- 相關(guān)推薦
單位圓與正弦函數(shù)教案
1 單位圓與正弦函數(shù)
在初中,我們學(xué)習(xí)了銳角α的正弦函數(shù)值:sinα= ,如圖:sinA= ,由于a是直角邊,c是斜邊,所sinA∈(0,1)。由于我們通常都是將角放到平面直角坐標(biāo)系中,我們來看看會(huì)發(fā)生什么?
在直角坐標(biāo)系中,(如圖所示),設(shè)角α(α∈(0, ))的終邊與半經(jīng)為r的圓交于點(diǎn)P(a,b),則角α的正弦值是:sinα= .根據(jù)相似三角形的知識(shí)可知,對于確定的角α, 都不會(huì)隨圓的半經(jīng)的改變而改變。為簡單起見,令r=1(即為單位圓),那么sinα=b,也就是說,若角α的終邊與單位圓相交于P,則點(diǎn)P的縱坐標(biāo)b就是角α的正弦函數(shù)。
直角三角形顯然不能包含所有的角,那么,我們可以仿照銳角正弦函數(shù)的定義.你認(rèn)為該如何定義任意角的正弦函數(shù)?
一般地,在直角坐標(biāo)系中(如上圖),對任意角α,它的終邊與單位圓交于點(diǎn)P(a,b),我們可以唯一確定點(diǎn)P(a,b)的縱坐標(biāo)b,所以P點(diǎn)的縱坐標(biāo)b是角α的函數(shù),稱為正弦函數(shù),記作=sinα(α∈R)。通常我們用x,分別表示自變量與因變量,將正弦函數(shù)表示為=sinx.正弦函數(shù)值有時(shí)也叫正弦值.
請同學(xué)們畫圖,并利用正弦函數(shù)的定義比較說明: 角與 角的終邊與單位圓的交點(diǎn)的縱坐標(biāo)有什么關(guān)系?它們的正弦值有什么關(guān)系? 角和 角呢?- 角和 角呢?- 角和- 角呢?
sin =sin = sin =-sin =-
Sin(- )=sin( )= sin(- )=sin(- )=
通過上述問題的討論,容易得到:終邊相同的角的正弦函數(shù)值相等,即
sin(2π+α)=sinα (∈Z),說明對于任意一個(gè)角α,每增加2π的整數(shù)倍,其正弦函數(shù)值不變。所以,正弦函數(shù)是隨角的變化而周期性變化的,正弦函數(shù)是周期函數(shù),2π(∈Z,≠0)為正弦函數(shù)的周期。
2π是正弦函數(shù)的正周期中最小的一個(gè),稱為最小正周期。一般地,對于周期函數(shù)f(x),如果它所有的周期中存在一個(gè)最小的正數(shù),那么這個(gè)最小的正數(shù)就叫作f(x)的最小正周期。
【鞏固深化,發(fā)展思維】
1.若點(diǎn)P(—3,)是α終邊上一點(diǎn),且sinα=— ,求值.【 】
2.若角α的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊與x軸正半軸重合,終邊在函數(shù)=—3x (x≤0)的圖像上,則sinα= ! 】
。ㄈ、歸納整理,整體認(rèn)識(shí):
(1)請學(xué)生回顧本節(jié)課所學(xué)過的知識(shí)內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?
。2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?
。ㄋ模、作業(yè)布置:1、已知銳角 終邊上一點(diǎn) (3,4),求 角的正弦值。
2、已知 是角 終邊上一點(diǎn),求 的值。
3、已知角 的終邊落在直線 上,求 的值。
4、若實(shí)數(shù) , 滿足 ,求: 的值。
【單位圓與正弦函數(shù)教案】相關(guān)文章:
圓的周長教案01-10
圓教案必備01-13
圓的面積教案09-20
二次函數(shù)教案通用02-20
初中數(shù)學(xué)圓教案12-29
小學(xué)數(shù)學(xué)圓的面積的教案11-24
一次函數(shù)的圖象教案11-23
PHPsocket函數(shù)講解08-28
《圓的認(rèn)識(shí)》精品教案(精選12篇)10-26
圓的基本元素課堂教案08-26