- 相關(guān)推薦
《分式方程》教學(xué)反思
作為一位剛到崗的人民教師,教學(xué)是我們的任務(wù)之一,對(duì)教學(xué)中的新發(fā)現(xiàn)可以寫在教學(xué)反思中,那么寫教學(xué)反思需要注意哪些問題呢?下面是小編為大家整理的《分式方程》教學(xué)反思,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
《分式方程》教學(xué)反思 篇1
分式初中數(shù)學(xué)中重要的一章,在中考中占有一定的比重。學(xué)生已基本掌握了分式的有關(guān)知識(shí)(分式的概念、分式的基本性質(zhì)、約分、通分、分式的運(yùn)算、分式方程和能化為一元一次方程的分式方程的應(yīng)用題等),并且獲得了學(xué)習(xí)代數(shù)知識(shí)的常用方法,感受到代數(shù)學(xué)習(xí)的實(shí)際應(yīng)用價(jià)值。
一、本章可以讓學(xué)生通過觀察、類比、猜想、嘗試等活動(dòng)學(xué)習(xí)分式的運(yùn)算法則,發(fā)展他們的合情推理能力,所以復(fù)習(xí)時(shí)重點(diǎn)應(yīng)放在對(duì)法則的探索過程上。一定要讓學(xué)生充分活動(dòng)起來。在觀察、類比、猜想、嘗試當(dāng)一系列思想活動(dòng)中發(fā)現(xiàn)法則、理解法則、應(yīng)用法則,同時(shí)還要關(guān)注學(xué)生對(duì)算理的理解,以培養(yǎng)學(xué)生的代數(shù)表達(dá)能力、運(yùn)算能力和有理的思考問題能力?墒俏以谥R(shí)的傳授上并沒有注重探索、類比法則,而重在對(duì)分式四則運(yùn)算法則的運(yùn)用和分式方程的運(yùn)用上,沒有抓住教學(xué)的關(guān)鍵環(huán)節(jié)恰當(dāng)?shù)倪x擇教學(xué)方法。今后要避免類似事情的發(fā)生。
二、復(fù)習(xí)中的重建
分式的運(yùn)算(加、減、乘、除、乘方和混合運(yùn)算)是代數(shù)恒等變形的基礎(chǔ)之一,但是不能盲目的加大運(yùn)算量與題目的難度,重點(diǎn)應(yīng)放在對(duì)運(yùn)算過程推理的理解上,把分式的.基本性質(zhì)做到靈活運(yùn)用。
再則,對(duì)課本上關(guān)于分式的具體問題一定要重視,并關(guān)注學(xué)生在這些具體活動(dòng)中的投入程度,看他們能否積極主動(dòng)地參與,其次看學(xué)生在這些活動(dòng)中的思維發(fā)展水平—-—能否獨(dú)立思考?能否用數(shù)學(xué)語言表達(dá)自己的想法?能否反思自己的思維過程?進(jìn)而發(fā)現(xiàn)新的問題,培養(yǎng)學(xué)生解決問題的能力!提高學(xué)生的學(xué)習(xí)興趣!
《分式方程》教學(xué)反思 篇2
本節(jié)課在學(xué)生的認(rèn)知水平和已有的知識(shí)經(jīng)驗(yàn)基礎(chǔ)上充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的自主性,讓學(xué)生通過觀察、類比的方式探究解分式方程的思路和方法,為學(xué)生提供了充分從事活動(dòng)的機(jī)會(huì),使學(xué)生在回顧與思考、合作和討論的過程中理解和掌握知識(shí)與技能,體驗(yàn)感受過程、方法和數(shù)學(xué)思想,培養(yǎng)情感態(tài)度價(jià)值觀,從而達(dá)成教學(xué)目標(biāo)。
本節(jié)課關(guān)于分式方程的增根的教學(xué),是通過創(chuàng)設(shè)小亮解法的情境,引導(dǎo)學(xué)生通過思考探索、閱讀理解、動(dòng)手解題等手段,從而獲取知識(shí)、形成技能,發(fā)展思維,學(xué)會(huì)學(xué)習(xí),而不是由教師去講解增根的概念和產(chǎn)生原因。
本節(jié)課小結(jié)采取了學(xué)生提出問題、教師解答問題的'形式.這種方法一方面為學(xué)生搭建了展示自己的平臺(tái),設(shè)置了獨(dú)立思考的想象空間,提供了鍛煉表達(dá)能力的機(jī)會(huì);另一方面也為教師能及時(shí)彌補(bǔ)教學(xué)中存在的漏洞創(chuàng)設(shè)了條件和可能.不過,若時(shí)間允許的話,有些問題可以由學(xué)生討論解決。
教學(xué)環(huán)節(jié)是否可行,最終是由教學(xué)目標(biāo)是否達(dá)成來檢驗(yàn)和評(píng)價(jià)的.所以本節(jié)課的某些教學(xué)環(huán)節(jié)對(duì)目標(biāo)的達(dá)成是否行之有效,還有待于在今后的教學(xué)過程中不斷實(shí)踐和完善。
《分式方程》教學(xué)反思 篇3
在本節(jié)課的教學(xué)過程中首先明確目標(biāo)是讓學(xué)生如何找到等量關(guān)系,書本原先給出兩個(gè)例子較難達(dá)到這個(gè)教學(xué)效果,原因是學(xué)生對(duì)毛利率的概念本身不清楚,按照書本的引入,一開始課堂就可能處以一種安靜的思維很難打開的狀態(tài),不能有效地激發(fā)學(xué)生學(xué)習(xí)興趣與激情,所以才用學(xué)生經(jīng)過自己努力思考之后完全能解答的題目作為第一題,讓學(xué)生體會(huì)到成功的喜悅,這樣學(xué)生才會(huì)愿意繼續(xù)探索與學(xué)習(xí);其次應(yīng)用題的難度設(shè)置上是層層深入,提問是分層次性,能夠讓不同層面的學(xué)生都有不同的體會(huì)與感受。
將“毛利率”概念的問題采用調(diào)查的方法,能夠有效發(fā)揮學(xué)生右腦在形象思維上優(yōu)勢(shì),從而為后面的解答抽象的邏輯、左腦理性思考做了準(zhǔn)備;能夠最大限度發(fā)揮學(xué)生原有的能力。
公式變形,書本例題是才用將右邊先進(jìn)行變形,再倒過來分析,我認(rèn)為學(xué)生的解答方法更具有對(duì)稱美,在課堂中予以充分的肯定,這一方面培養(yǎng)學(xué)生的審美能力、更重要的'是肯定學(xué)生進(jìn)行思考的價(jià)值、從而激發(fā)學(xué)生思考的意愿與熱情!
其實(shí)任何一節(jié)課的教學(xué)設(shè)計(jì)以及對(duì)課堂的動(dòng)態(tài)把握只能針對(duì)具體實(shí)際情況進(jìn)行調(diào)整分析,如果學(xué)生對(duì)“毛利率”等概念已經(jīng)非常熟悉、閱讀理解能力很強(qiáng)那么這節(jié)課的教學(xué)設(shè)計(jì)肯定是另一番樣子。
《分式方程》教學(xué)反思 篇4
一、設(shè)計(jì)思路:
在學(xué)習(xí)本章之前已學(xué)過了一元一次方程的解法,對(duì)解整式方程特別是一元一次方程的解法思路比較了熟悉,在教受本節(jié)課是要改變教師講例題,學(xué)生模仿的教學(xué)模式,通過說一說,試一試,想一想,練一練等多個(gè)教學(xué)環(huán)節(jié),
由學(xué)生預(yù)習(xí),自主學(xué)習(xí),然后再由教師考查和點(diǎn)撥,但是由于種種原因,最終決定給學(xué)生一個(gè)半開半閉的區(qū)間,我先作一示范,學(xué)生練習(xí)格式,接著出現(xiàn)沒有根的練習(xí)題,依然讓學(xué)生解決,由于學(xué)生不會(huì)檢驗(yàn)培根的情況,所以,再詳究沒有根產(chǎn)生的原因,怎樣檢驗(yàn)沒有根等問題。
這節(jié)課的關(guān)鍵在前面的這步過渡,究竟是給學(xué)生一個(gè)完全自由的空間還是說讓學(xué)生在老師的引導(dǎo)下去完成,我們先后作了多次試驗(yàn)和論證,認(rèn)為“完全開放”符合設(shè)計(jì)思路,但是學(xué)生在有限的時(shí)間內(nèi)難以完成教學(xué)任務(wù),故我們最終決定采用第二套方案。
二、教學(xué)知識(shí)點(diǎn):
在本課的教學(xué)過程中,我認(rèn)為應(yīng)從這樣的幾個(gè)方面入手:
1.分式方程和整式方程的區(qū)別:分清楚分式分式方程必須滿足的兩個(gè)條件,⑴方程式里必須有分式,⑵分母中含有未知數(shù)。這兩個(gè)條件是判斷一個(gè)方程是否為分式方程的.充要條件。同時(shí),由于分母中含有未知數(shù),所以將其轉(zhuǎn)化為整式方程后求出的解就應(yīng)使每一個(gè)分式有意義,否則,這個(gè)根就不是原方程的根。正是由于分式方程與整式方程的區(qū)別,在解分式方程時(shí)必須進(jìn)行檢驗(yàn)。
2、分式方程和整式方程的聯(lián)系:分式方程通過方程兩邊都乘以最簡(jiǎn)公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學(xué)時(shí)應(yīng)充分體現(xiàn)這種化歸思想的教學(xué)。
3、解分式方程時(shí),如果分母是多項(xiàng)式時(shí),應(yīng)先寫出將分母進(jìn)行因式分解的步驟來,從而讓學(xué)生準(zhǔn)確無誤地找出最簡(jiǎn)公分母
4、對(duì)分式方程可能產(chǎn)生沒有根的原因,要啟發(fā)學(xué)生認(rèn)真思考和討論。
《分式方程》教學(xué)反思 篇5
分式是八年級(jí)數(shù)學(xué)的第一章,經(jīng)歷了三周多的學(xué)習(xí),學(xué)生已基本掌握了分式的有關(guān)知識(shí)(分式的概念、分式的基本性質(zhì)、約分、通分、分式的運(yùn)算、分式方程和能化為一元一次方程的分式方程的應(yīng)用題等),并且獲得了學(xué)習(xí)代數(shù)知識(shí)的常用方法,感受到代數(shù)學(xué)習(xí)的實(shí)際應(yīng)用價(jià)值。下面是我在教學(xué)中的幾點(diǎn)體會(huì):
一、教學(xué)中的發(fā)現(xiàn)
本章可以讓學(xué)生通過觀察、類比、猜想、嘗試等活動(dòng)學(xué)習(xí)分式的運(yùn)算法則,發(fā)展他們的合情推理能力,所以教學(xué)時(shí)重點(diǎn)應(yīng)放在對(duì)法則的探索過程上。一定要讓學(xué)生充分活動(dòng)起來。在觀察、類比、猜想、嘗試當(dāng)一系列思想活動(dòng)中發(fā)現(xiàn)法則、理解法則、應(yīng)用法則,同時(shí)還要關(guān)注學(xué)生對(duì)算理的理解,以培養(yǎng)學(xué)生的代數(shù)表達(dá)能力、運(yùn)算能力和有理的思考問題能力。可是我在知識(shí)的傳授上并沒有注重探索、類比法則,而重在對(duì)分式四則運(yùn)算法則的運(yùn)用和分式方程的運(yùn)用上,沒有抓住教學(xué)的關(guān)鍵環(huán)節(jié)恰當(dāng)?shù)倪x擇教學(xué)方法。今后要避免類似事情的發(fā)生。
二、教學(xué)中的重建
分式的運(yùn)算(加、減、乘、除、乘方和混合運(yùn)算)是代數(shù)恒等變形的基礎(chǔ)之一,但是不能盲目的加大運(yùn)算量與題目的難度,重點(diǎn)應(yīng)放在對(duì)運(yùn)算過程推理的理解上,把分式的基本性質(zhì)做到靈活運(yùn)用。
再則,對(duì)課本上關(guān)于分式的'具體問題一定要重視,并關(guān)注學(xué)生在這些具體活動(dòng)中的投入程度,看他們能否積極主動(dòng)地參與,其次看學(xué)生在這些活動(dòng)中的思維發(fā)展水平—-—能否獨(dú)立思考?能否用數(shù)學(xué)語言表達(dá)自己的想法?能否反思自己的思維過程?進(jìn)而發(fā)現(xiàn)新的問題,培養(yǎng)學(xué)生解決問題的能力!提高學(xué)生的學(xué)習(xí)興趣!
《分式方程》教學(xué)反思 篇6
教師想方設(shè)法為學(xué)生設(shè)計(jì)好的問題情景,同時(shí)給學(xué)生提供充分的思維空間,學(xué)生在參與發(fā)現(xiàn)和探索的過程中思維就會(huì)創(chuàng)在一個(gè)又一個(gè)的點(diǎn)上,這樣的教學(xué)日積月累對(duì)于培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新能力是有巨大的作用的。我認(rèn)為學(xué)好數(shù)學(xué)最好的方法是在發(fā)現(xiàn)中學(xué)習(xí),在學(xué)生的再創(chuàng)造中學(xué)習(xí),并引導(dǎo)學(xué)生去學(xué)習(xí)。
教學(xué)設(shè)計(jì)中教師要根據(jù)目的要求,內(nèi)容多少,重點(diǎn)難點(diǎn),學(xué)生的`條件,以及教學(xué)設(shè)備等合理地分配教學(xué)時(shí)間。其次,要注意節(jié)省時(shí)間,特別是在講授新知識(shí)時(shí),要抓住重點(diǎn),不能企圖一下講深講透。要安排一定的練習(xí)時(shí)間。通過練習(xí)的反饋,再采取必要的講解或補(bǔ)充練習(xí)。再次,要注意盡量安排全班學(xué)生的活動(dòng),如操作、練習(xí)鞏固,解應(yīng)用題等,避免由少數(shù)人代替全班學(xué)生的思維活動(dòng),使大多數(shù)學(xué)生成為旁觀者。要注意在一節(jié)課內(nèi)提高學(xué)生的平均做題率。此外,還要注意選擇有效的練習(xí)方式和收集反饋信息的方式,以便節(jié)約教學(xué)時(shí)間,并能及時(shí)發(fā)現(xiàn)問題,教學(xué)反思《分式方程教學(xué)反思》。
班級(jí)的學(xué)生有整體的特點(diǎn),當(dāng)一定存在個(gè)體差異。如果要求每一個(gè)教學(xué)目標(biāo)都人人過關(guān),實(shí)屬不智行為。效率是整體利益的平衡結(jié)果,不能因?yàn)閭(gè)別同學(xué)目標(biāo)未達(dá)成而犧牲整體的時(shí)間利益,這會(huì)造成新的教學(xué)問題。所以在集體教學(xué)時(shí),把握大多數(shù),將整體利益平衡好,這樣的集體教學(xué)才是有效率可言的。當(dāng)然教師在教學(xué)過程還是要關(guān)注每一位學(xué)生,關(guān)注其是否在聽教師的講解分析,以及自身是否在積極思考問題。千萬不可只顧自己按照教案設(shè)計(jì)去講,而忽視學(xué)生的思維。
《分式方程》教學(xué)反思 篇7
本節(jié)課的重點(diǎn)是探究分式方程的解法,我首先舉一道一元一次方程復(fù)習(xí)其解法,然后通過解一道分式方程,啟發(fā)引導(dǎo)學(xué)生參照一元一次方程的解法,由學(xué)生自己探索、歸納分式方程的解法。學(xué)生不是停留在會(huì)課本知識(shí)層面,而是站在研究者的角度深入其境,使學(xué)生的思維得到發(fā)揮。
在教學(xué)設(shè)計(jì)上,以探究任務(wù)啟發(fā)引導(dǎo)學(xué)生自學(xué)自悟的方式,提供了學(xué)生自主探究的舞臺(tái),營(yíng)造了鍛練思維的空間,在經(jīng)歷知識(shí)的發(fā)現(xiàn)過程中,培養(yǎng)了學(xué)生探究、歸納的能力。在課堂教學(xué)中,我時(shí)時(shí)注意營(yíng)造思維氛圍,讓學(xué)生在探究中學(xué)會(huì)思考、表達(dá)。
在本課的教學(xué)過程中,我認(rèn)為應(yīng)從這樣的幾個(gè)方面入手:
1。分式方程和整式方程的區(qū)別:分清楚分式分式方程必須滿足的兩個(gè)條件,⑴方程式里必須有分式,⑵分母中含有未知數(shù)。這兩個(gè)條件是判斷一個(gè)方程是否為分式方程的充要條件。同時(shí),由于分母中含有未知數(shù),所以將其轉(zhuǎn)化為整式方程后求出的解就應(yīng)使每一個(gè)分式有意義,否則,這個(gè)根就是原方程的增根。正是由于分式方程與整式方程的區(qū)別,在解分式方程時(shí)必須進(jìn)行檢驗(yàn)。
2.分式方程和整式方程的聯(lián)系:分式方程通過方程兩邊都乘以最簡(jiǎn)公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學(xué)時(shí)應(yīng)充分體現(xiàn)這種化歸思想的教學(xué)。
3。解分式方程時(shí),如果分母是多項(xiàng)式時(shí),應(yīng)先寫出將分母進(jìn)行因式分解的步驟來,從而讓學(xué)生準(zhǔn)確無誤地找出最簡(jiǎn)公分母
4.對(duì)分式方程可能產(chǎn)生增根的原因,要啟發(fā)學(xué)生認(rèn)真思考和討論。
在教學(xué)方法上,我采用類比滲透思想方法進(jìn)行教學(xué),通過與一元一次方程解法相比較,啟發(fā)引導(dǎo)學(xué)生自主探究、歸納分式方程的解法。運(yùn)用類比教學(xué)法具有以下三方面的優(yōu)點(diǎn):
1。通過復(fù)習(xí)一元一次方程的`解法,學(xué)生在探究、歸納分式方程解法的同時(shí)進(jìn)行類比,讓學(xué)生在解分式方程時(shí)有法可循,而不會(huì)覺得無從下手。
2。把分式方程的解法與一元一次方程的解法進(jìn)行相比較,讓學(xué)生既可以溫習(xí)舊知識(shí),又可以加深對(duì)新知識(shí)的記憶。
3。通過對(duì)一元一次方程和分式方程解法的類比,更能突顯分式方程解法中驗(yàn)根的重要性。
《分式方程》教學(xué)反思 篇8
一、設(shè)計(jì)思路:
本節(jié)課作為分式方程的第一節(jié)課,是在學(xué)生掌握了一元一次方程的解法及分式四則混合運(yùn)算的基礎(chǔ)上展開的,既是對(duì)前一節(jié)內(nèi)容的深化,又為以后的教學(xué)——“應(yīng)用”打下了良好的基礎(chǔ),因而在教材中具有不可忽略的地位與作用。本節(jié)的教學(xué)重點(diǎn)是讓學(xué)生清楚的認(rèn)識(shí)到分式方程也是解決實(shí)際問題的工具之一,探索分式方程概念,明確分式方程與整式方程的區(qū)別和聯(lián)系。
二、教學(xué)知識(shí)點(diǎn):
在本課的教學(xué)過程中,我認(rèn)為應(yīng)從這樣的幾個(gè)方面入手:
1、在實(shí)際問題中充分理解題意,尋找等量關(guān)系,并依據(jù)等量關(guān)系列出方程。
2、分式方程和整式方程的區(qū)別:分清楚分式方程必須滿足的兩個(gè)條件,⑴方程式里必須有分式,⑵分母中含有未知數(shù)。這兩個(gè)條件是判斷一個(gè)方程是否為分式方程的充要條件。
3、分式方程和整式方程的聯(lián)系:分式方程通過方程兩邊都乘以最簡(jiǎn)公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學(xué)時(shí)應(yīng)充分體現(xiàn)這種化歸思想的教學(xué)。
三、總體反思
首先是學(xué)生如何順利的找到題目中的等量關(guān)系,書本給出兩個(gè)例子較難,按照書本的引入,一開始課堂就可能處以一種安靜的思維,處于很難打開的狀態(tài),不能有效地激發(fā)學(xué)生學(xué)習(xí)興趣與激情,所以才在學(xué)案中搭梯子降低難度,讓學(xué)生體會(huì)到成功的喜悅,這樣學(xué)生才會(huì)愿意繼續(xù)探索與學(xué)習(xí);實(shí)際問題的難度設(shè)置上是層層深入,問題也是分層次性,能夠讓不同層面的學(xué)生都有不同的'體會(huì)與感受。
其次在教學(xué)過程中應(yīng)提高教師自身的隨機(jī)應(yīng)變的能力和預(yù)設(shè)問題能力,課前充分備好學(xué)生。例如:以前學(xué)過整式方程,我們以前只是說一次方程之類的,沒有系統(tǒng)的歸類它是整式方程。如果不事先詳細(xì)解釋清楚整式方程這個(gè)詞時(shí),合作探究二進(jìn)行的就不會(huì)很順利。
最后,我們應(yīng)讓恰到好處的鼓勵(lì)語和評(píng)價(jià)貫穿于教學(xué)過程中,只有這樣,學(xué)生才能不斷增強(qiáng)自信,在愉悅中探究新知,解決問題。
總而言之,教無定法,學(xué)無定法。我們應(yīng)在教改的道路上不斷充實(shí)自我,完善自我。
《分式方程》教學(xué)反思 篇9
一、要?jiǎng)?chuàng)造性地使用教材
教材只是為教師提供最基本的教學(xué)素材,教師完全可以根據(jù)學(xué)生的實(shí)際情況進(jìn)行調(diào)整。本節(jié)教材中的引例分式方程較復(fù)雜,學(xué)生直接探索它的解法有些困難。我是從簡(jiǎn)單的整式方程引出分式方程后,再引導(dǎo)學(xué)生探究它的解法。這樣很輕松地找到新知識(shí)的.切入點(diǎn):用等式性質(zhì)去分母,轉(zhuǎn)化為整式方程再求解。因此,學(xué)生學(xué)的效果也較好。
二、相信學(xué)生并為學(xué)生提供充分展示自己的機(jī)會(huì)
學(xué)生已經(jīng)學(xué)習(xí)了一元一次去探究分式方程的解法及分式方程檢驗(yàn)的必要性。
三、注意改進(jìn)的地方
講例題時(shí),先講一個(gè)產(chǎn)生增根的較好,這樣便于說明分式方程有時(shí)無解的原因,也便于講清分式方程檢驗(yàn)的必要性,也是解分式方程與整式方程最大的區(qū)別所在,從而再強(qiáng)調(diào)解分式方程必須檢驗(yàn),不能省略不寫這一步。
《分式方程》教學(xué)反思 篇10
列方程解應(yīng)用題七年級(jí)一年就遇到了三次,一元一次的,二元一次的,還有這次的分式的,步驟基本上一樣,審、設(shè)、列、解、驗(yàn)、答。
問題還是出現(xiàn)在審題上,其實(shí)方法也類似,找已知的未知的量,找描述等量關(guān)系的語句,可以列表分析,還可以直接將文字轉(zhuǎn)化為數(shù)學(xué)式子,我經(jīng)常在啟發(fā)時(shí)說,某某同學(xué)剛才回答時(shí)為什么能很快找到等量關(guān)系呢,是因?yàn)樗酪P(guān)注那些重要的東西,比如數(shù)據(jù),比如題中出現(xiàn)的量,等等,就想語文閱讀時(shí)弄清楚時(shí)間,人物,事情一樣。
于是在課堂上例題的分析,我總是把大量的時(shí)間放在啟發(fā)學(xué)生理解題意上,老實(shí)說就算是語文的課外閱讀,學(xué)生多讀幾遍也總讀點(diǎn)味道出來了,可對(duì)于數(shù)學(xué)問題,有些學(xué)生讀了一遍題目愣是一點(diǎn)感覺沒有,對(duì)數(shù)字稍微敏感一點(diǎn)的也能找到相應(yīng)的量吧,但就是這些,讓學(xué)生最頭疼的,最郁悶,想得抓狂了還是找不到等量關(guān)系。
還是多留給學(xué)生點(diǎn)思考的空間吧。其實(shí)大多數(shù)的學(xué)生在老師的.啟發(fā)下還是能對(duì)問題的理解深刻一點(diǎn)的,題目做的多了,總會(huì)產(chǎn)生一些感覺,套用一句老話,質(zhì)變是量變的積累,量變到了一定的程度就會(huì)發(fā)生質(zhì)變,希望我和學(xué)生們的努力能讓質(zhì)變?cè)缛盏絹怼?/p>
《分式方程》教學(xué)反思 篇11
初三第一輪復(fù)習(xí)至關(guān)重要,在這一輪復(fù)習(xí)中我們教師如能精心策劃每一節(jié)課(學(xué)習(xí)目標(biāo)的確定、習(xí)題的分層設(shè)計(jì)、課堂中學(xué)生們的學(xué)習(xí)方式的選擇……),就會(huì)讓不同層次學(xué)生都能得以提升,從而提高數(shù)學(xué)平均成績(jī)。所以,在復(fù)習(xí)《一元一次方程和分式方程的應(yīng)用》這節(jié)課時(shí),我首先仔細(xì)翻閱了七年級(jí)(上)和八年級(jí)(下)的數(shù)學(xué)書,然后從這兩本書中選擇了具有代表性的十二道題應(yīng)用題留做了家庭作業(yè),要求學(xué)生們認(rèn)真寫在作業(yè)本上,目的在于回憶各類題的相關(guān)公式和思維方式,從而把基礎(chǔ)牢牢抓住。
通過課前組長(zhǎng)作業(yè)的檢查,我發(fā)現(xiàn)了很多問題,例如:行程問題單位不統(tǒng)一或設(shè)中速度無單位、利潤(rùn)問題弄不清各種價(jià)(售價(jià)、標(biāo)價(jià)、定價(jià)、進(jìn)價(jià)……)的`含義、不認(rèn)真審視題中的關(guān)鍵字眼等等?吹竭@些“意料中”的錯(cuò)誤,我感覺我的前置性作業(yè)做到了“查缺”,那么課堂上如何“補(bǔ)漏”就成為了最大的關(guān)鍵。針對(duì)課前的檢查,我確定了課堂上學(xué)生們的學(xué)習(xí)方式:先通過組內(nèi)的“群學(xué)”解決共性問題,再通過“對(duì)學(xué)”進(jìn)行“一幫一”,最后再通過幾對(duì)“師友”間的相互點(diǎn)評(píng)進(jìn)行全班性的交流和共識(shí),我認(rèn)為本節(jié)課完成了我在備課中設(shè)定的教學(xué)目標(biāo),同學(xué)們通過一系列的學(xué)習(xí)方式解決了“獨(dú)學(xué)”中遇到的困惑。
但是本節(jié)課留給我更多是思考:如何通過“獨(dú)學(xué)、對(duì)學(xué)、群學(xué)”等學(xué)習(xí)方式高效地完成初三的各階段復(fù)習(xí)?每種方式進(jìn)入初三又該如何改進(jìn)和發(fā)展才能恰到好處地發(fā)揮作用呢?相信“方法總比困難多”,我會(huì)在今后的教學(xué)中不斷吸取他人成功的經(jīng)驗(yàn),在摸索中前進(jìn)。
《分式方程》教學(xué)反思 篇12
本節(jié)課分式方程的解法部分屬于重點(diǎn),難點(diǎn)為利用分式方程解實(shí)際問題。分式方程的解法是解決大多數(shù)數(shù)學(xué)問題的基礎(chǔ)公具,應(yīng)讓學(xué)生們從思想上認(rèn)識(shí)到它的重要性,解實(shí)際問題需正確找到等量關(guān)系,構(gòu)建數(shù)學(xué)模型,把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)計(jì)算問題,本節(jié)課學(xué)生對(duì)這條教學(xué)主線,理解較為清晰。
本節(jié)課我采用了啟發(fā)講授、合作探究、講練相結(jié)合的教學(xué)方式。在課堂教學(xué)過程中努力貫徹“教師為主導(dǎo)、學(xué)生為主體、探究為主線、思維為核心”新課表理念。使學(xué)生充分地動(dòng)口、動(dòng)腦,參與教學(xué)全過程。在教學(xué)過程中,為了達(dá)到學(xué)習(xí)目標(biāo),強(qiáng)化重點(diǎn)內(nèi)容并突破學(xué)習(xí)中的難點(diǎn),在課堂教學(xué)過程中,根據(jù)教學(xué)目標(biāo)和學(xué)生的具體情況,緊密聯(lián)系實(shí)例,精心設(shè)計(jì)問題情境,使所有學(xué)生既能參與,又有探索的余地,全體學(xué)生在獲得必要發(fā)展的前提下,不同的學(xué)生獲得不同的體驗(yàn)。達(dá)到了課堂教學(xué)的有效性。在學(xué)法指導(dǎo)上,本著“授之以魚,不如授之以漁”的原則,圍繞本節(jié)課所學(xué)知識(shí),激發(fā)學(xué)生積極思考,教會(huì)學(xué)生分析問題的方法,使學(xué)生既能在探索中獲取知識(shí),又能不斷豐富數(shù)學(xué)活動(dòng)的'經(jīng)驗(yàn),學(xué)會(huì)探索,提高分析問題、解決問題的能力。
本節(jié)課體現(xiàn)了本人,努力培養(yǎng)具有較高數(shù)學(xué)素養(yǎng)的一代新人的教育觀點(diǎn),達(dá)到了預(yù)期的教學(xué)效果。
《分式方程》教學(xué)反思 篇13
分式方程在整個(gè)初中數(shù)學(xué)中占有十分重要的地位在本課的教學(xué)過程中,我認(rèn)為應(yīng)從這樣的幾個(gè)方面入手:
1.分式方程和整式方程的區(qū)別:分清楚分式分式方程必須滿足的兩個(gè)條件,⑴方程式里必須有分式,⑵分母中含有未知數(shù)。這兩個(gè)條件是判斷一個(gè)方程是否為分式方程的充要條件。同時(shí),由于分母中含有未知數(shù),所以將其轉(zhuǎn)化為整式方程后求出的解就應(yīng)使每一個(gè)分式有意義,否則,這個(gè)根就是原方程的增根。正是由于分式方程與整式方程的.區(qū)別,在解分式方程時(shí)必須進(jìn)行檢驗(yàn)。
2.分式方程和整式方程的聯(lián)系:分式方程通過方程兩邊都乘以最簡(jiǎn)公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學(xué)時(shí)應(yīng)充分體現(xiàn)這種化歸思想的教學(xué)。
3.解分式方程時(shí),如果分母是多項(xiàng)式時(shí),應(yīng)先寫出將分母進(jìn)行因式分解的步驟來,從而讓學(xué)生準(zhǔn)確無誤地找出最簡(jiǎn)公分母
4.對(duì)分式方程可能產(chǎn)生增根的原因,要啟發(fā)學(xué)生認(rèn)真思考和討論。
在本節(jié)教學(xué)中,學(xué)生對(duì)于一元一次方程的解法已經(jīng)十分了解,學(xué)生在解方程中一般的方法完全能夠解決,在這個(gè)問題中不用過多的用時(shí)間,所有的時(shí)間全部放給學(xué)生去練習(xí),重點(diǎn)讓學(xué)生去練習(xí)檢驗(yàn)這一步驟。
通過學(xué)習(xí),學(xué)生感到學(xué)的容易,老師教的輕松。教學(xué)效果十分理想。
《分式方程》教學(xué)反思 篇14
進(jìn)入初三總復(fù)習(xí)以來,我一直都在嘗試探索一種比較適合總復(fù)習(xí)課的課堂教學(xué)模式,經(jīng)過近兩周的教學(xué)實(shí)踐,我基本形成了以下的課堂教學(xué)流程:作業(yè)評(píng)析→出示學(xué)習(xí)目標(biāo)→考點(diǎn)分析→學(xué)生獨(dú)立完成學(xué)案→小結(jié)歸納→課堂檢測(cè),今天在進(jìn)行“可轉(zhuǎn)化為整式方程的分式方程”的復(fù)習(xí)課時(shí),我也是按這樣的流程來進(jìn)行,沒想到發(fā)生了一些意外,以致于影響了整堂課的教學(xué)效果。
在作業(yè)評(píng)析環(huán)節(jié),我照常收集學(xué)生上堂課測(cè)驗(yàn)及課后作業(yè)中存在的問題,由學(xué)生講解其解答方法與思路,然后再給時(shí)間讓學(xué)生自行改正。為了突出本節(jié)課與分式的化簡(jiǎn)求值的區(qū)別,我還收集了學(xué)生以往在分式的運(yùn)算中容易出錯(cuò)的一個(gè)問題。沒想到仍有相當(dāng)多的學(xué)生在解答這個(gè)問題時(shí)卻依然遇到了當(dāng)初那樣的困難,出現(xiàn)了同樣的錯(cuò)誤,于是我不得不已再花時(shí)間讓學(xué)生自我反思與自我改正解答的方法。這樣,課堂已過去了10來分鐘的時(shí)間了,對(duì)后面的教學(xué)產(chǎn)生了直接的`影響。
在學(xué)生獨(dú)立完成學(xué)案的過程中,雖然我在此之前曾引導(dǎo)學(xué)生回顧解分式方程的一般步驟,也書寫在黑板上,但我沒想到的是依然有相當(dāng)多的學(xué)生對(duì)解分式方程的步驟是陌生的,特別是解答過程的書寫更是顯得百花齊放,有個(gè)別學(xué)生甚至于無從下手。于是我不得不已用一個(gè)例題示范解答過程,這樣又花去了不少的時(shí)間,導(dǎo)致學(xué)生在課堂教學(xué)內(nèi)容難以順利完成。
那么,是什么原因?qū)е鲁霈F(xiàn)了這些意外呢?作業(yè)的評(píng)析環(huán)節(jié)為什么要花這么多的時(shí)間呢?學(xué)生為什么地分式方程的解答思路過程是如此的陌生呢?
答案并不難以找到。
一方面,在作業(yè)評(píng)析的環(huán)節(jié)里,我收集到的問題都是學(xué)生容易出錯(cuò)的問題或感到比較困難的問題,雖然這些問題他們都曾遇到過,但難度自然不會(huì)小,因此當(dāng)需要他們?cè)俅谓獯饡r(shí)自然也就容易出現(xiàn)錯(cuò)誤,因此所花的時(shí)間當(dāng)然就較多了。
另一方面,學(xué)生對(duì)分式方程的解答思路方法的陌生,并不是因?yàn)榉质椒匠痰慕獯鹚悸贩椒ㄓ卸嚯y或有多復(fù)雜,而是因?yàn)檫@部分內(nèi)容離當(dāng)初學(xué)生學(xué)習(xí)的時(shí)間太遠(yuǎn)了,而且當(dāng)初在學(xué)習(xí)這部分內(nèi)容時(shí)所用的課時(shí)就非常少,因此在學(xué)生的大腦中留下的印象并不深刻。
問題原因似乎找到了,那么有沒有什么好的辦法去解決呢?
先來看作業(yè)評(píng)析環(huán)節(jié)中出現(xiàn)的問題。仔細(xì)分析課前準(zhǔn)備及教學(xué)過程中的每一個(gè)環(huán)節(jié),再回憶當(dāng)初這些問題的解答方法,我發(fā)現(xiàn)了問題的根源,當(dāng)時(shí)在解答這些較難或較易出錯(cuò)的問題時(shí),為了趕課堂的教學(xué)時(shí)間,完成教學(xué)任務(wù),我沒有給時(shí)間讓學(xué)生進(jìn)行充分的交流,而是包辦式的進(jìn)行講解分析,那時(shí)雖然講解得清晰易懂,學(xué)生當(dāng)時(shí)也反饋能聽明白了,但當(dāng)要他們真正動(dòng)手時(shí),卻依然犯同樣的錯(cuò)誤。因此,缺少交流的問題講解,雖然聽懂,但不會(huì)做。同時(shí),我選擇的問題較多(3個(gè))也是花費(fèi)時(shí)間較多的原因,但如果不把這些易出錯(cuò)的問題都解決,那么學(xué)生所積累下的問題豈不是越來越多了?
再來看我所編寫的學(xué)案吧。我本以為學(xué)生對(duì)分式方程的解答思路步驟是非常熟悉的,所以沒有在學(xué)案中安排例題示范去讓學(xué)生自主閱讀、復(fù)習(xí)。那么,在學(xué)案中安排例題示范會(huì)不會(huì)比讓學(xué)生在課堂練習(xí)過程中出現(xiàn)問題時(shí)再解釋好些呢?我想,前者也許會(huì)省下課堂教學(xué)時(shí)間,但后者也許能給學(xué)生更深的印象,后者也許教學(xué)效果會(huì)更好。
另一方面,課前我已預(yù)測(cè)到學(xué)生可能會(huì)把分式方程的解法與分式的化簡(jiǎn)相混淆起來,很有可能什么出現(xiàn)在進(jìn)行分式的化簡(jiǎn)時(shí)也去分母的錯(cuò)誤。可我卻在學(xué)案中忽視了編一兩個(gè)分式的化簡(jiǎn)的問題,因此學(xué)生在課堂上也就無法對(duì)這兩者進(jìn)行了比較。
因此,在編寫學(xué)案時(shí),特別是集體備課時(shí),必需對(duì)每一個(gè)問題進(jìn)行推敲,以使學(xué)案更能發(fā)揮輔助學(xué)生復(fù)習(xí)的作用。
那么,節(jié)課剩下的問題只能在下一節(jié)課再進(jìn)行解決了!
【《分式方程》教學(xué)反思】相關(guān)文章:
分式方程說課稿03-02
教學(xué)教學(xué)反思03-22
教學(xué)反思04-19
讓教學(xué)反思12-15
教學(xué)的反思03-09
生物教學(xué)教學(xué)反思08-15
古詩教學(xué)教學(xué)反思04-01