- 實(shí)用的平行四邊形教案 推薦度:
- 平行四邊形教案 推薦度:
- 平行四邊形教案 推薦度:
- 相關(guān)推薦
平行四邊形教案匯編五篇
作為一名專為他人授業(yè)解惑的人民教師,可能需要進(jìn)行教案編寫工作,借助教案可以讓教學(xué)工作更科學(xué)化。我們應(yīng)該怎么寫教案呢?以下是小編整理的平行四邊形教案5篇,僅供參考,希望能夠幫助到大家。
平行四邊形教案 篇1
一、教學(xué)目標(biāo)
經(jīng)歷探索平行四邊形判別條件的過程,培養(yǎng)學(xué)生操作、觀察和說理能力;掌握兩組對(duì)邊分別相等的四邊形是平行四邊形這一判別條件。
二、教材分析
本節(jié)課是在學(xué)生學(xué)習(xí)了平行四邊形的兩個(gè)判定定理之后即將學(xué)習(xí)的第三個(gè)判定定理——兩組對(duì)邊分別相等的四邊形是平行四邊形。
三、教學(xué)重難點(diǎn)
重點(diǎn):
探索并掌握平行四邊形的'判別條件。
難點(diǎn):
對(duì)平行四邊形判別條件的理解及說理的基本方法的掌握。
四、教學(xué)準(zhǔn)備
兩根長40厘米 和兩根長30厘米的木條
五、教學(xué)設(shè)計(jì)
首先復(fù)習(xí)平行四邊形的定義,然后通過學(xué)生活動(dòng)發(fā)現(xiàn)平行四邊形的另一判定定理,然后借助各種方法加以驗(yàn)證。最后依靠課本所設(shè)計(jì)的“做一做” ,“議一議” 以及“隨堂練習(xí)”加深對(duì)平行四邊形判定定理的理解。
六、教學(xué)過程
1、復(fù)習(xí)平行四邊形的定義。(旨在為證明一個(gè)四邊形是平行四邊形做鋪墊)
2、小組活動(dòng)
用兩根長40厘米和兩根30厘米的木條作為四邊形的四條邊,能否拼成平行四邊形?與同伴進(jìn)行交流。 (通過小組活動(dòng),學(xué)生親自動(dòng)手操作,得出結(jié)論——當(dāng)兩組對(duì)邊相等時(shí),四邊形是平行四邊形;對(duì)邊不相等時(shí),所圍成的四邊形不是平行四邊形)。 平行四邊形的判定定理——兩組對(duì)邊相等的四邊形是平行四邊形。
3、課本91頁的“做一做” (其目的是鞏固和應(yīng)用“兩組對(duì)邊相等的四邊形是平行四邊形”的判定定理。)
4、“議一議”
問題1、一組對(duì)邊平行,另一組對(duì)邊相等的四邊形一定是平行四邊形嗎?說說你的想法。 (先鼓勵(lì)學(xué)生自主探索,再分組討論,最后全班交流得出正確結(jié)論)
問題2、要判別一個(gè)四邊形是平行四邊形,你有哪些方法?
5、通過課本的“隨堂練習(xí)”,使學(xué)生對(duì)平行四邊形的判別條件加以應(yīng)用和鞏固
平行四邊形教案 篇2
四年級(jí)數(shù)學(xué)上冊(cè)《平行四邊形、梯形特征》教學(xué)設(shè)計(jì)教學(xué)目標(biāo):
1、學(xué)生理解平行四邊形和梯形的概念及特征。
2、使學(xué)生了解學(xué)過的所有四邊形之間的關(guān)系,并會(huì)用集合圖表示。
3、通過操作活動(dòng),使學(xué)生經(jīng)歷認(rèn)識(shí)平行四邊形和梯形的全過程,掌握它們的特征。
4、通過活動(dòng),讓學(xué)生從中感受到學(xué)習(xí)的樂趣,體會(huì)到成功的喜悅,從而提高學(xué)習(xí)的興趣。
教學(xué)重點(diǎn):理解平行四邊形和梯形的概念及特征。了解學(xué)過的所有四邊形之間的關(guān)系,并會(huì)用集合圖表示。
教學(xué)難點(diǎn):理解平行四邊形和梯形的概念及特征。用集合圖表示學(xué)過的所有四邊形之間的關(guān)系。
教具準(zhǔn)備:圖形、剪子、七巧板。
教學(xué)過程:
一、創(chuàng)設(shè)情景 感知圖形
1、出示校園圖(70頁)在我們美麗的校園中,你能找到那些四邊形?
。、畫出你喜歡的一個(gè)四邊形。說一說什么樣的圖形是四邊形?
展示學(xué)生畫出的四邊形,請(qǐng)學(xué)生標(biāo)出它們的名稱。
長方形 平行四邊形
梯形 正方形
3、小組交流:從四邊形的特點(diǎn)來看,四邊形可以分成幾類?學(xué)生討論交流。
二、探究新知
1、歸納平行四邊形和梯形的概念。
有什么特點(diǎn)的圖形是平行四邊形?(兩組對(duì)邊分別平行的'四邊形叫做平行四邊形。)
強(qiáng)調(diào)說明:只要四邊形的每組對(duì)邊分別平行,就能確定它的每組對(duì)邊相等。因此平行四邊形的定義是兩組對(duì)邊分別平行的四邊形。
提問:生活中你見過這樣的圖形嗎?它們的外形像什么?
這些圖形有幾條邊?幾個(gè)角?是什么圖形?
這幾個(gè)四邊形有邊有什么特點(diǎn)?
它是平行四邊形嗎?
你們?cè)诹窟@些圖形時(shí),是否發(fā)現(xiàn)它們都有一個(gè)共同的特點(diǎn)?如果有,是什么?
只有一組對(duì)邊平行的四邊形叫做梯形。
5、現(xiàn)在你有什么問題嗎?
長方形和正方形是平行四邊形嗎?為什么?
6、用集合圖表示四邊形之間的關(guān)系。我們學(xué)過的長方形、正方形、平行四邊形、剛剛認(rèn)識(shí)的梯形,你能用這個(gè)集合圈來表示他們的關(guān)系嗎?
。、判斷:
長方形是特殊的平行四邊形。( )
兩個(gè)完全一樣的梯形可以拼成一個(gè)平行四邊形。( )
一個(gè)梯形中只有一組對(duì)邊平行。( )
三、鞏固練習(xí)。
1、在梯形里畫兩條線段,把它分割成三個(gè)三角形。你有幾種畫法?學(xué)生展示
2、七巧板拼一拼
用兩塊拼一個(gè)梯形
用三塊拼一個(gè)梯形
用一套七巧板拼一個(gè)平行四邊形
。、 下面的圖形中有( )個(gè)大小不同的梯形。
2、 用兩個(gè)完全一樣的梯形,能拼成一個(gè)平行四邊形嗎?
把1張?zhí)菪渭埣粢淮,再拼成一個(gè)平行四邊形。
拿一張長方行紙,不對(duì)折,剪一次,再拼出一個(gè)梯形。
四、課堂小結(jié):通過這節(jié)課的學(xué)習(xí),你有何體會(huì)和收獲?
五、作業(yè):
。薄岩粋(gè)平行四邊形剪成兩個(gè)圖形,然后拼成一個(gè)三角形,這個(gè)三角是什么三角形?有幾種剪拼的方法?
2、把一張平行四邊形的紙剪一下,分成兩個(gè)梯形,有多少種剪法?
平行四邊形教案 篇3
教學(xué)內(nèi)容:
義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(西南師大版)四年級(jí)(下)第97,98頁中的主題圖和例題1,例2,以及第97~99頁中課堂活動(dòng)第1~2題和練習(xí)二十第1題。
教學(xué)目標(biāo):
1、通過觀察、操作等活動(dòng),認(rèn)識(shí)平行四邊形以及圖形的特征;通過操作活動(dòng)(折紙)認(rèn)識(shí)并理解平行四邊形的高。
2、經(jīng)歷探索平行四邊形形狀的過程,了解它的基本特征,進(jìn)一步發(fā)展空間觀念,培養(yǎng)學(xué)生動(dòng)手操作能力。
3、通過觀察、操作、交流等數(shù)學(xué)活動(dòng),體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考的條理性。
教學(xué)重、難點(diǎn):
讓學(xué)生在觀察、操作、交流等教學(xué)活動(dòng)中認(rèn)識(shí)平行四邊形。
教具準(zhǔn)備:
一個(gè)長方形方框,多媒體課件。
學(xué)具準(zhǔn)備:
每人一塊直尺、一副三角板、一張印有平行四邊形的白紙和一個(gè)剪好的平行四邊形、一個(gè)硬紙條做的長方形方框。
教學(xué)過程:
一、 談話引入
教師:同學(xué)們,在以前的學(xué)習(xí)中我們已經(jīng)初步認(rèn)識(shí)了平行四邊形。實(shí)際上,在我們生活中也經(jīng)常見到平行四邊形。請(qǐng)看大屏幕。
。ㄕn件出示主題圖)
請(qǐng)同學(xué)們仔細(xì)觀察這些物體,你能在這些物體上找出平行四邊形嗎?(請(qǐng)同學(xué)到臺(tái)上用鼠標(biāo)邊指邊說,然后課件再呈現(xiàn)學(xué)生所指出的平行四邊形。)
教師:同學(xué)們觀察得非常仔細(xì),找到了這么多的平行四邊形,它們有些什么共同的特征呢?今天這節(jié)課老師就和同學(xué)們一起來進(jìn)一步認(rèn)識(shí)平行四邊形。
板書課題:平行四邊形
二、 探究新知
1、認(rèn)識(shí)平行四邊形的特征
(1)教師:同學(xué)們喜歡看魔術(shù)表演嗎?(喜歡)現(xiàn)在,老師就給同學(xué)們表演一個(gè)小魔術(shù)。
。ń處煶鍪疽粋(gè)長方形方框)這個(gè)圖形大家認(rèn)識(shí)嗎?(它是長方形)
教師:對(duì)!這是一個(gè)長方形。老師握著這個(gè)長方形方框的兩個(gè)對(duì)角,輕輕地拉一拉。變!變!變!這還是長方形嗎?(平行四邊形)對(duì)!這是平行四邊形。
教師:你們想玩玩這個(gè)魔術(shù)嗎?
(2) 學(xué)生自己用硬紙條做的長方形方框來體驗(yàn)平行四邊形的不穩(wěn)定性。
。3)師:同學(xué)們觀察老師手里的平行四邊形,同桌討論你們發(fā)現(xiàn)了什么?
生1:對(duì)邊平行
生2:對(duì)邊相等
同學(xué)們真聰明,真能干通過觀察發(fā)現(xiàn)了這么多!
同學(xué)們,這些發(fā)現(xiàn)對(duì)嗎?現(xiàn)在我們來驗(yàn)證我們的發(fā)現(xiàn),請(qǐng)同學(xué)們拿出老師發(fā)的平行四邊形,首先我們用畫平行線的方法來驗(yàn)證對(duì)邊是否平行。
匯報(bào)結(jié)果:對(duì)邊平行
現(xiàn)在我們?cè)賮眚?yàn)證一下對(duì)邊真的相等嗎?應(yīng)該怎樣辦呢?
生:測(cè)量平行四邊形四條邊的長度。
師:請(qǐng)拿出你們的直尺測(cè)量手中平行四邊形四條邊的長度。
匯報(bào)結(jié)果:對(duì)邊相等
師:同學(xué)們,我們現(xiàn)在發(fā)現(xiàn)了平行四邊形有兩個(gè)特點(diǎn),它們是什么呢?
。4)師:我們現(xiàn)在認(rèn)識(shí)了平行四邊形,也知道它的對(duì)邊相等且平行。那么什么是平行四邊形呢?
教師通過學(xué)生的回答引導(dǎo)出:對(duì)邊平行的四邊形,叫做平行四邊形。
2、認(rèn)識(shí)平行四邊形的高
同學(xué)們真能干!這么快就知道了什么叫做平行四邊形,現(xiàn)在我們來學(xué)習(xí)平行四邊形另外一個(gè)特征。請(qǐng)同學(xué)們拿出老師發(fā)的.平行四邊形跟老師做(折高)。
師:打開平行四邊形,觀察折痕有什么特點(diǎn)(垂直于邊)
師:想一想什么叫做平行四邊形的高?(從平行四邊形一條邊上的一點(diǎn)到對(duì)邊引一條垂線,這點(diǎn)和垂足之間的線段叫做平行四邊形的高.)教師:同學(xué)們,通過剛才折平行四邊形的高,你有什么發(fā)現(xiàn)?
學(xué)生:我發(fā)現(xiàn)平行四邊形的高有無數(shù)條。
教師:對(duì)!平行四邊形有無數(shù)條高。
第99頁第3題,學(xué)生獨(dú)立完成之后全班交流,教師強(qiáng)調(diào)底與高的對(duì)應(yīng)性。
師:引導(dǎo)認(rèn)識(shí)底
3、引導(dǎo)學(xué)生認(rèn)識(shí)長方形、正方形、平行四邊形的關(guān)系
。1)完成表格
。2)歸納總結(jié)第98頁課堂活動(dòng)第1題
教師:請(qǐng)同學(xué)們想一想,到現(xiàn)在為止,我們都學(xué)習(xí)了哪些四邊形?(長方形、正方形、平行四邊形……)
教師:它們都有哪些地方一樣呢?(它們都是對(duì)邊相等,對(duì)邊互相平行……)
教師:平行四邊形的這些特征,長方形、正方形都具備。
我們通常說長方形、正方形是特殊的平行四邊形。
長方形、正方形是特殊的平行四邊形。平行四邊形的對(duì)邊平行且相等,具有不穩(wěn)定性。
三、課堂小結(jié)
同學(xué)們,這節(jié)課你學(xué)到了哪些知識(shí)?能給大家講講嗎?
平行四邊形教案 篇4
教學(xué)目標(biāo)設(shè)計(jì):
1、激發(fā)主動(dòng)探索數(shù)學(xué)問題的興趣,經(jīng)歷平行四邊形面積計(jì)算公式的推導(dǎo)過程,會(huì)運(yùn)用公式求平行四邊形的面積。
2、體會(huì)“等積變形”和“轉(zhuǎn)化”的數(shù)學(xué)思想和方法,發(fā)展空間觀念。
3、培養(yǎng)初步的推理能力和合作意識(shí),以及解決實(shí)際問題的能力。
教學(xué)重點(diǎn):探究平行四邊形的面積公式
教學(xué)難點(diǎn):理解平行四邊形的面積計(jì)算公式的推導(dǎo)過程
教學(xué)過程設(shè)計(jì):
一、創(chuàng)設(shè)情境,激發(fā)矛盾
拿出一個(gè)長方形框架,提問:這個(gè)框架所圍成圖形的面積你會(huì)求嗎?你是怎樣想的?根據(jù)學(xué)生的回答,適時(shí)板書:長方形面積=長×寬
教師捏住兩角輕微拉動(dòng)長方形框架,使它稍微變形成一個(gè)平行四邊形。提問:它圍成的圖形面積你會(huì)求嗎?你是怎樣想的?根據(jù)學(xué)生的回答,適時(shí)板書:平行四邊形面積=底邊長×鄰邊長
學(xué)情預(yù)設(shè):學(xué)生充分發(fā)表自己的看法,大多數(shù)學(xué)生會(huì)受以前知識(shí)經(jīng)驗(yàn)和教師剛才設(shè)問的影響,認(rèn)為平行四邊形的面積等于底邊長×鄰邊長。
教師繼續(xù)拉動(dòng)平行四邊形框架,使變形后的平行四邊形越來越扁,到最后拉成一個(gè)很扁的平行四邊形,提問:這些平行四邊形的面積也等于底
邊長×鄰邊長嗎?
今天這節(jié)課我們就來研究“平行四邊形的面積”。教師板書課題。
學(xué)情預(yù)設(shè):隨著教師繼續(xù)拉動(dòng)的平行四邊形越來越扁的變化,學(xué)生的原有知識(shí)經(jīng)驗(yàn)體系開始坍塌。這種認(rèn)知平衡一旦被打破,學(xué)生的思維就想開了閘的洪水一樣一發(fā)不可收拾:為什么用底邊長乘鄰邊長不能解決平行四邊形面積是多少問題?問題出在哪里呢?
二、另辟蹊徑,探究新知
1、尋找根源,另辟蹊徑
教師邊演示長方形漸變平行四邊形的過程,邊引導(dǎo)學(xué)生思考:平行四邊形為什么不能用長方形的長與寬演變而來的底邊長與鄰邊長相乘來求面積呢?
引導(dǎo)學(xué)生思考:原來是平行四邊形的面積變得越來越小了,那平行四邊形的面積到底與什么有關(guān)呢?該怎樣來求平行四邊形的面積呢?
學(xué)情預(yù)設(shè):學(xué)生在教師的引導(dǎo)下發(fā)現(xiàn),在教師的操作過程中,底邊與鄰邊的長沒有發(fā)生變化,也就是說,底邊長與鄰邊長相乘的積應(yīng)該也是不變的,但明顯的事實(shí)是學(xué)生看到了平行四邊形在越拉越扁,平行四邊形的面積在越變?cè)叫 ?磥泶寺凡煌,那又該在哪里找出路呢?/p>
2、適時(shí)引導(dǎo),自主探索
教師結(jié)合剛才的板書引導(dǎo)學(xué)生發(fā)現(xiàn),我們已經(jīng)會(huì)計(jì)算長方形的面積了,是否能把平行四邊形轉(zhuǎn)化成長方形來求面積呢?
(1)學(xué)生操作
學(xué)生動(dòng)手實(shí)踐,尋求方法。
學(xué)情預(yù)設(shè):學(xué)生可能會(huì)有三種方法出現(xiàn)。
第一種是沿著平行四邊形的頂點(diǎn)做的高剪開,通過平移,拼出長方形。 第二種是沿著平行四邊形中間任意一高剪開。
第三種是沿平行四邊形兩端的兩個(gè)頂點(diǎn)做的高剪開,把剪下來的兩個(gè)小直角三角形拼成一個(gè)長方形,再和剪后得出的長方形拼成一個(gè)長方形。
。2)觀察比較
剛才同學(xué)們把平行四邊形轉(zhuǎn)化成長方形,在操作時(shí)有一個(gè)共同點(diǎn),是什么呢?為什么要這樣呢?
(3)課件演示
是不是任意一個(gè)平行四邊形都能轉(zhuǎn)化成一個(gè)長方形呢?請(qǐng)同學(xué)們仔細(xì)觀察大屏幕,讓我們?cè)賮眢w會(huì)一下。
3、公式推導(dǎo),形成模型
既然我們可以把一個(gè)平行四邊形轉(zhuǎn)化成一個(gè)長方形,那么轉(zhuǎn)化前的平行四邊形究竟和轉(zhuǎn)化后的長方形有怎樣的聯(lián)系呢?怎樣能想出平行四邊形的面積怎么計(jì)算呢?
先獨(dú)立思考,后小組合作、討論,如小組有困難,可提供“思考提示”。
A、拼成的長方形和原來的平行四邊形比,什么變了?什么沒有改變?
B、拼成的長方形的長和寬與原來的平行四邊形的底和高有什么關(guān)系?
C、你能根據(jù)長方形面積計(jì)算公式推導(dǎo)出平行四邊形的面積計(jì)算公式嗎?)
學(xué)情預(yù)設(shè):學(xué)生通過討論很快就能得出拼成的長方形和原來的平行四邊形之間的關(guān)系,并據(jù)此推導(dǎo)出平行四邊形的面積計(jì)算公式。在此環(huán)節(jié)中,教師要引導(dǎo)學(xué)生盡量用完整、條理的語言表達(dá)其推導(dǎo)思路:“把一個(gè)平行四邊形轉(zhuǎn)化成為一個(gè)長方形,它的面積與原來的平行四邊形的'面積相等。這個(gè)長方形的長與平行四邊形的底相等,這個(gè)長方形的寬與平行四邊形的高相等,因?yàn)殚L方形的面積等于長乘寬,所以平行四邊形的面積等于底乘高!辈⒐桨鍟缦拢
長方形的面積 = 長 × 寬
平行四邊形的面積 = 底 × 高
4、變化對(duì)比,加深理解
引導(dǎo)學(xué)生比較前后兩種變化情況,思考:第一次的長方形變成平行四邊形與第二次的平行四邊形變成長方形,這兩種情況有什么不一樣?哪種變化能說明平行四邊形的面積計(jì)算方法的來源呢?為什么?
5、自學(xué)字母公式,體會(huì)作用
請(qǐng)同學(xué)們打開課本第81頁,告訴老師,如果用字母表示平行四邊形的
面積計(jì)算公式,應(yīng)該怎樣表示?你覺得用字母表達(dá)式比文字表達(dá)式好在哪里?
三、實(shí)踐應(yīng)用
1、出示課本第82頁題目,一個(gè)平行四邊形的停車位底邊長5m,高2.5m,它的面積是多少?(學(xué)生獨(dú)立列式解答,并說出列式的根據(jù))
2、看圖口述平行四邊形的面積。
3分米 2.5厘米
3、這個(gè)平行四邊形的面積你會(huì)求嗎?你是怎樣想的?
4、分別計(jì)算圖中每個(gè)平行四邊形的面積,你發(fā)現(xiàn)了什么?(單位:厘米)這樣的平行四邊形還能再畫多少個(gè)?
平行四邊形教案 篇5
教學(xué)目標(biāo)
1、知識(shí)目標(biāo)
。1)使學(xué)生掌握平行四邊形的概念,理解兩條平行線間的距離的概念。
。2)掌握平行四邊形的性質(zhì)定理1、2,并能運(yùn)用這些知識(shí)進(jìn)行有關(guān)的證明或計(jì)算.
2、能力目標(biāo)
。1)通過啟發(fā)、引導(dǎo),讓學(xué)生猜想結(jié)論,培養(yǎng)學(xué)生的觀察能力和猜想能力。
(2)驗(yàn)證猜想結(jié)論,培養(yǎng)學(xué)生的論證和邏輯思維能力。
。3)通過開放式教學(xué),培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和實(shí)踐能力。
3、非智力目標(biāo)
滲透從具體到抽象、化未知為已知的數(shù)學(xué)思想及事物之間相互轉(zhuǎn)化的辯證唯物主義觀點(diǎn).
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):平行四邊形的概念及其性質(zhì).
難點(diǎn):正確理解兩條平行線間的距離的概念和性質(zhì)定理2的推論。
平行四邊形的概念及性質(zhì)的靈活運(yùn)用
教學(xué)方法:講解、分析、轉(zhuǎn)化
教學(xué)過程設(shè)計(jì)
一、利用分類、特殊化的方法引出平行四邊形的概念
1.復(fù)習(xí)四邊形的知識(shí).
。1)引導(dǎo)學(xué)生畫任意凸四邊形,指出它的主要元素——頂點(diǎn)、邊、角、對(duì)角線的性質(zhì),強(qiáng)調(diào)對(duì)角線的作用:將四邊形分割化歸為三角形來研究.
。2)將四邊形的邊角按位置關(guān)系分為兩類:
教學(xué)時(shí)應(yīng)結(jié)合圖形,讓學(xué)生識(shí)別清楚,并注意與三角形中角的對(duì)邊、邊的對(duì)角及第一章中的鄰角相區(qū)別.
2.教師提問:四邊形中的兩組對(duì)邊按位置關(guān)系分為幾種情況?
引導(dǎo)學(xué)生畫圖回答,并出示投影片顯示四邊形與特殊四邊形的關(guān)系,如圖4-11.
3.對(duì)比引出平行四邊形的概念.
(1)引導(dǎo)學(xué)生根據(jù)圖4-11,敘述平行四邊形的概念,引出課題.
(2)注意它與梯形的對(duì)比,及它與四邊形的特殊與一般的關(guān)系:平行四邊形是特殊的四邊形,因此它具有四邊形的一切性質(zhì)(共性).同時(shí)它還具有一般四邊形不具備的特殊性質(zhì)(個(gè)性).
。3)強(qiáng)調(diào)定義既是平行四邊形的一個(gè)判定方法,同時(shí)又是平行四邊形的一個(gè)性質(zhì).
。4)介紹平行四邊形的符號(hào)表示及定義的使用方法:如圖4-12.
、佟逜BCD,∴AD∥BC,AB∥CD.(平行四邊形的定義)
、凇逜D∥BC,AB∥CD,∴四邊形ABCD是平行四邊形.(平行四邊形的定義)
練習(xí)1(投影)
如圖4-13,DC∥EF∥AB,DA∥GH∥CB,圖中的平行四邊形共有__個(gè),它們是__.
二、探索平行四邊形的性質(zhì)并證明
1.探索性質(zhì).
啟發(fā)學(xué)生從平行四邊形的主要元素——邊、角、對(duì)角線的位置關(guān)系及數(shù)量關(guān)系入手,來觀察、探索、猜想平行四邊形的特有的`性質(zhì)如下:
。3)對(duì)角線
、輰(duì)角線互相平分(性質(zhì)定理3)
教師注意解釋并強(qiáng)調(diào)對(duì)角線互相平分的含義及表示方法.
2.利用化歸的方法對(duì)性質(zhì)逐一進(jìn)行證明.
。1)由平行四邊形的定義及平行線的性質(zhì)很快證出性質(zhì)①,④,③.
。2)啟發(fā)學(xué)生添加一條或兩條對(duì)角線,將四邊形分割、化歸為三角形;利用全等三角形的知識(shí)證出性質(zhì)②,⑤.
。3)寫出證明過程.
3.關(guān)于“兩條平行線間的平行線段和距離”的教學(xué).
。1)利用性質(zhì)定理2
導(dǎo)出推論:夾在兩條平行線間的平行線段相等.
、偬釂枺涸趫D4-14中,l1∥l2,AB∥CD,那么AB,CD的數(shù)量有何關(guān)系?引導(dǎo)學(xué)生根據(jù)平行四邊形的定義和性質(zhì)進(jìn)行證明.
、谝龑(dǎo)學(xué)生用語言簡練地?cái)⑹鰣D4-14所反映的幾何命題,并強(qiáng)調(diào)它的作用.證題時(shí)可節(jié)省步驟,省掉判定平行四邊形這一步,直接得到夾在兩條平行線間的平行線段相等.
、蹚(qiáng)調(diào)推論中的條件:“夾”、“平行線間”、“平行線段”的含義和重要性,并做一組辨析練習(xí).
練習(xí)2
。ㄍ队埃┤鐖D4-15,判斷下列幾組圖形能否體現(xiàn)推論所代表的含義.
。2)根據(jù)圖4-15(d)引出兩條平行線的距離的概念,并通過練習(xí)區(qū)別三個(gè)距離.
練習(xí)3
在圖4-15(d)中,
、冱c(diǎn)A與點(diǎn)C的距離是線段__的長;
、邳c(diǎn)A到直線l2的距離是線段__的長;
、蹆蓷l平行線l1與l2的距離是線段__或__的長;
、苡赏普摽傻茫簝蓷l平行線間的距離__.
三、平行四邊形的定義及性質(zhì)的應(yīng)用
1.計(jì)算.
例1填空.
。1)在ABCD中,AB=a,BC=b,∠A=50°,則ABCD的周長為__,∠B=__,∠C=__,∠D=__;
(2)在ABCD中:①∠A∶∠B=5∶4,則∠A=__;②∠A+∠C=200°,則∠A=___,∠B=__;
。3)已知平行四邊形周長為54,兩鄰邊之比為4∶5,則這兩邊長度分別為__;
(4)已知ABCD對(duì)角線交點(diǎn)為O,AC=24mm,BD=26mm,①若AD=22mm,則△OBC周長為__;②若AB⊥AC,則△OBC比△OAB的周長大___;
。5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;
說明:通過此題讓學(xué)生熟悉平行四邊形的性質(zhì),會(huì)用它及方程的思想進(jìn)行計(jì)算,并復(fù)習(xí)平行四邊形的面積公式.
2.證明.
例2 已知:如圖4-16,ABCD中,E,F(xiàn)分別為BC,AD上的點(diǎn),AE∥CF.求證(1)BE=DF;(2)EF過BD的中點(diǎn).
分析:
(1)盡量利用平行四邊形的定義和性質(zhì),避免證三角形全等.
。2)考慮特殊化情形.在ABCD中,若E,F(xiàn)在BC,AD上運(yùn)動(dòng)到如下位置:AE⊥BC于E,CF⊥AD于F,求證BE=DF.在題目的變化與聯(lián)系中靈活選用性質(zhì)來解題.
例3已知:如圖4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求證:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的頂點(diǎn)分別是△B′C′A′各邊的中點(diǎn).
著重引導(dǎo)學(xué)生先分解基本圖形,圖中有3個(gè)平行四邊形:C′BCA,ABCB′,ABA′C,分別利用對(duì)角相等和對(duì)邊相等的性質(zhì)使問題得到證明.對(duì)于第(2)問也可用“夾在兩條平行線間的平行線段相等”來證明.
例4 已知:如圖4-18(a),ABCD的對(duì)角線AC,BD相交于點(diǎn)O,EF過點(diǎn)O與AB,CD分別相交于點(diǎn)E,F(xiàn).求證:OE=OF,AE=CF,BE=DF.
分析:
(1)引導(dǎo)學(xué)生證明以O(shè)E,OF為邊的兩個(gè)三角形全等,如證△AOE≌△COF或證△BOE≌△DOF.
。2)根據(jù)學(xué)生實(shí)際,對(duì)圖4-18(a)可作適當(dāng)引申,如圖4-18(b),(c),(d),并歸納結(jié)論如下:過平行四邊形對(duì)角線的交點(diǎn)作直線交對(duì)邊或?qū)叺难娱L線,所得對(duì)應(yīng)線段相等.
。3)圖4-18是一組重要的基本圖形,熟悉它的性質(zhì)對(duì)解答復(fù)雜問題是很有幫助的.
3.供選用例題.
。1)從平行四邊形的一個(gè)銳角頂點(diǎn)作平行四邊形的兩條高線.如果這兩條高線的夾角為135°,則這個(gè)平行四邊形相鄰兩內(nèi)角的度數(shù)為__;若高線分別為1cm和2cm,則平行四邊形的周長為__,面積為___;若兩條高線夾角為120°呢?
。2)如圖4-19,在△ABC中,AD平分∠BAC,過D作DE∥AC交AB于E,過E作EF∥DC交AC于F.求證:AE=FC.
(3)如圖4-20,在ABCD中,AD=2AB,將AB向兩方延長,使AE=BF=AB.求證:EC⊥FD.
四、師生共同小結(jié)
1.平行四邊形與四邊形的關(guān)系.
2.學(xué)習(xí)了平行四邊形哪些方面的性質(zhì)?
3.兩條平行線的距離是怎樣定義的?有什么性質(zhì)?
五、作業(yè)
課本第143頁第2,3,4,5,6題.
課堂教學(xué)設(shè)計(jì)說明
本教學(xué)設(shè)計(jì)需2課時(shí)完成.
這節(jié)內(nèi)容分2課時(shí).第1課時(shí)在復(fù)習(xí)四邊形的有關(guān)知識(shí)的基礎(chǔ)上,用對(duì)比的方式引入平行四邊形的概念,充分體現(xiàn)了平行四邊形在四邊形體系中的地位,然后,教師應(yīng)啟發(fā)學(xué)生從邊、角、對(duì)角線三個(gè)方面探索平行四邊形的性質(zhì),使知識(shí)更加系統(tǒng),更符合學(xué)生的認(rèn)知規(guī)律,而且突出了第1課時(shí)的重點(diǎn),同時(shí)更能培養(yǎng)學(xué)生主動(dòng)探求知識(shí)的精神和思維的條理性.第2課時(shí)重點(diǎn)應(yīng)用平行四邊形的定義、性質(zhì)進(jìn)行計(jì)算和證明,教師注意讓學(xué)生鞏固基礎(chǔ)知識(shí)和基本技能,加強(qiáng)對(duì)解題思路的分析,解題思想方法的概括、指導(dǎo)和結(jié)論的升華.
平行四邊形及其性質(zhì)
教學(xué)目標(biāo)
1、知識(shí)目標(biāo)
(1)使學(xué)生掌握平行四邊形的概念,理解兩條平行線間的距離的概念。
。2)掌握平行四邊形的性質(zhì)定理1、2,并能運(yùn)用這些知識(shí)進(jìn)行有關(guān)的證明或計(jì)算.
2、能力目標(biāo)
(1)通過啟發(fā)、引導(dǎo),讓學(xué)生猜想結(jié)論,培養(yǎng)學(xué)生的觀察能力和猜想能力。
(2)驗(yàn)證猜想結(jié)論,培養(yǎng)學(xué)生的論證和邏輯思維能力。
(3)通過開放式教學(xué),培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和實(shí)踐能力。
3、非智力目標(biāo)
滲透從具體到抽象、化未知為已知的數(shù)學(xué)思想及事物之間相互轉(zhuǎn)化的辯證唯物主義觀點(diǎn).
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):平行四邊形的概念及其性質(zhì).
難點(diǎn):正確理解兩條平行線間的距離的概念和性質(zhì)定理2的推論。
平行四邊形的概念及性質(zhì)的靈活運(yùn)用
教學(xué)方法:講解、分析、轉(zhuǎn)化
教學(xué)過程設(shè)計(jì)
一、利用分類、特殊化的方法引出平行四邊形的概念
1.復(fù)習(xí)四邊形的知識(shí).
。1)引導(dǎo)學(xué)生畫任意凸四邊形,指出它的主要元素——頂點(diǎn)、邊、角、對(duì)角線的性質(zhì),強(qiáng)調(diào)對(duì)角線的作用:將四邊形分割化歸為三角形來研究.
。2)將四邊形的邊角按位置關(guān)系分為兩類:
教學(xué)時(shí)應(yīng)結(jié)合圖形,讓學(xué)生識(shí)別清楚,并注意與三角形中角的對(duì)邊、邊的對(duì)角及第一章中的鄰角相區(qū)別.
2.教師提問:四邊形中的兩組對(duì)邊按位置關(guān)系分為幾種情況?
引導(dǎo)學(xué)生畫圖回答,并出示投影片顯示四邊形與特殊四邊形的關(guān)系,如圖4-11.
3.對(duì)比引出平行四邊形的概念.
。1)引導(dǎo)學(xué)生根據(jù)圖4-11,敘述平行四邊形的概念,引出課題.
。2)注意它與梯形的對(duì)比,及它與四邊形的特殊與一般的關(guān)系:平行四邊形是特殊的四邊形,因此它具有四邊形的一切性質(zhì)(共性).同時(shí)它還具有一般四邊形不具備的特殊性質(zhì)(個(gè)性).
。3)強(qiáng)調(diào)定義既是平行四邊形的一個(gè)判定方法,同時(shí)又是平行四邊形的一個(gè)性質(zhì).
。4)介紹平行四邊形的符號(hào)表示及定義的使用方法:如圖4-12.
、佟逜BCD,∴AD∥BC,AB∥CD.(平行四邊形的定義)
、凇逜D∥BC,AB∥CD,∴四邊形ABCD是平行四邊形.(平行四邊形的定義)
練習(xí)1(投影)
如圖4-13,DC∥EF∥AB,DA∥GH∥CB,圖中的平行四邊形共有__個(gè),它們是__.
二、探索平行四邊形的性質(zhì)并證明
1.探索性質(zhì).
啟發(fā)學(xué)生從平行四邊形的主要元素——邊、角、對(duì)角線的位置關(guān)系及數(shù)量關(guān)系入手,來觀察、探索、猜想平行四邊形的特有的性質(zhì)如下:
。3)對(duì)角線
、輰(duì)角線互相平分(性質(zhì)定理3)
教師注意解釋并強(qiáng)調(diào)對(duì)角線互相平分的含義及表示方法.
2.利用化歸的方法對(duì)性質(zhì)逐一進(jìn)行證明.
(1)由平行四邊形的定義及平行線的性質(zhì)很快證出性質(zhì)①,④,③.
。2)啟發(fā)學(xué)生添加一條或兩條對(duì)角線,將四邊形分割、化歸為三角形;利用全等三角形的知識(shí)證出性質(zhì)②,⑤.
。3)寫出證明過程.
3.關(guān)于“兩條平行線間的平行線段和距離”的教學(xué).
(1)利用性質(zhì)定理2
導(dǎo)出推論:夾在兩條平行線間的平行線段相等.
、偬釂枺涸趫D4-14中,l1∥l2,AB∥CD,那么AB,CD的數(shù)量有何關(guān)系?引導(dǎo)學(xué)生根據(jù)平行四邊形的定義和性質(zhì)進(jìn)行證明.
②引導(dǎo)學(xué)生用語言簡練地?cái)⑹鰣D4-14所反映的幾何命題,并強(qiáng)調(diào)它的作用.證題時(shí)可節(jié)省步驟,省掉判定平行四邊形這一步,直接得到夾在兩條平行線間的平行線段相等.
③強(qiáng)調(diào)推論中的條件:“夾”、“平行線間”、“平行線段”的含義和重要性,并做一組辨析練習(xí).
練習(xí)2
。ㄍ队埃┤鐖D4-15,判斷下列幾組圖形能否體現(xiàn)推論所代表的含義.
。2)根據(jù)圖4-15(d)引出兩條平行線的距離的概念,并通過練習(xí)區(qū)別三個(gè)距離.
練習(xí)3
在圖4-15(d)中,
、冱c(diǎn)A與點(diǎn)C的距離是線段__的長;
、邳c(diǎn)A到直線l2的距離是線段__的長;
③兩條平行線l1與l2的距離是線段__或__的長;
、苡赏普摽傻茫簝蓷l平行線間的距離__.
三、平行四邊形的定義及性質(zhì)的應(yīng)用
1.計(jì)算.
例1填空.
。1)在ABCD中,AB=a,BC=b,∠A=50°,則ABCD的周長為__,∠B=__,∠C=__,∠D=__;
。2)在ABCD中:①∠A∶∠B=5∶4,則∠A=__;②∠A+∠C=200°,則∠A=___,∠B=__;
(3)已知平行四邊形周長為54,兩鄰邊之比為4∶5,則這兩邊長度分別為__;
。4)已知ABCD對(duì)角線交點(diǎn)為O,AC=24mm,BD=26mm,①若AD=22mm,則△OBC周長為__;②若AB⊥AC,則△OBC比△OAB的周長大___;
。5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;
說明:通過此題讓學(xué)生熟悉平行四邊形的性質(zhì),會(huì)用它及方程的思想進(jìn)行計(jì)算,并復(fù)習(xí)平行四邊形的面積公式.
2.證明.
例2 已知:如圖4-16,ABCD中,E,F(xiàn)分別為BC,AD上的點(diǎn),AE∥CF.求證(1)BE=DF;(2)EF過BD的中點(diǎn).
分析:
。1)盡量利用平行四邊形的定義和性質(zhì),避免證三角形全等.
(2)考慮特殊化情形.在ABCD中,若E,F(xiàn)在BC,AD上運(yùn)動(dòng)到如下位置:AE⊥BC于E,CF⊥AD于F,求證BE=DF.在題目的變化與聯(lián)系中靈活選用性質(zhì)來解題.
例3已知:如圖4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求證:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的頂點(diǎn)分別是△B′C′A′各邊的中點(diǎn).
著重引導(dǎo)學(xué)生先分解基本圖形,圖中有3個(gè)平行四邊形:C′BCA,ABCB′,ABA′C,分別利用對(duì)角相等和對(duì)邊相等的性質(zhì)使問題得到證明.對(duì)于第(2)問也可用“夾在兩條平行線間的平行線段相等”來證明.
例4 已知:如圖4-18(a),ABCD的對(duì)角線AC,BD相交于點(diǎn)O,EF過點(diǎn)O與AB,CD分別相交于點(diǎn)E,F(xiàn).求證:OE=OF,AE=CF,BE=DF.
分析:
(1)引導(dǎo)學(xué)生證明以O(shè)E,OF為邊的兩個(gè)三角形全等,如證△AOE≌△COF或證△BOE≌△DOF.
(2)根據(jù)學(xué)生實(shí)際,對(duì)圖4-18(a)可作適當(dāng)引申,如圖4-18(b),(c),(d),并歸納結(jié)論如下:過平行四邊形對(duì)角線的交點(diǎn)作直線交對(duì)邊或?qū)叺难娱L線,所得對(duì)應(yīng)線段相等.
。3)圖4-18是一組重要的基本圖形,熟悉它的性質(zhì)對(duì)解答復(fù)雜問題是很有幫助的.
3.供選用例題.
。1)從平行四邊形的一個(gè)銳角頂點(diǎn)作平行四邊形的兩條高線.如果這兩條高線的夾角為135°,則這個(gè)平行四邊形相鄰兩內(nèi)角的度數(shù)為__;若高線分別為1cm和2cm,則平行四邊形的周長為__,面積為___;若兩條高線夾角為120°呢?
。2)如圖4-19,在△ABC中,AD平分∠BAC,過D作DE∥AC交AB于E,過E作EF∥DC交AC于F.求證:AE=FC.
(3)如圖4-20,在ABCD中,AD=2AB,將AB向兩方延長,使AE=BF=AB.求證:EC⊥FD.
四、師生共同小結(jié)
1.平行四邊形與四邊形的關(guān)系.
2.學(xué)習(xí)了平行四邊形哪些方面的性質(zhì)?
3.兩條平行線的距離是怎樣定義的?有什么性質(zhì)?
五、作業(yè)
課本第143頁第2,3,4,5,6題.
課堂教學(xué)設(shè)計(jì)說明
本教學(xué)設(shè)計(jì)需2課時(shí)完成.
這節(jié)內(nèi)容分2課時(shí).第1課時(shí)在復(fù)習(xí)四邊形的有關(guān)知識(shí)的基礎(chǔ)上,用對(duì)比的方式引入平行四邊形的概念,充分體現(xiàn)了平行四邊形在四邊形體系中的地位,然后,教師應(yīng)啟發(fā)學(xué)生從邊、角、對(duì)角線三個(gè)方面探索平行四邊形的性質(zhì),使知識(shí)更加系統(tǒng),更符合學(xué)生的認(rèn)知規(guī)律,而且突出了第1課時(shí)的重點(diǎn),同時(shí)更能培養(yǎng)學(xué)生主動(dòng)探求知識(shí)的精神和思維的條理性.第2課時(shí)重點(diǎn)應(yīng)用平行四邊形的定義、性質(zhì)進(jìn)行計(jì)算和證明,教師注意讓學(xué)生鞏固基礎(chǔ)知識(shí)和基本技能,加強(qiáng)對(duì)解題思路的分析,解題思想方法的概括、指導(dǎo)和結(jié)論的升華.
【平行四邊形教案】相關(guān)文章:
平行四邊形教案04-01
平行四邊形面積教案02-09
認(rèn)識(shí)平行四邊形教案03-05
《平行四邊形的判定》教案06-03
平行四邊形的面積教案11-27
《平行四邊形的面積》教案02-17
平行四邊形教案4篇05-12
平行四邊形教案三篇05-14
【精選】平行四邊形教案四篇05-14