通四邊形的對(duì)邊不相等,也不能拉成。正方形能拉成特殊的平行四邊形:菱形。長(zhǎng)方形可以拉成平行四邊形。
請(qǐng)?jiān)趯?dǎo)入時(shí)得到學(xué)具獎(jiǎng)勵(lì)的學(xué)生上臺(tái)利用學(xué)具拉一拉,驗(yàn)證大家的猜測(cè))
3.認(rèn)一認(rèn):
讓學(xué)生判斷大屏幕上的.圖形是平形四邊形嗎?[課件出示]
學(xué)生逐一回答。教師隨即追問為什么第三、第五個(gè)圖形不是平形四邊形?)
4.找一找:
給出一幅畫,讓學(xué)生從這幅畫中找到平行四邊形
課件出示畫面:在小花園里,有菱形的瓷磚、伸縮們、回廊……圖中蘊(yùn)含著各種各樣的平行四邊形。學(xué)生匯報(bào)后,讓他們數(shù)一數(shù)中有幾個(gè)平行四邊形。
師:除此之外,你還能從生活中找到它嗎?
二、動(dòng)手操作拓展延伸:
1.畫一畫:
。1)生利用尺子、鉛筆在點(diǎn)子圖上畫平形四邊形。畫好后,在小組里互相交流。
(2)利用展臺(tái)展示學(xué)生作品。如果出現(xiàn)錯(cuò)誤,讓學(xué)生當(dāng)“小老師”互相糾正。
2.拼一拼:
用七巧板拼成一個(gè)平行四邊形,同桌兩人一組,比一比,哪個(gè)組拼的方法最巧妙。
(1)請(qǐng)三組同桌在黑板上拼,其余學(xué)生分組在下面拼。教師巡視,發(fā)現(xiàn)巧妙的拼法,讓其展示在黑板上。
(2)選擇一個(gè)你最喜歡的平行四邊形,說一說它是用什么形狀的七巧板拼成的。
三、課堂
1.這節(jié)課你有什么收獲?
2.師:只要注意積累,你們的知識(shí)會(huì)越來越多!
平行四邊形教案 篇3
【學(xué)習(xí)目標(biāo)】
1、平行四邊形性質(zhì)(對(duì)角線互相平分)
2、平行線之間的距離定義及性質(zhì)
【新課探究】
活動(dòng)一:
如圖,□ABCD的兩條對(duì)角線AC、BD相交于點(diǎn)O.
(1)圖中有哪些三角形是全等的?有哪些線段是相等的?
(2)想辦法驗(yàn)證你的猜想?
(3)平行四邊形的性質(zhì):平行四邊形的對(duì)角線
幾何語言:∵四邊形ABCD是平行四邊形(已知)
∴AO==AC,BO==BD()
活動(dòng)二:如圖,直線∥,過直線上任意兩點(diǎn)A,B分別向直線做垂線,交直線與點(diǎn)C,點(diǎn)D.
(1)線段AC,BD有怎樣的位置關(guān)系?
(2)比較線段AC,BD的長(zhǎng)短.
(3)若兩條直線互相平行,,則其中一條直線上任意一點(diǎn)到另一條直線的距離,這個(gè)距離稱為平行線之間的距離。平行線之間的垂線段處處.
【知識(shí)應(yīng)用】
1.已知□ABCD的兩條對(duì)角線相交于點(diǎn)O,OA=5,OB=6,則AC=,BD=
2.如圖,四邊形ABCD是平行四邊形,DB⊥AD,求BC,CD及OB,OA的長(zhǎng).
3.已知□ABCD中,AB=12,BC=6,對(duì)邊AD和BC的距離是4,則對(duì)邊AB和CD間的距離是
【當(dāng)堂反饋(小測(cè))】:
1、平行四邊形ABCD的兩條對(duì)角線相交于O,OA,OB,AB的長(zhǎng)度分別為3cm、4cm、5cm,求其它各邊以及兩條對(duì)角線的長(zhǎng)度。
2、如圖,在□ABCD中,,已知∠ODA=90°,OA=6cm,OB=3cm,求AD、AC的長(zhǎng)
3、如圖,在□ABCD中,已知AB、BC、CD三條邊的長(zhǎng)度分別為(x+3)cm,(x-4)cm,16cm,這個(gè)平行四邊形的周長(zhǎng)是多少?
【鞏固提升】
1.平行四邊形的兩條對(duì)角線
2、已知□ABCD的兩條對(duì)角線相交于點(diǎn)O,OA=5,OB=6,則AC=,BD=
3、已知□ABCD中,AB=8,BC=6,對(duì)邊AD和BC的距離是2,則對(duì)邊AB和CD間的距離是
4、下列性質(zhì)中,平行四邊形不一定具備的是()
A、對(duì)角互補(bǔ)B、鄰角互補(bǔ)C、對(duì)角相等D、內(nèi)角和是360°
5、下列說法中,不正確的是()
A、平行四邊形的對(duì)角線相等B、平行四邊形的對(duì)邊相等
C、平行四邊形的對(duì)角線互相平分D、平行四邊形的對(duì)角相等
6、如圖,在□ABCD中,,已知∠BAC=90°,OB=8cm,OA=4cm,求AB、BC的長(zhǎng)
7、如圖,已知□ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,△AOD的周長(zhǎng)是80cm,已知AD的長(zhǎng)是35cm,求AC+BD的`長(zhǎng)。
8、如圖,平行四邊形ABCD中,AE⊥BD,CF⊥BD,垂足分別為E、F。
(1)寫出圖中每一對(duì)你認(rèn)為全等的三角形;
(2)選擇(1)中的任意一對(duì)進(jìn)行證明。
9.對(duì)角線可以將平行四邊形分成全等的兩部分,這樣的直線還有很多。
(1)多做幾條這樣的直線,看看它們有什么共同的特征
(2)試著用旋轉(zhuǎn)的有關(guān)知識(shí)解釋你的發(fā)現(xiàn)。
平行四邊形教案 篇4
教學(xué)目的:
1、深入了解平行四邊形的不穩(wěn)定性;
2、理解兩條平行線間的距離定義(區(qū)別于兩點(diǎn)間的距離、點(diǎn)到直線的距離)
3、熟練掌握平行四邊形的定義,平行四邊形性質(zhì)定理1、定理2及其推論、定理3和四個(gè)平行四邊形判定定理,并運(yùn)用它們進(jìn)行有關(guān)的論證和計(jì)算;
4、在教學(xué)中滲透事物總是相互聯(lián)系又相互區(qū)別的辨證唯物主義觀點(diǎn),體驗(yàn)“特殊--一般--特殊”的辨證唯物主義觀點(diǎn)。
教學(xué)重點(diǎn):
平行四邊形的性質(zhì)和判定。
教學(xué)難點(diǎn):
性質(zhì)、判定定理的運(yùn)用。
教學(xué)程序:
一、復(fù)習(xí)創(chuàng)情導(dǎo)入
平行四邊形的性質(zhì):
邊:對(duì)邊平行(定義);對(duì)邊相等(定理2);對(duì)角線互相平分(定理3)夾在平行線間的平行線段相等。
角:對(duì)角相等(定理1);鄰角互補(bǔ)。
平行四邊形的判定:
邊:兩組 對(duì)邊平行(定義);兩組對(duì)邊相等(定理2);對(duì)角線互相平分(定理3);一組對(duì)邊平行且相等(定理4);兩組對(duì)角分別相等(定理1)
二、授新
1、提出問題:平行四邊形有哪些性質(zhì):判定平行四邊形有哪些方法:
2、自學(xué)質(zhì)疑:自學(xué)課本P79-82頁,并提出疑難問題。
3、分組討論:討論自學(xué)中不能解決的問題及學(xué)生提出問題。
4、反饋歸納:根據(jù)預(yù)習(xí)和討論的效果,進(jìn)行點(diǎn)撥指導(dǎo)。
5、嘗試練習(xí):完成習(xí)題,解答疑難。
6、深化創(chuàng)新:平行四邊形的性質(zhì):
邊:對(duì)邊平行(定義);對(duì)邊相等(定理2);對(duì)角線互相平分(定理3)夾在平行線間的平行線段相等。
角:對(duì)角相等(定理1);鄰角互補(bǔ)。
平行四邊形的判定:
邊:兩組 對(duì)邊平行(定義);兩組對(duì)邊相等(定理2);對(duì)角線互相平分(定理3);一組對(duì)邊平行且相等(定理4);兩組對(duì)角分別相等(定理1)
7、推薦作業(yè)
1、熟記“歸納整理的內(nèi)容”;
2、完成《練習(xí)卷》;
3、預(yù)習(xí):(1)矩形的定義?
(2)矩形的性質(zhì)定理1、2及其推論的.內(nèi)容是什么?
。3)怎樣證明?
。4)例1的解答過程中,運(yùn)用哪些性質(zhì)?
思考題
1、平行四邊形的性質(zhì)定理3的逆命題是否是真命題?根據(jù)題設(shè)和結(jié)論寫出已 知求證; 2、如何證明性質(zhì)定理3的逆命題? 3、有幾種方法可以證明? 4、例2的證明中,運(yùn)用了哪些性質(zhì)及判定?是否有其他方法? 5、例3的證明中,運(yùn)用了哪些性質(zhì)及判定?是否有其他方法?
跟蹤練習(xí)
1、在四邊形ABCD中,AC交BD 于點(diǎn)O,若AO=1/2AC,BO=1/2BD,則四邊形ABCD是平行四邊形。( )
2、在四邊形ABCD中,AC交BD 于點(diǎn)O,若OC= 且 ,則四邊形ABCD是平行四邊形。
3、下列條件中,能夠判斷一個(gè)四邊形是平行四邊形的是( )
。ˋ)一組對(duì)角相等; (B)對(duì)角線相等;
。–)兩條鄰邊相等; (D)對(duì)角線互相平分。
創(chuàng)新練習(xí)
已知,如圖,平行四邊形ABCD的AC和BD相交于O點(diǎn),經(jīng)過O點(diǎn)的直線交BC和AD于E、F,求證:四邊形BEDF是平行四邊形。(用兩種方法)
達(dá)標(biāo)練習(xí)
1、已知如圖,O為平行四邊形ABCD的對(duì)角線AC的中點(diǎn),EF經(jīng)過點(diǎn)O,且與AB交于E,與CD 交于F。求證:四邊形AECF是平行四邊形。
2、已知:如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,M、N分別是OA、OC的中點(diǎn),求證:BM∥DN,且BM=DN 。
綜合應(yīng)用練習(xí)
1、下列條件中,能做出平行四邊形的是( )
。ˋ)兩邊分別是4和5,一對(duì)角線為10;
(B)一邊為4,兩條對(duì)角線分別為2和5;
。–)一角為600,過此角的對(duì)角線為3,一邊為4;
。―)兩條對(duì)角線分別為3和5,他們所夾的銳角為450。
推薦作業(yè)
1、熟記“判定定理3”;
2、完成《練習(xí)卷》;
3、預(yù)習(xí):
。1)“平行四邊形的判定定理4”的內(nèi)容 是什么?
。2)怎樣證明?還有沒有其它證明方法?
。3)例4、例5還有哪些證明方法?
平行四邊形教案 篇5
教學(xué)內(nèi)容:
義務(wù)教育六年制小學(xué)《數(shù)學(xué)》第九冊(cè)P64-P66
教學(xué)目的:
1、讓學(xué)生知道平行四邊形面積公式的推導(dǎo)過程,掌握平行四邊形面積的計(jì)算公式,并能應(yīng)用公式正確地計(jì)算平行四邊形面積,數(shù)學(xué)教案-平行四邊形面積計(jì)算。
2、通過操作、觀察與比較,發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生運(yùn)用轉(zhuǎn)化的思考方法解決問題的能力。
3、使學(xué)生初步感受到事物是相互聯(lián)系的,在一定條件下可以相互轉(zhuǎn)化。
4、培養(yǎng)學(xué)生自主學(xué)習(xí)的能力。
教學(xué)重點(diǎn):
掌握平行四邊形面積公式。
教學(xué)難點(diǎn):
平行四邊形面積公式的推導(dǎo)過程。
教具、學(xué)具準(zhǔn)備:
1、多媒體計(jì)算機(jī)及課件;
2、投影儀;
3、硬紙板做成的可拉動(dòng)的長(zhǎng)方形框架;
4、每個(gè)學(xué)生5張平行四邊形硬紙片及剪刀一把。
教學(xué)過程:
一、復(fù)習(xí)導(dǎo)入:
1、我們認(rèn)識(shí)的平面幾何圖形有哪些呢?(微機(jī)出示,圖形略)
2、在這幾個(gè)圖形中你們會(huì)求哪幾個(gè)的面積呢?(微機(jī)出示長(zhǎng)方形和正方形的面積公式)
3、大家想不想知道其他幾個(gè)圖形的面積怎么求呢?我們這個(gè)單元就來學(xué)習(xí)“多邊形面積的計(jì)算”。
二、質(zhì)疑引新:
1、老師知道同學(xué)們都很喜歡流氓兔,今天流氓兔遇到了一個(gè)難題,我們一起來幫它解決好不好?
2、微機(jī)顯示動(dòng)畫故事:有一天,流氓兔在跑步的時(shí)候,遇到了一個(gè)長(zhǎng)方形框架,它不小心踹了一腳,把長(zhǎng)方形變成了平行四邊形,流氓兔很奇怪:形狀改變了,面積改變了嗎?
3、演示教具:將硬紙板做成的長(zhǎng)方形框架,拉動(dòng)其一角,變?yōu)槠叫兴倪呅巍?/p>
4、解決這個(gè)問題最好的辦法就是將兩個(gè)圖形的面積都求出來進(jìn)行比較,長(zhǎng)方形的面積我們會(huì)求了,平行四邊形的面積要怎么求呢?這節(jié)可我們就一起來學(xué)習(xí)平行四邊形面積的計(jì)算。(板書課題:平行四邊形面積的計(jì)算)
三、引導(dǎo)探求:
。ㄒ唬、復(fù)習(xí)鋪墊:
1、什么圖形是平行四邊形呢?
2、拿出一個(gè)準(zhǔn)備好的平行四邊形,找找它的底和高,并把高畫下來,比比看誰畫得多。
3、微機(jī)顯示并小結(jié):平行四邊形可以作無數(shù)條高,以不同的邊為底對(duì)應(yīng)的高是不同的。
(二)、推導(dǎo)公式:
1、小小魔術(shù)師:我們現(xiàn)在來做一個(gè)變一變的小游戲(微機(jī)顯示一個(gè)不規(guī)則圖形),我們可以直接用所學(xué)過的求面積公式來求它的面積嗎?
2、能不能把它轉(zhuǎn)化成我們學(xué)過的圖形呢?(用割補(bǔ)法轉(zhuǎn)化為長(zhǎng)方形)
3、能不能用同樣的方法把一個(gè)平行四邊形轉(zhuǎn)化成長(zhǎng)方形呢?請(qǐng)同學(xué)們拿出準(zhǔn)備好的多個(gè)平行四邊形紙片及剪刀,自己動(dòng)手,運(yùn)用所學(xué)過的割補(bǔ)法將平行四邊形轉(zhuǎn)化為長(zhǎng)方形。
4、學(xué)生實(shí)驗(yàn)操作,教師巡視指導(dǎo)。
5、學(xué)生交流實(shí)驗(yàn)情況:
、拧⒄l愿意把你的轉(zhuǎn)化方法說給大家聽呢?請(qǐng)上臺(tái)來交流!(用投影儀演示剪拼過程)
、、有沒有不同的剪拼方法?(繼續(xù)請(qǐng)同學(xué)演示)。
、恰⑽C(jī)演示各種轉(zhuǎn)化方法。
6、歸納總結(jié)規(guī)律:
沿著平行四邊形的任意一條高剪開,都可以通過平移把平行四邊形拼合成一個(gè)長(zhǎng)方形。并引導(dǎo)學(xué)生形成以下概念:
⑴、平行四邊形剪拼成長(zhǎng)方形后,什么變了?什么沒變?
、、剪拼成的長(zhǎng)方形的長(zhǎng)與寬分別與平行四邊形的.底和高有什么關(guān)系?
、恰⒓魳映傻膱D形面積怎樣計(jì)算?得出:
因?yàn)椋浩叫兴倪呅蔚拿娣e=長(zhǎng)方形的面積=長(zhǎng)×寬=底×高
所以:平行四邊形的面積=底×高
。ò鍟叫兴倪呅蚊娣e推導(dǎo)過程)
7、文字公式不方便,我們一起來學(xué)習(xí)用字母公式表示,如果用S表示平行四邊形的面積,用a表示平行四邊形的底,用h表示平行四邊形的高,那么S=a×h(板書)。同時(shí)強(qiáng)調(diào):在含有字母的式子中,字母和字母之間的乘號(hào)可以記作".",也可以省略不寫,所以平行四邊形的面積公式還可以記作S=a.h或S=ah(板書)。
8、讓學(xué)生閉上眼睛,在輕柔的音樂中回憶平行四邊形面積計(jì)算的推導(dǎo)過程。
四、鞏固練習(xí):
1、剛才我們已經(jīng)推導(dǎo)出了平行四邊形的面積公式,那么,要求平行四邊形的面積,必須要知道哪幾個(gè)條件?(底和高,強(qiáng)調(diào)高是底邊上的高)
2、練習(xí):
、、(微機(jī)顯示例一)求平行四邊形的面積
、、判斷題(微機(jī)顯示,強(qiáng)調(diào)高是底邊上的高)
、、比較等底等高的平行四邊形面積的大。ㄓ们竺娣e的公式計(jì)算、比較,得出結(jié)論:等底等高的平行四邊形面積相等)
、取⑺伎碱}:用求面積的公式解決流氓兔的難題(微機(jī)演示,得出結(jié)論:原長(zhǎng)方形與改變后的平行四邊形比較,長(zhǎng)方形的長(zhǎng)等于平行四邊形的底,長(zhǎng)方形的寬不等于平行四邊形的高,所以二者的面積不相等)。
五、問答總結(jié):
1、通過這節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識(shí)?
2、平行四邊形面積的計(jì)算公式是什么?
3、平行四邊形面積公式是如何推導(dǎo)得出的?
六、課后作業(yè):P67 1、2、3、5 《指導(dǎo)叢書》練習(xí)十六 1
平行四邊形教案 篇6
一、 教學(xué)目標(biāo):
1.掌握用一組對(duì)邊平行且相等來判定平行四邊形的方法.
2.會(huì)綜合運(yùn)用平行四邊形的四種判定方法和性質(zhì)來證明問題.
3.通過平行四邊形的性質(zhì)與判定的應(yīng)用,啟迪學(xué)生的思維,提高分析問題的能力.
二、 重點(diǎn)、難點(diǎn)
1.重點(diǎn):平行四邊形各種判定方法及其應(yīng)用,尤其是根據(jù)不同條件能正確地選擇判定方法.
2.難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的綜合應(yīng)用.
三、例題的意圖分析
本節(jié)課的兩個(gè)例題都是補(bǔ)充的題目,目的是讓學(xué)生能掌握平行四邊形的第三種判定方法和會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來解決問題.學(xué)生程度好一些的學(xué)校,可以適當(dāng)?shù)刈约涸傺a(bǔ)充一些題目,使同學(xué)們會(huì)應(yīng)用這些方法進(jìn)行幾何的推理證明,通過學(xué)習(xí),培養(yǎng)學(xué)生分析問題、尋找最佳解題途徑的能力.
四、課堂引入
1. 平行四邊形的性質(zhì);
2. 平行四邊形的判定方法;
3. 【探究】 取兩根等長(zhǎng)的木條AB、CD,將它們平行放置,再用兩根木條BC、AD加固,得到的四邊形ABCD是平行四邊形嗎?
結(jié)論:一組對(duì)邊平行且相等的`四邊形是平行四邊形.
五、例習(xí)題分析
例1(補(bǔ)充)已知:如圖, ABCD中,E、F分別是AD、BC的中點(diǎn),求證:BE=DF.
分析:證明BE=DF,可以證明兩個(gè)三角形全等,也可以證明
四邊形BEDF是平行四邊形,比較方法,可以看出第二種方法簡(jiǎn)單.
證明:∵ 四邊形ABCD是平行四邊形,
AD∥CB,AD=CD.
∵ E、F分別是AD、BC的中點(diǎn),
DE∥BF,且DE= AD,BF= BC.
DE=BF.
四邊形BEDF是平行四邊形(一組對(duì)邊平行且相等的四邊形平行四邊形).
BE=DF.
此題綜合運(yùn)用了平行四邊形的性質(zhì)和判定,先運(yùn)用平行四邊形的性質(zhì)得到判定另一個(gè)四邊形是平行四邊形的條件,再應(yīng)用平行四邊形的性質(zhì)得出結(jié)論;題目雖不復(fù)雜,但層次有三,且利用知識(shí)較多,因此應(yīng)使學(xué)生獲得清晰的證明思路.
例2(補(bǔ)充)已知:如圖, ABCD中,E、F分別是AC上兩點(diǎn),且BEAC于E,DFAC于F.求證:四邊形BEDF是平行四邊形.
分析:因?yàn)锽EAC于E,DFAC于F,所以BE∥DF.需再證明BE=DF,這需要證明△ABE與△CDF全等,由角角邊即可.
證明:∵ 四邊形ABCD是平行四邊形,
AB=CD,且AB∥CD.
BAE=DCF.
【平行四邊形教案】相關(guān)文章:
平行四邊形教案04-01
《平行四邊形的判定》教案06-03
平行四邊形的面積教案11-27
《平行四邊形的面積》教案02-17
平行四邊形面積教案02-09
認(rèn)識(shí)平行四邊形教案03-05
平行四邊形和梯形教案03-11
平行四邊形面積的計(jì)算教案03-03