考研數(shù)學答題的注意五事項
我們在準備考研的時候,要把數(shù)學這個科目的答題注意事項了解清楚。小編為大家精心準備了考研數(shù)學答題指南攻略,歡迎大家前來閱讀。
考研數(shù)學答題注意五點
一、準確掌握答題時間
考試時長是3小時,答題的時間分配一般可以按照如下方式:選擇題和填空題約1小時,解答題約1個半小時,預(yù)留半小時檢查和補做前面未做的題,以及作為機動和回旋余地。
選擇題和填空題每題一般花4~5分鐘,如果一道題3分鐘仍無思路則應(yīng)跳過。解答題每題一般花10分鐘左右,一道題如果5~6分鐘仍一籌莫展,則應(yīng)跳過,暫時放棄。
該放棄時應(yīng)敢于放棄、善于放棄,放棄后應(yīng)盡快調(diào)整好自己的心態(tài),要相信自己不會做的題別人很可能也不會做。切忌沒完沒了地糾纏于某個題,這將造成災(zāi)難性的后果。
二、做題要細心
做題時一定要仔細,該拿分的一定要拿住。尤其是選擇題和填空題,因為體現(xiàn)的只是最后結(jié)果,一個小小的錯誤都會令一切努力功虧一簣。
很多同學認為選擇和填空的分值不大,把主要的精力都放在了大題上面,但是需要引起大家注意的是:兩道選擇或填空題的分值就相當于一道大題,如果這類題目失分過多,僅靠大題是很難把分數(shù)提很高的。
做完一道選擇、填空題時只需要大家再仔細的驗算一遍即可,并不需要一定要等到做完考卷以后再檢查,而且這樣也不會花費大家很長時間。做大題的時候,對于前面說的完全沒有思路的題不要一點不寫,寫一些相關(guān)的內(nèi)容得一點"步驟分"。
三、選擇題"四種"答題方法
1、舉反例排除法。這是針對提示中給出的函數(shù)是抽象的函數(shù),抽象的對立面是具體,所以我們用具體的例子來核定,這個跟我們剛才的賦值法有某種相似之處。一般來講舉的范例是越簡單越好,而且很多考題你只要簡單的看就可以看出他的錯誤點。
2、推演法。提示條件中給出一些條件或者一些數(shù)值,你很容易判斷,那這樣的題就用推演法去做。推演法實際上是一些計算題,簡單一點的計算題。那么從提示條件中往后推,推出哪個結(jié)果選擇哪個。
3、賦值法。給一個數(shù)值馬上可以判斷我們這種做法對不對,這個值可以加在給出的條件上,也可以加在被選的4個答案中的其中幾個上,我們加上去如果得出和我們題設(shè)的條件矛盾,或者是和我們已知的事實相矛盾。比方說2小于1就是明顯的錯誤,所以把這些排除了,排除掉3個最后一個肯定是正確的。
4、類推法。從最后被選的答案中往前推,推出哪個錯誤就把哪個否定掉,再換一個。我們推出3個錯誤最后一個肯定是正確的。后面三種方法有些相似之處,類推法這種方法是費時費力的,一般來講我們不太用。
四、注意步驟的完整性
解答題的分數(shù)很高,相應(yīng)的對于考生知識點的考察也更全面一些,有些考題甚至包含了三、四個考察點,因此要求考生答題時相應(yīng)的知識點應(yīng)該在卷面上有所體現(xiàn),步驟過簡勢必會影響分數(shù)。
大家要注意問題之間的聯(lián)系。好多試題的問題并非一個,尤其是概率題,對于此類考題的第一問一定要引起注意。因為它的第二問,甚至第三問可能會與第一問產(chǎn)生直接或間接的聯(lián)系,第一問如果答錯將會導致第二、三問的錯誤,那么這道考題的分數(shù)就會失分很多。
五、考試結(jié)束注意事項
緊張的一科考試結(jié)束了,您還有很多工作要做,首先就是封裝您的信封,將您需要放入信封的東西按照監(jiān)考老師的要求,一樣樣的放入信封,檢查無誤后,再封上信封。貼上密封貼。然后等待老師的收繳。
試卷和答題卡應(yīng)該是都要裝進去的,草稿紙不用裝進信封最后直接上交給老師。有些人漏裝了試卷或者答題卡,有些人還多裝了東西甚至把準考證都裝進去交上去了,比較麻煩的。
考研數(shù)學考場上解題無思路怎么辦
考場上碰到一時想不出來的題目是正常的,建議先放一放,把能搞定的題目做完,再回過頭來琢磨這道題。這樣做的好處是:萬一這道題做不出來,因為已經(jīng)搞定大部分基礎(chǔ)題,所以仍能得到一個可接受的分數(shù);做出來,當然是錦上添花了。另外,搞定大部分基礎(chǔ)題后,考生心理會"有底",而在放松的狀態(tài)下是有利于做出較難的題目的。
有的同學做不出某道題,不愿意往下走,做下面的題會不舒服。小編想提醒這類同學:我們畢竟是在考試,而不是做學問?荚嚨哪康氖窃谙薅ǖ臅r間內(nèi)發(fā)揮出最佳水平,取得盡可能高的分數(shù)。所以考試是個"條件最值"問題,我們無法取到"無條件最值"那種理想解。而做學問應(yīng)該花時間搞定每個點?荚囀莿(wù)實的,而做學問則帶有理想主義色彩。
其實,考試不僅僅考大家對知識的掌握情況,同時也考大家的應(yīng)試能力,能做到隨機應(yīng)變才是以后學習和科研的重要技能。希望大家針對個人情況,好好調(diào)整心態(tài),爭取取得最理想的成績。
考研數(shù)學證明題類別及證法盤點
☆題目篇☆
考試難題一般出現(xiàn)在高等數(shù)學,對高等數(shù)學一定要抓住重難點進行復(fù)習。高等數(shù)學題目中比較困難的是證明題,在整個高等數(shù)學,容易出證明題的地方如下:
▶數(shù)列極限的證明
數(shù)列極限的證明是數(shù)一、二的重點,特別是數(shù)二最近幾年考的非常頻繁,已經(jīng)考過好幾次大的證明題,一般大題中涉及到數(shù)列極限的證明,用到的方法是單調(diào)有界準則。
▶微分中值定理的相關(guān)證明
微分中值定理的證明題歷來是考研的重難點,其考試特點是綜合性強,涉及到知識面廣,涉及到中值的等式主要是三類定理:
1.零點定理和介質(zhì)定理;
2.微分中值定理;
包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來處理高階導數(shù)的相關(guān)問題,考查頻率底,所以以前兩個定理為主。
3.微分中值定理
積分中值定理的作用是為了去掉積分符號。
在考查的時候,一般會把三類定理兩兩結(jié)合起來進行考查,所以要總結(jié)到現(xiàn)在為止,所考查的題型。
▶方程根的問題
包括方程根唯一和方程根的個數(shù)的討論。
▶不等式的證明
▶定積分等式和不等式的證明
主要涉及的方法有微分學的方法:常數(shù)變異法;積分學的方法:換元法和分布積分法。
▶積分與路徑無關(guān)的五個等價條件
這一部分是數(shù)一的考試重點,最近幾年沒設(shè)計到,所以要重點關(guān)注。
☆方法篇☆
以上是容易出證明題的地方,同學們在復(fù)習的時候重點歸納這類題目的解法。那么,遇到這類的證明題,我們應(yīng)該用什么方法解題呢?
▶結(jié)合幾何意義記住基本原理
重要的`定理主要包括零點存在定理、中值定理、泰勒公式、極限存在的兩個準則等基本原理,包括條件及結(jié)論。
知道基本原理是證明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度)不同會導致不同的推理能力。如2006年數(shù)學一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。
因為數(shù)學推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準則之一:單調(diào)有界數(shù)列必有極限。只要知道這個準則,該問題就能輕松解決,因為對于該題中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。
▶借助幾何意義尋求證明思路
一個證明題,大多時候是能用其幾何意義來正確解釋的,當然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學一第19題是一個關(guān)于中值定理的證明題,可以在直角坐標系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個函數(shù)除兩個端點外還有一個函數(shù)值相等的點,那就是兩個函數(shù)分別取最大值的點(正確審題:兩個函數(shù)取得最大值的點不一定是同一個點)之間的一個點。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個零點,兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。
再如2005年數(shù)學一第18題(1)是關(guān)于零點存在定理的證明題,只要在直角坐標系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個函數(shù)圖形有交點,這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個端點處大小關(guān)系恰好相反,也就是差函數(shù)在兩個端點的值是異號的,零點存在定理保證了區(qū)間內(nèi)有零點,這就證得所需結(jié)果。如果第二步實在無法完滿解決問題的話,轉(zhuǎn)第三步。
▶逆推法
從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。
在判定函數(shù)的單調(diào)性時需借助導數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導數(shù)的符號判定一階導數(shù)的單調(diào)性,再用一階導的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。該題中可設(shè)F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。
對于那些經(jīng)常使用如上方法的考生來說,利用三步走就能輕松收獲數(shù)學證明的12分,但對于從心理上就不自信能解決證明題的考生來說,卻常常輕易丟失12分,后一部分同學請按“證明三步走”來建立自信心,以阻止考試分數(shù)的白白流失。
【考研數(shù)學答題的注意五事項】相關(guān)文章:
2017考研筆試答題卡涂寫注意事項10-08
2017考研統(tǒng)考科目答題卡作答注意事項10-08
2017考研考場答題謹記六個注意事項10-09
2017年考研考場答題的六大注意事項09-27
高考考場答題注意事項08-14
成考語文答題注意事項09-21
科目一答題技巧及注意事項04-16
雅思聽力考試答題注意事項10-05
考研英語寫作五大注意事項10-21