- 相關(guān)推薦
正比例函數(shù)教學(xué)設(shè)計
作為一位杰出的老師,可能需要進行教學(xué)設(shè)計編寫工作,借助教學(xué)設(shè)計可以更大幅度地提高學(xué)生各方面的能力,從而使學(xué)生獲得良好的發(fā)展。那么寫教學(xué)設(shè)計需要注意哪些問題呢?以下是小編收集整理的正比例函數(shù)教學(xué)設(shè)計,希望對大家有所幫助。
正比例函數(shù)教學(xué)設(shè)計1
教學(xué)內(nèi)容
教科書第52頁例1,第55頁課堂活動第1題及練習(xí)十二1,2,3題。
教學(xué)目標
1、使學(xué)生通過具體問題情境認識成正比例的量,理解其意義,并能判斷兩種量是否成正比例關(guān)系,能找到生活中成正比例的實例,并進行交流。
2、通過探索正比例意義的教學(xué)活動,使學(xué)生感受事物中充滿著運動、變化的思想,并且特定的事物發(fā)展、變化是有規(guī)律的。
3、通過觀察、交流、歸納、推斷等教學(xué)活動,感受數(shù)學(xué)思維過程的合理性,培養(yǎng)學(xué)生的觀察能力、推理能力、歸納能力和靈活應(yīng)用知識的能力。
教學(xué)重點
認識成正比例的量,理解其意義,并能判斷兩種量是否成正比例關(guān)系。
教學(xué)難點
理解正比例的意義,感受事物中充滿著運動、變化的思想,并且特定的事物發(fā)展、變化是有規(guī)律的。
教學(xué)準備
教具:多媒體課件。
學(xué)具:作業(yè)本,數(shù)學(xué)書。
教學(xué)過程
一、聯(lián)系生活,復(fù)習(xí)引入
。1)下面是居委會張阿姨負責(zé)的小區(qū)水費收繳情況,用這個表中的數(shù)能寫成多少個有意義的比?哪些比能組成比例?把能組成的比例都寫出來。
。2)揭示課題。
教師:在上面的表中,有哪兩種量?(水費和用水量、總價和數(shù)量)在我們平時的生活中,除了這兩種量,我們還要遇到哪些數(shù)量呢?
教師:這些數(shù)量之間藏著不少的知識,今天這節(jié)課我們就來研究這些數(shù)量間的一些規(guī)律和特征。
二、自主探索,學(xué)習(xí)新知
1.教學(xué)例1
用課件在剛才準備題的表格中增加幾列數(shù)據(jù),變成表。
教師:請同學(xué)們觀察這張表,先獨立思考后再討論、交流:從這張表中你發(fā)現(xiàn)了什么規(guī)律?并根據(jù)這種規(guī)律幫助張阿姨把表格填寫完整。
教師根據(jù)學(xué)生的回答將表格完善,并作必要的板書。
教師:同學(xué)們發(fā)現(xiàn)表格中的水費隨著用水量的增加也在不斷增加,像這樣水費隨著用水量的變化而變化,我們就說水費和用水量是相互關(guān)聯(lián)的。
板書:相關(guān)聯(lián)
教師:你們還發(fā)現(xiàn)哪些規(guī)律?
學(xué)生在這里主要體會水費除以用水量得到的每噸水單價始終是不變的`,教師可根據(jù)學(xué)生的回答板書出來,便于其他學(xué)生觀察:
教師:水費除以用水量得到的單價相等也可以說是水費與用水量的比值相等,也就是一個固定的數(shù)。
板書:
2、教學(xué)試一試
教師:我們再來研究一個問題。
課件出示第52頁下面的試一試。
學(xué)生先獨立完成。
教師:你能用剛才我們研究例1的方法,自己分析這個表格中的數(shù)據(jù)嗎?
教師根據(jù)學(xué)生的回答歸納如下:
表中的路程和時間是相關(guān)聯(lián)的量,路程隨著時間的變化而變化。
時間擴大若干倍,路程也擴大相同的倍數(shù);時間縮小若干倍,路程縮小相同的倍數(shù)。
路程與時間的比值是一定的,速度是每時80 km,它們之間的關(guān)系可以寫成路程時間=速度(一定)
3、教學(xué)議一議
教師:我們研究了上面生活中的兩個問題,誰能發(fā)現(xiàn)它們之間的共同點呢?
引導(dǎo)學(xué)生歸納出這兩個問題中都有相關(guān)聯(lián)的量,一種量擴大或縮小若干倍,另一種量也隨著擴大或縮小相同的倍數(shù),所以它們的比值始終是一定的。
教師:像上面這樣的兩種量,叫做成正比例的量,它們的關(guān)系叫做成正比例關(guān)系。
4、教學(xué)課堂活動
教師:請大家說一說生活中還有哪些是成正比例的量。
三、夯實基礎(chǔ),鞏固提高
(1)完成練習(xí)十二的第1題。
教師:請同學(xué)們用所學(xué)知識判斷一下,下面表中的兩種量成正比例關(guān)系嗎?為什么?
學(xué)生獨立思考,先小組內(nèi)交流再集體交流。
。2)完成練習(xí)十二的第2題。
四、全課小結(jié)
教師:這節(jié)課你們學(xué)到了哪些知識?用了哪些學(xué)習(xí)方法?還有哪些不懂的問題?
正比例函數(shù)教學(xué)設(shè)計2
【教學(xué)內(nèi)容】
正比例
【教學(xué)目標】
使學(xué)生理解正比例的意義,會正確判斷成正比例的量。
【重點難點】
重點:理解正比例的意義。
難點:正確判斷兩個量是否成正比例的關(guān)系。
【教學(xué)準備】
投影儀。
【復(fù)習(xí)導(dǎo)入】
1、復(fù)習(xí)引入。
用投影儀逐一出示下面的題目,讓學(xué)生回答。
、僖阎烦毯蜁r間,怎樣求速度?
板書: =速度。
、谝阎們r和數(shù)量,怎樣求單價?
板書: =單價。
、垡阎ぷ骺偭亢凸ぷ鲿r間,怎樣求工作效率?
板書: =工作效率。
2、引入課題:這是我們過去學(xué)過的一些常見的數(shù)量關(guān)系。這節(jié)課我們進一步來研究這些數(shù)量關(guān)系的一些特征,首先來研究這些數(shù)量之間的正比例關(guān)系。板書課題:成正比例的量。
【新課講授】
1、 教學(xué)例1。
教師用投影儀出示例1的圖和表格。
學(xué)生觀察上表并討論問題。
。1)鉛筆的總價和數(shù)量有關(guān)系嗎?
。2)鉛筆的總價是怎樣隨著數(shù)量的變化而變化的?
。3)鉛筆的總價和數(shù)量的變化有什么規(guī)律?組織學(xué)生在小組中討論,然后交流說一說。
根據(jù)觀察,學(xué)生可能會說出:
①鉛筆的?們r隨著數(shù)量變化,它們是兩種相關(guān)聯(lián)的量。
②數(shù)量增加,總價也增加;數(shù)量降低,總價也減少。
、坫U筆的總價和數(shù)量的比值總是一定的,即單價一定。
教師指出:總價和數(shù)量有這樣的變化關(guān)系,我們就說總價和數(shù)量成正比例關(guān)系,總價和數(shù)量叫做成正比例的量。
2、教師出示:一列火車行駛的時間和路程如下表。
引導(dǎo)學(xué)生觀察、思考:路程和時間有關(guān)系嗎?路程怎樣隨著時間的變化而變化?路程和時間的變化有什么規(guī)律?
組織學(xué)生分析、討論、匯報:路程和時間是兩種相關(guān)聯(lián)的量,路程擴大,時間也跟著擴大;路程縮小,時間也跟著縮;但是路程和時間的比值一定,寫成關(guān)系式是 =速度(一定)。
教師小結(jié):所以說路程和時間成正比例關(guān)系,路程和時間叫做成正比例的量。
3、歸納概括正比例關(guān)系。
、俳M織學(xué)生分小組討論,上面兩個例子有什么共同規(guī)律?
、诮處熞龑(dǎo)學(xué)生歸納總結(jié):都是兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化;如果這兩種量中相對應(yīng)的兩個數(shù)的比值也就是商一定,這兩種量就叫做成正比例的量,它們的關(guān)系就叫做成正比例關(guān)系。
學(xué)生說一說是怎么理解正比例關(guān)系的。
要求學(xué)生把握三個要素:
第一:兩種相關(guān)聯(lián)的量。
第二:其中一個量增加,另一個量也增加;一個量減少,另一個量也減少。
第三:兩個量的比值一定。
4、用字母表示正比例的關(guān)系。
教師:如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的`比值(一定),比例關(guān)系可以用這樣的式子表示: (一定)
5、教師:想一想,生活中還有哪些成正比例的量?
學(xué)生舉例說明并說出理由如:長方形的寬一定,面積和長成正比例;每袋牛奶質(zhì)量一定,牛奶袋數(shù)和總質(zhì)量成正比例;衣服的單價一定,購買衣服的數(shù)量和應(yīng)付錢數(shù)成正比例。地磚的面積一定,教室地板面積和地磚塊數(shù)成正比例;
【課堂作業(yè)】
完成教材第46頁的“做一做”(1)~(3)。
答案:
。1) 比值表示每小時行駛多少km。
。2)成正比例。理由:路程隨著時間的變化而變化。
、贂r間增加,路程也增加,時間減少,路程也隨著減少;
、诼烦毯蜁r間的比值(速度)一定。
【課堂小結(jié)】
通過這節(jié)課的學(xué)習(xí),你有什么收獲?
【課后作業(yè)】
完成練習(xí)冊中本課時的練習(xí)。
正比例函數(shù)教學(xué)設(shè)計3
教學(xué)要求:
1、使學(xué)生認識正比例關(guān)系的意義,理解,掌握成正比例量的變化規(guī)律及其特征,能依據(jù)正比例的意義間斷兩種相關(guān)聯(lián)的量成不成正比例關(guān)系。
2、進一步培養(yǎng)學(xué)生觀察、分析、綜合和概括等能力,讓學(xué)生掌握判斷兩種相關(guān)聯(lián)量成不成正比例關(guān)系的方法,培養(yǎng)學(xué)生判斷、推理的能力。
教學(xué)過程:
一、復(fù)習(xí)鋪墊
1、說出下列每組數(shù)量之間的關(guān)系。
。1)速度時間路程
(2)單價數(shù)量總價
。3)工作效率工作時間工作總量
2、引入新課
我們已經(jīng)學(xué)過的一些常見數(shù)量關(guān)系,每組數(shù)量中,數(shù)量之間是有聯(lián)系的,存在著相依關(guān)系,這節(jié)課開始,我們就來研究和認識這種變化規(guī)律。今天,我們先認識正比例關(guān)系的意義。
二、教學(xué)新課
1、教學(xué)例1。
出示例1。讓學(xué)生計算,在課本上填表。
讓學(xué)生觀察表里兩種量變化的`數(shù)據(jù),思考。
。1)表里有哪兩種數(shù)量,這兩種數(shù)量是怎樣變化的?
。2)路程和時間相對應(yīng)數(shù)值的比的比值各是多少?這兩種量變化有什么規(guī)律?
引導(dǎo)學(xué)生進行討論。
提問:這里比值50是什么數(shù)量?(誰能說出它的數(shù)量關(guān)系式?)
想一想,這個式子表示的是什么意思?
2、教學(xué)例2
出示例2和想一想
要求學(xué)生按剛才學(xué)習(xí)例1的方法學(xué)習(xí)例2,然后把你學(xué)習(xí)中的發(fā)現(xiàn)綜合起來告訴大家。
學(xué)生觀察思考后,指名回答。然后再提問,這兩種數(shù)量的變化規(guī)律是什么?你是怎樣發(fā)現(xiàn)的?
比值1.6是什么數(shù)量,你能用數(shù)量關(guān)系式表示出來嗎?
誰來說說這個式子表示的意思?
3、概括正比例的意義。
像例1、例2里這樣的兩種相關(guān)聯(lián)的量是怎樣的關(guān)系呢?請同學(xué)樣看課本第40頁最后一節(jié)。
4、具體認識
。1)提問:例1里有哪兩種相關(guān)聯(lián)的量?這兩種量成正比例關(guān)系嗎?為什么?
例2里的兩種量是不是成正比例的量?為什么?
。2)做練習(xí)八第1題。
5、教學(xué)例3
出示例3,讓學(xué)生思考
提問:怎樣判斷是不是成正比例?
請同學(xué)們看一看例3,書上怎樣判斷的,我們說得對不對。
強調(diào):關(guān)鍵是列出關(guān)系式,看是不是比值一定。
三、鞏固練習(xí)
1、做練一練第1題。
指名學(xué)生口答,說明理由。
2、做練一練第2題。
指名口答,并要求說明理由。
3、做練習(xí)八第2題(小黑板)
讓學(xué)生把成正比例關(guān)系的先勾出來。
指名口答,選擇幾題讓學(xué)生說一說怎樣想的?
四、課堂小結(jié)
這節(jié)課學(xué)習(xí)了什么內(nèi)容?正比例關(guān)系的意義是什么?用怎樣的式子表示Y和X這兩種相關(guān)的量成正比例?判斷兩種相關(guān)聯(lián)的量是不是成正比例,關(guān)鍵看什么?
五、家庭作業(yè)。
正比例函數(shù)教學(xué)設(shè)計4
【教學(xué)目標】
1、使學(xué)生理解正比例的意義,能根據(jù)正比例的意義判斷是不是成正比例。
2、培養(yǎng)學(xué)生概括能力和分析判斷能力。
3、培養(yǎng)學(xué)生用發(fā)展變化的觀點來分析問題的能力。
【教學(xué)重難點】
重點:
成正比例的量的特征及其斷方法。
難點:
理解兩個變量之間的比例關(guān)系,發(fā)現(xiàn)思考兩種相關(guān)聯(lián)的量之間的變化規(guī)律。
【教學(xué)過程】
一、四顧舊知,復(fù)習(xí)鋪墊
商店里有兩種包裝的襪子,一種是5雙一包的,售價為25元,一種是8雙一包的,售價為32元。哪種襪子更便宜?
學(xué)生獨立完成后師提問:你們是怎樣比較的?
生:我先求出每種襪子的單價,再進行比較。
師:你是根據(jù)哪個數(shù)量關(guān)系式進行計算的?
生:因為總價=單價×數(shù)量,所以單價=總價÷數(shù)量。
師:如果單價不變,商品的總價和數(shù)量的變化有什么規(guī)律呢?這節(jié)課,我們就來研究正比例。(板書:正比例)
二、引導(dǎo)探索,學(xué)習(xí)新知
1、教學(xué)例1,學(xué)習(xí)正比例的意義。
。1)結(jié)合情境圖,觀察表中的數(shù)據(jù),認識兩種相關(guān)聯(lián)的量。師出示自學(xué)提示:表中有哪兩種量?總價是怎樣隨著數(shù)量的.變化而變化的?學(xué)生自學(xué)并在組內(nèi)交流。全班交流。
。2)認識相關(guān)聯(lián)的量。明確:像這樣,一種量變化,另一種量也隨著變化,這兩種量叫做相關(guān)聯(lián)的量。
2、計算表中的數(shù)據(jù),理解正比例的意義。
(1)計算相應(yīng)的總價與數(shù)量的比值,看看有什么規(guī)律。學(xué)生計算后匯報:= = =…=3、5,每一組數(shù)據(jù)的比值一定。
。2)說一說,每一組數(shù)據(jù)的比值表示什么?(彩帶的單價,也就是彩帶的單價是一個固定的數(shù))
。3)請學(xué)生用公式把彩帶的總價、數(shù)量、單價之間的關(guān)系表示出來。
。4)明確成正比例的量及正比例關(guān)系的意義。兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。如果用字母y和x表示兩種相關(guān)聯(lián)的量,用字母k表示它們的比值(一定),正比例關(guān)系可以用下面的式子表示:
3、列舉并討論成正比例的量。
。1)生活中還有哪些成正比例的量?預(yù)設(shè):速度一定,路程與時間成正比例;長方形的寬一定,面積和長成正比例。
。2)小結(jié):成正比例的量必須具備哪些條件?哪個條件是關(guān)鍵?
兩種量中相對應(yīng)的兩個數(shù)的比值一定,這是關(guān)鍵。
4、認識正比例圖象。(課件出示例1的表格及正比例圖象)
。1)觀察表格和圖象,你發(fā)現(xiàn)了什么?
。2)把數(shù)對(10,35)和(12,42)所在的點描出來,再和上面的圖象連起來并延長,你還能發(fā)現(xiàn)什么?
無論怎樣延長,得到的都是直線。
(3)從正比例圖象中,你知道了什么?
生1:可以由一個量的值直接找到對應(yīng)的另一個量的值。
生2:可以直觀地看到成正比例的量的變化情況。
。4)利用正比例圖象解決問題。
不計算,根據(jù)圖象判斷,如果買9 m彩帶,總價是多少?49元能買多少米彩帶?
小明買的彩帶的米數(shù)是小麗的2倍,他花的錢是小麗的幾倍?預(yù)設(shè)生:因為在單價一定的情況下,數(shù)量與總價成正比例關(guān)系,小明買的彩帶的米數(shù)是小麗的2倍,他花的錢也應(yīng)是小麗的2倍。設(shè)計意圖:先從觀察圖象入手,引導(dǎo)學(xué)生直觀認識相關(guān)聯(lián)的量,再結(jié)合表中的數(shù)據(jù),引導(dǎo)學(xué)生發(fā)現(xiàn)總價與數(shù)量的比值一定,使學(xué)生理解正比例的意義,最后結(jié)合正比例圖象,把數(shù)據(jù)與點聯(lián)系起來,根據(jù)圖象,不用計算就能找到一個量的值所對應(yīng)的另一個量的值,使學(xué)生在解決問題的同時,感受數(shù)形結(jié)合思想。
三、課堂練習(xí):
1、P46“做一做”
2、練習(xí)九第1、3~7
正比例函數(shù)教學(xué)設(shè)計5
教學(xué)目標:
1、使學(xué)生了解表示成正比例的量的圖象特征,并能根據(jù)圖象解決相關(guān)簡單問題。
2、通過練習(xí),鞏固對正比例意義的認識。
3、情感、態(tài)度與價值觀:初步滲透函數(shù)思想。
重點難點:
能根據(jù)數(shù)量關(guān)系式或圖象判斷兩種量是否成正比例。
教學(xué)準備:
投影儀。
教學(xué)過程:
一、新課講授
教學(xué)第46頁內(nèi)容。
教師出示表格(見書),依據(jù)表中的數(shù)據(jù)描點。(見書)
師:從圖中你發(fā)現(xiàn)了什么?
生:這些點都在同一條直線上。
看圖回答問題
、偃绻U筆的數(shù)量是7支,那么鉛筆的總價是多少?②總價是4、0的鉛筆,數(shù)量是多少?③鉛筆的數(shù)量是3支,那么鉛筆的總價是多少?描出這一對應(yīng)的點,它們是否在同一直線上?
你還能提出什么問題?有什么體會?
組織學(xué)生分小組匯報,學(xué)生匯報時可能會說出
、僬壤P(guān)系的圖象是一條經(jīng)過原點的直線。
、诶谜壤龍D象不用計算,可以由一個量的值,直接找到對應(yīng)的另一個量的值。
二、練習(xí)講授
1、基本練習(xí)。
。1)投影出示教材第49頁第1題。
教師引導(dǎo)學(xué)生回顧正比例的意義及判斷是否成正比例的方法。學(xué)生獨立完成練習(xí)。
教師要求學(xué)生從兩個方面說明為什么成正比例。
a、電是隨著用電量的增加而增加;
b、電費與用電量的比值總是相等的。
師生共同訂正。
(2)投影出示:一列火車1小時行駛90km,2小時行駛180km,3小時行駛270km,4小時行駛360km,5小時行駛450km,6小時行駛540km,7小時行駛630km,8小時行駛720km……
①出示下表,填表。
一列火車行駛的時間和路程
、谔畋聿⑺伎及l(fā)現(xiàn)了什么?
、劢處燑c撥:隨著時間的變化,路程也在變化,我們就說時間和路程是兩種相關(guān)聯(lián)的量。(板書:兩種相關(guān)聯(lián)的量)
、芙處煟焊鶕(jù)計算你們發(fā)現(xiàn)了什么?指出:相對應(yīng)的兩個數(shù)的比值固定不變,在數(shù)學(xué)上叫做一定。
、萦檬阶颖硎舅鼈兊年P(guān)系:路程÷時間=速度(一定)。
教師:上節(jié)課,我們學(xué)習(xí)了成正比例的`量,下面我們繼續(xù)學(xué)習(xí)和練習(xí)。
2、指導(dǎo)練習(xí)。
(1)完成教材第49頁第2題。
。2)完成教材第49頁第3題,先由學(xué)生獨立做,后由老師抽查。在抽查第(1)小題時,多讓不同的學(xué)生回答。做第(2)小題時應(yīng)多讓學(xué)生們交流。第(3)小題匯報時要求說出,你是怎樣估計的,上臺在投影儀上展示估計的思維過程。
。3)解決教材49頁第4題:
①投影出示書中的表格,引導(dǎo)學(xué)生觀察表中的數(shù)據(jù)。
、诮M織學(xué)生在小組中合作探究。
a、動手畫一畫,指名匯報圖象特點。
b、組織學(xué)生說一說,相互交流。
提示:判斷兩種量是否成正比例,先要判斷它們是不是相關(guān)聯(lián)的量,再判斷它們的比值是否一定。
三、課堂作業(yè)
1、根據(jù)x和y成正比例關(guān)系,填寫表中的空格。
2、看圖回答問題。
。1)在這一過程中,哪個量沒變?
。2)路程和時間有什么關(guān)系?
(3)不計算,從圖中看出4小時行駛多少千米?
。4)7小時行駛多少千米?
課堂小結(jié):
教師:判斷兩個相關(guān)聯(lián)的量成正比例的三個要素是什么?
通過這節(jié)課的學(xué)習(xí),你有什么收獲?
課后作業(yè):
完成練習(xí)冊中本課時的練習(xí)。
板書設(shè)計:
正比例圖像
圖像:一條過原點的直線。
正比例函數(shù)教學(xué)設(shè)計6
教學(xué)要求:
1.使學(xué)生認識正比例關(guān)系的意義,理解、掌握成正比例量的變化規(guī)律及其特征,能依據(jù)正比例的意義判斷兩種相關(guān)聯(lián)的量成不成正比例關(guān)系。
2.進一步培養(yǎng)學(xué)生觀察、分析、綜合和概括等能力,讓學(xué)生掌握判斷兩種相關(guān)聯(lián)量成不成正比例關(guān)系的方法,培養(yǎng)學(xué)生判斷、推理的能力。
教學(xué)重點:
認識正比例關(guān)系的意義。
教學(xué)難點:
掌握成正比例量的變化規(guī)律及其特征。
教學(xué)過程:
一、復(fù)習(xí)鋪墊
1.說出下列每組數(shù)量之間的關(guān)系。
。1)速度時間路程
。2)單價數(shù)量總價
(3)工作效率工作時間工作總量
2.引入新課。
上面是已經(jīng)學(xué)過的一些常見數(shù)量關(guān)系,每組數(shù)量中,數(shù)量之間是有聯(lián)系的,存在著相依關(guān)系。當其中有一個量變化時,另一個量也隨著變化,而且這種變化是有規(guī)律的,這節(jié)課開始,我們就來研究和認識這種變化規(guī)律。今天,先認識正比例關(guān)系的意義。(板書課題)
二、自主探究:
1.教學(xué)例1。
出示例l。讓學(xué)生計算,在課本上填表,并思考能發(fā)現(xiàn)什么。指名口答,老師板書填表。讓學(xué)生觀察表里兩種量變化的數(shù)據(jù),思考:
。1)表里有哪兩種數(shù)量,這兩種數(shù)量是怎樣變化?
(2)長方形的面積隨著那種量的變化而變化的?你能看出它們變化的特點嗎?
。3)分別找出面積與款項對應(yīng)的數(shù),面積與寬的比各是幾比幾?比值各是多少?
引導(dǎo)學(xué)生進行討論,得出:
(1)表里的兩種量是長方形的寬與面積(長與面積)。寬與面積(長與面積)是兩種相關(guān)聯(lián)的量,(板書:兩種相關(guān)聯(lián)的量)面積隨著寬(長)的變化而變化。
。2)寬(長)擴大,面積也擴大;寬(長)縮小,面積也縮小。
。3)可以看出它們的變化規(guī)律是:面積與寬(面積與長)比的比值總是一定的。(板書:面積和寬比的比值一定)因為面積和寬(面積與長)對應(yīng)數(shù)值比的比值都是5(2)。提問:這里比值5(2)是什么數(shù)量?誰能說出它的數(shù)量關(guān)系式?板書:面積/寬=長(一定)面積/長=寬(一定)想一想,這個式子表示的是什么意思?(把上面板書補充成:長一定時,面積和寬比的比值一定寬一定時,面積和長比的比值一定)
2.教學(xué)例2。
出示例2。要求學(xué)生按剛才學(xué)習(xí)例1的方法學(xué)習(xí)例2,然后把你學(xué)習(xí)中的發(fā)現(xiàn)綜合起來告訴大家。學(xué)生觀察思考后,指名回答。然后再提問:這兩種相關(guān)聯(lián)量的變化規(guī)律是什么?你是怎樣發(fā)現(xiàn)的?你能用數(shù)量關(guān)系式表示出來嗎?誰來說說這個式子表示的意思?(把板書補充成單價一定時,總價和數(shù)量比的比值一定)
3.概括正比例的意義。
。1)綜合例1、例2的共同點。
提問:請大家比較例l和例2,你發(fā)現(xiàn)這兩個例題有什么共同的地方?(①都有兩種相關(guān)聯(lián)的量;②都是一種量隨著另一種量變化;③兩種量里對應(yīng)數(shù)值的比的比值一定)
(2)概括正比例關(guān)系的意義。
像例l、例2里這樣的兩種相關(guān)聯(lián)的量是怎樣的關(guān)系呢,請同學(xué)們看課本第95頁最后連個自然段。說明:根據(jù)剛才學(xué)習(xí)例1、例2時發(fā)現(xiàn)的規(guī)律,這里有兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比的比值一定,這兩種量就叫做成正比例的量,它們之間的關(guān)系叫做正比例關(guān)系。追問;兩種相關(guān)聯(lián)量成不成正比例的關(guān)鍵是什么?(比值是不是一定)提問:如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值,那么上面這種數(shù)量關(guān)系式可以怎樣寫呢?指出:這個式子表示兩種相關(guān)聯(lián)的量x和y,y隨著x的變化而變化,它們的比值k是一定的。這時就說x和y成正比例關(guān)系。所以,兩個量成正比例關(guān)系,我們就用式子=k(一定)來表示。
4、教學(xué)例3學(xué)生看書自學(xué),小組討論,集體交流。
。1)數(shù)量與時間是不是兩種相關(guān)聯(lián)的量?
。2)數(shù)量與時間有什么關(guān)系?他們的'比值是誰?比值是不是不變的?
。3)判斷數(shù)量與時間是不是成正比例?
5、完成97頁練一練。
三、鞏固練習(xí)
1.(1)提問:例l里有哪兩種相關(guān)聯(lián)的量?這兩種量成正比例關(guān)系嗎,為什么?例2里的兩種量是不是成正比例的量?為什么?提問:看兩種相關(guān)聯(lián)的量是不是成正比例,關(guān)鍵要看什么?
2、做練習(xí)十一第1題。
讓學(xué)生讀題思考。指名依次口答題里的問題。指出:根據(jù)上面所說的正比例的意義,要知道兩個量是不是成正比例關(guān)系,只要先看兩種量是不是相關(guān)聯(lián)的量,再看兩種量變化時比值是不是一定。如果兩種相關(guān)聯(lián)的量變化時比值一定,它們就是成正比例的量,相互之間成正比例關(guān)系。
3.下列題里有哪兩種相關(guān)聯(lián)的量?這兩種量成不成正比例?為什么?
一種蘋果,買5千克要10元。照這樣計算,買15千克要30元。
四、課堂小結(jié)
這節(jié)課學(xué)習(xí)了什么內(nèi)容?正比例關(guān)系的意義是什么?用怎樣的式子表示y和x這兩種相關(guān)聯(lián)的量成正比例?判斷兩種相關(guān)聯(lián)的量是不是成正比例,關(guān)鍵看什么?關(guān)鍵是列出關(guān)系式,看是不是比值一定。
五、家庭作業(yè)
練習(xí)十一第2~6題。
正比例函數(shù)教學(xué)設(shè)計7
【教學(xué)內(nèi)容】
正比例
【教學(xué)目標】
使學(xué)生理解正比例的意義,會正確判斷成正比例的量。
【重點難點】
重點:理解正比例的意義。
難點:正確判斷兩個量是否成正比例的關(guān)系。
【教學(xué)準備】
投影儀。
【復(fù)習(xí)導(dǎo)入】
1、復(fù)習(xí)引入。
用投影儀逐一出示下面的題目,讓學(xué)生回答。
①已知路程和時間,怎樣求速度?
板書:=速度。
、谝阎們r和數(shù)量,怎樣求單價?
板書:=單價。
、垡阎ぷ骺偭亢凸ぷ鲿r間,怎樣求工作效率?
板書:=工作效率。
2、引入課題:
這是我們過去學(xué)過的一些常見的數(shù)量關(guān)系。這節(jié)課我們進一步來研究這些數(shù)量關(guān)系的一些特征,首先來研究這些數(shù)量之間的正比例關(guān)系。板書課題:成正比例的量。
【新課講授】
1、教學(xué)例1。
教師用投影儀出示例1的圖和表格。
學(xué)生觀察上表并討論問題。
(1)鉛筆的總價和數(shù)量有關(guān)系嗎?
。2)鉛筆的總價是怎樣隨著數(shù)量的變化而變化的?
。3)鉛筆的總價和數(shù)量的`變化有什么規(guī)律?組織學(xué)生在小組中討論,然后交流說一說。
根據(jù)觀察,學(xué)生可能會說出:
①鉛筆的總價隨著數(shù)量變化,它們是兩種相關(guān)聯(lián)的量。
、跀(shù)量增加,總價也增加;數(shù)量降低,總價也減少。
、坫U筆的總價和數(shù)量的比值總是一定的,即單價一定。
教師指出:總價和數(shù)量有這樣的變化關(guān)系,我們就說總價和數(shù)量成正比例關(guān)系,總價和數(shù)量叫做成正比例的量。
2、教師出示:一列火車行駛的時間和路程如下表。
引導(dǎo)學(xué)生觀察、思考:路程和時間有關(guān)系嗎?路程怎樣隨著時間的變化而變化?路程和時間的變化有什么規(guī)律?
組織學(xué)生分析、討論、匯報:路程和時間是兩種相關(guān)聯(lián)的量,路程擴大,時間也跟著擴大;路程縮小,時間也跟著縮小;但是路程和時間的比值一定,寫成關(guān)系式是=速度(一定)。
教師小結(jié):所以說路程和時間成正比例關(guān)系,路程和時間叫做成正比例的量。
3、歸納概括正比例關(guān)系。
、俳M織學(xué)生分小組討論,上面兩個例子有什么共同規(guī)律?
、诮處熞龑(dǎo)學(xué)生歸納總結(jié):都是兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化;如果這兩種量中相對應(yīng)的兩個數(shù)的比值也就是商一定,這兩種量就叫做成正比例的量,它們的關(guān)系就叫做成正比例關(guān)系。
學(xué)生說一說是怎么理解正比例關(guān)系的。
要求學(xué)生把握三個要素:
第一:兩種相關(guān)聯(lián)的量。
第二:其中一個量增加,另一個量也增加;一個量減少,另一個量也減少。
第三:兩個量的比值一定。
4、用字母表示正比例的關(guān)系。
教師:如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值(一定),比例關(guān)系可以用這樣的式子表示: (一定)
5、教師:想一想,生活中還有哪些成正比例的量?
學(xué)生舉例說明并說出理由如:長方形的寬一定,面積和長成正比例;每袋牛奶質(zhì)量一定,牛奶袋數(shù)和總質(zhì)量成正比例;衣服的單價一定,購買衣服的數(shù)量和應(yīng)付錢數(shù)成正比例。地磚的面積一定,教室地板面積和地磚塊數(shù)成正比例;
【課堂作業(yè)】
完成教材第46頁的“做一做”(1)~(3)。
答案:
。1)比值表示每小時行駛多少km。
。2)成正比例。理由:路程隨著時間的變化而變化。
、贂r間增加,路程也增加,時間減少,路程也隨著減少;
、诼烦毯蜁r間的比值(速度)一定。
【課堂小結(jié)】
通過這節(jié)課的學(xué)習(xí),你有什么收獲?
【課后作業(yè)】
完成練習(xí)冊中本課時的練習(xí)。
正比例函數(shù)教學(xué)設(shè)計8
一、教學(xué)目標
。1)知識目標:能根據(jù)正比例函數(shù)的圖像,觀察歸納出函數(shù)的性質(zhì);并會簡單應(yīng)用。
(2)能力目標:逐步培養(yǎng)學(xué)生的觀察能力,概括的能力,通過教師指導(dǎo)發(fā)現(xiàn)知識,初步培養(yǎng)學(xué)生數(shù)形結(jié)合的思想以及由一般到特殊的數(shù)學(xué)思想;
。3)情感目標:激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性,逐步培養(yǎng)學(xué)生實事求是的科學(xué)態(tài)度。
二、教學(xué)的重點和難點
教學(xué)重點:正比例函數(shù)的性質(zhì)及其應(yīng)用。
教學(xué)難點:發(fā)現(xiàn)正比例函數(shù)的性質(zhì)
三、教學(xué)方法與學(xué)法指導(dǎo)教學(xué)方法:
引導(dǎo)發(fā)現(xiàn)法和直觀演示法,本節(jié)課的難點是發(fā)現(xiàn)正比例函數(shù)的性質(zhì),通過教師的引導(dǎo),啟發(fā)調(diào)動學(xué)生的積極性,讓學(xué)生在課堂上多活動(畫圖)、多觀察(圖象),主動參與到整個教學(xué)活動中來,最后發(fā)現(xiàn)其性質(zhì)。
學(xué)法指導(dǎo):引導(dǎo)學(xué)生學(xué)會觀察、歸納的學(xué)習(xí)方法。
四、教具準備
電腦PPT,洋蔥學(xué)院電腦版
五、教學(xué)過程:
。ㄒ唬毓手拢胝n題
溫故:正比例函數(shù)的圖像是什么?
答:正比例函數(shù)圖像是經(jīng)過原點(0,0)和點(1,k)的一條直線
。ǘ褐拢
在兩個直角坐標系內(nèi),分別畫出下列每組函數(shù)的圖象像:y=xy=3xy=4xy=y=x②y=-xy=-3xy=-4xy=-y=-x
引導(dǎo)學(xué)生觀察圖像,看看每組直線分布的特征先讓學(xué)生在坐標紙上畫出上述函數(shù)的圖象,之后利用洋蔥學(xué)院播放《正比例函數(shù)的性質(zhì)》,以動態(tài)的演示畫出函數(shù)圖象,吸引學(xué)生的學(xué)習(xí)興趣,讓他們能查漏補缺,找出自己所畫的圖象與視頻中的圖象有什么不同?
觀察圖像,思考問題:
1.圖像經(jīng)過的象限與k的取值有何聯(lián)系?不夠明確。圖像經(jīng)過的象限與k的取值(特別是符號)有何聯(lián)系?
2.對其中的某一個正比例函數(shù)圖像(例如y=3x),當x增大時,函數(shù)值y怎樣變化?x減小呢?是不是要提出減。空堈遄。
3.你從中得出什么規(guī)律?
第一個問題:圖像經(jīng)過的象限與k的取值有何聯(lián)系?
估計生:發(fā)現(xiàn)第一組的五條直線都經(jīng)過第一象限和第三象限;而第二組的五條直線都經(jīng)過第二和第四象限。
師:從比例系數(shù)來看呢,函數(shù)的比例系數(shù)和他們的圖像分布有什么聯(lián)系?用詞前后宜一致
估計生:第一組k>0,而第二組k<0。
師:很好,誰能把他們聯(lián)系一下?
估計生:當k>0時,函數(shù)圖像經(jīng)過第一、三象限;當k<0時,函數(shù)圖像經(jīng)過第二、四象限。
師:那么是不是對于所有的正比例函數(shù)的圖像都有:當k>0時,函數(shù)圖像經(jīng)過第一、三象限;當k<0時,函數(shù)圖像經(jīng)過第二、四象限呢?【電腦演示:任意正比例函數(shù)的圖像,當在一、三象限運動時,它的解析式中的k的值無論怎樣變化都是大于零的,反之,圖像在二、四象限運動時,k的值都小于零的!浚ㄟ@個演示過程可以登錄xx這個網(wǎng)址,進行演示,讓學(xué)生更加直觀的觀察到k的正負對函數(shù)圖象的影響)
下面由老師來證明這個性質(zhì):(由觀察猜想到邏輯證明)
板書:當k>0時,函數(shù)圖像經(jīng)過第一、三象限;當k<0時,函數(shù)圖像經(jīng)過第二、四象限。
證明:當k>0時,若x>0,則kx>0,即y>0∴點(x,y)在第一象限
若x<0,則kx<0,即y<0∴點(x,y)在第三象限
當x=0時,則kx=0,即y=0∴點(x,y)即原點。
即函數(shù)圖像上所有的點(原點除外)都在一、三象限內(nèi),所以圖像經(jīng)過一、三象限。同理,當k<0時,亦可證明函數(shù)圖像經(jīng)過二、四象限。
我們看到:當k>0時,函數(shù)圖像的走向很像漢字筆畫里的“提”,當k<0時,走向是“捺”。這樣更形象,容易記憶。
PPT展示正比例函數(shù)的性質(zhì):當k>0時,函數(shù)圖像經(jīng)過第一、三象限;當k<0時,函數(shù)圖像經(jīng)過第二、四象限。
師:現(xiàn)在我們做個小練習(xí),由正比例函數(shù)解析式(根據(jù)k的正負),來判斷其函數(shù)圖像的走向。
y=-xy=xy=xy=-xy=(a2+1)x(其中a是常數(shù))y=(-a2-1)x(其中a是常數(shù))
鼓勵學(xué)生踴躍搶答。
反過來,由函數(shù)圖象所在的'象限,請你說出一個滿足條件的正比例函數(shù)解析式。好,我們來看下一個問題,(電腦重現(xiàn)第二問題:2、對其中的某一個正比例函數(shù)圖像,當x增大時,函數(shù)值y怎樣變化?x減小呢?)播放洋蔥視頻。
板書:當k>0時,自變量x逐漸增大時,函數(shù)值y也在逐漸增大;(即“提”的走向)當k<0時,自變量x逐漸增大時,函數(shù)值y反而減小。(即“捺”的走向)
師:小練習(xí):由函數(shù)解析式,請你說出它的變化情況:y=3xy=-xy=xy=-y=(a2+1)x(其中a是常數(shù))y=(-a2-1)x(其中a是常數(shù))
鼓勵學(xué)生踴躍搶答。
第三個問題:你從中得出什么規(guī)律?
歸納總結(jié)(由學(xué)生回答)正比例函數(shù)y=kx(k≠0)的性質(zhì):
當k>0時,函數(shù)圖像經(jīng)過第一、三象限;自變量x逐漸增大時,函數(shù)值y也在逐漸增大;(也就是“提”的走向)
當k<0時,函數(shù)圖像經(jīng)過第二、四象限;自變量x逐漸增大時,函數(shù)值y反而減小。(也就是“捺”的走向)
歸納為一句話,正比例函數(shù)圖象的性質(zhì)歸根結(jié)底看k的符號。
即:k>0提(一、三,增大);
k<0捺(二、四,減。
。ㄈ⿷(yīng)用
1、正比例函數(shù)的解析式是___________,它的圖像一定經(jīng)過___________。
2、y=-的圖像經(jīng)過第___________象限。
3、已知ab<0,則函數(shù)y=x的圖象經(jīng)過___________象限。
4、已知正比例函數(shù)y=(2a+1)x,若y的值隨x的增大而減小,求a的取值范圍。
5、當m為何值時,y=mxm2-3是正比例函數(shù),且y隨x的增大而增大。
思考題:
、僖阎壤瘮(shù)y=(m+1)xm2+1,那么它的圖象經(jīng)過哪些象限。
、诜謩e說明下列各正比例函數(shù),當m為何值時,y隨x的增大而增大,或y隨x的增大而減?
a、y=(m2+1)x
b、y=m2x
c、y=(m+1)x
(四)小結(jié)這節(jié)課讓我們知道了……
以表格形式小結(jié),可以整理知識點,形成網(wǎng)絡(luò).有利于學(xué)生的記憶和內(nèi)化,讓學(xué)生理清知識脈絡(luò)(先播放視頻,之后PPT總結(jié)本節(jié)課的重點)。
(五)作業(yè)89頁練習(xí)題
。┱n后反思
1.成功之處:本節(jié)課的重點是正比例函數(shù)的性質(zhì)及其應(yīng)用。難點是發(fā)現(xiàn)正比例函數(shù)的性質(zhì),通過教師的引導(dǎo),洋蔥視頻的引導(dǎo),啟發(fā)調(diào)動學(xué)生的積極性,讓學(xué)生自主的去分析發(fā)現(xiàn)函數(shù)的性質(zhì)。教師的主導(dǎo)作用與學(xué)生主體地位達到了統(tǒng)一。使本節(jié)課的重點得到了突出,難點得到了突破;對學(xué)生學(xué)習(xí)中的情況進行了指導(dǎo),作出了反饋;培養(yǎng)了學(xué)生利用數(shù)形結(jié)合的思想方法解決問題的能力;本節(jié)課的教學(xué)注重由傳授單一的知識技能,轉(zhuǎn)向為學(xué)生“自主探索發(fā)現(xiàn)總結(jié)規(guī)律”,使學(xué)生對新的知識與數(shù)學(xué)思想方法更容易理解和掌握。
2.不足之處:
。1)在探索正比例函數(shù)性質(zhì)時,沒有預(yù)估到學(xué)生畫函數(shù)圖象費時太長,導(dǎo)致后面的教學(xué)過程比較緊張。
(2)在應(yīng)用新知這一環(huán)節(jié)中對學(xué)生習(xí)題的反饋情況了解的不夠全面。
(3)為激發(fā)學(xué)生自主學(xué)習(xí)的興趣,教師的課堂語言應(yīng)精煉。
3、改進措施:
。1)要充分的相信學(xué)生總結(jié)規(guī)律的能力。在學(xué)生總結(jié)規(guī)律過后給予肯定,不必加以過多的語言進行重復(fù),給學(xué)生足夠的空間思考回答問題。
(2)在學(xué)生明確正比例函數(shù)的性質(zhì)后,應(yīng)用新知反饋練習(xí)時,可以采取課堂小測驗等方法進行,這樣教師可以更準確的掌握學(xué)生對新知識的掌握情況。
。3)在性質(zhì)的發(fā)現(xiàn)總結(jié)過程中,應(yīng)讓學(xué)生自己獨立完成,教師不必著急幫助總結(jié),這樣可以更加集中學(xué)生的注意力,激發(fā)學(xué)習(xí)興趣。
在實際教學(xué)中為了體現(xiàn)學(xué)生學(xué)習(xí)的主體性,和教師教學(xué)的主導(dǎo)性,我花費了很多時間在學(xué)生的動手操作、小組討論上,但如何能更好的處理好學(xué)生探索過程中的引導(dǎo)和講解,還需要在實際教學(xué)中不斷地反思才能不斷地進步。
正比例函數(shù)教學(xué)設(shè)計9
教學(xué)目標:
1、使學(xué)生進一步認識正、反比例的意義,了解正反比例的區(qū)別和聯(lián)系,更好的把握正、反比例概念的本質(zhì)。
2、進一步加深學(xué)生對正、反比例意義的理解,使他們能夠從整體上把握各種量之間的比例關(guān)系,能根據(jù)相關(guān)條件直接判斷兩種量成什么比例,提高判斷成正比例、反比例量的能力。
教學(xué)重難點:
進一步認識正、反比例的意義,能根據(jù)相關(guān)條件直接判斷兩種量成什么比例,提高判斷成正比例、反比例量的能力。
教學(xué)準備 :
實物投影
教學(xué)預(yù)設(shè):
一、概念復(fù)習(xí):
1、提問:怎樣的兩個量成正、反比例?
根據(jù)學(xué)生回答板書字母關(guān)系式。
二、書本練習(xí):
1、第9題。
。1)觀察每個表中的數(shù)據(jù),討論前三個問題。
要注意啟發(fā)學(xué)生根據(jù)表數(shù)據(jù)的變化規(guī)律,寫出相應(yīng)的數(shù)量關(guān)系式,再進行判斷。
。2)組織學(xué)生討論第四個問題。
啟發(fā)學(xué)生根據(jù)條件直接寫出關(guān)系式,再根據(jù)關(guān)系式直接作出判斷。
2、第10題。
。1)看圖填寫表格。
(2)求出這幅圖的比例尺,再根據(jù)圖像特點判斷圖上距離和實際距離成什么比例,也可以根據(jù)相關(guān)的計算結(jié)果作出判斷。
要讓學(xué)生認識到:同一幅地圖的比例尺一定,所以這幅圖的圖上距離和實際距離成正比例。
。3)啟發(fā)學(xué)生運用有關(guān)比例尺的知識進行解答。
3、第11題。
填寫表格,組織學(xué)生對兩個問題進行比較,進一步突出成反比例量的特點。
4、第12題。
引導(dǎo)學(xué)生說說每題中的哪兩種量是變化的,這兩種量中,一種量變化,另一種量也隨著變化,能不能用相應(yīng)的數(shù)量關(guān)系式表示這種變化的規(guī)律。
5、第13題。
讓學(xué)生小組進行討論,教師指導(dǎo)有困難的.學(xué)生。
三、補充練習(xí)
1、對比練習(xí):判斷下列說法是否正確。
。1)圓的周長和圓的半徑成正比例。( )
。2)圓的面積和圓的半徑成正比例。( )
。3)圓的面積和圓的半徑的平方成正比例。( )
。4)圓的面積和圓的周長的平方成正比例。( )
。5)正方形的面積和邊長成正比例。( )
(6)正方形的周長和邊長成正比例。( )
。7)長方形的面積一定時,長和寬成反比例。( )
(8)長方形的周長一定時,長和寬成反比例。( )
。9)三角形的面積一定時,底和高成反比例。( )
。10)梯形的面積一定時,上底和下底的和與高成反比例。( )
【正比例函數(shù)教學(xué)設(shè)計】相關(guān)文章:
正比例教學(xué)設(shè)計12-29
《正比例》教學(xué)設(shè)計04-04
正比例教學(xué)設(shè)計15篇06-05
正比例教學(xué)反思02-23
《正比例》教學(xué)反思08-26
《正比例的意義》教學(xué)反思03-12
正比例教學(xué)反思14篇02-24