2017黃浦?jǐn)?shù)學(xué)一模答案
B級(jí) 中等題
7.已知△ABC,且∠ACB=90°.
(1)請(qǐng)用直尺和圓規(guī)按要求作圖(保留作圖痕跡,不寫作法和證明).
、僖渣c(diǎn)A為圓心,BC邊的長為半徑作⊙A;
、谝渣c(diǎn)B為頂點(diǎn),在AB邊的下方作∠ABD=∠BAC.
(2)請(qǐng)判斷直線BD與⊙A的位置關(guān)系(需證明).
8.(2013年江蘇宿遷)如圖6-3-17,在平行四邊形ABCD中,AD>AB.
(1)作出∠ABC的平分線(尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)若(1)中所作的角平分線交AD于點(diǎn)E,AF⊥BE,垂足為點(diǎn)O,交BC于點(diǎn)F,連接EF. w
求證:四邊形ABFE為菱形.
C級(jí) 拔尖題
9.(2013年山東德州)(1)如圖6-3-18(1),已知△ABC,以AB,AC為邊向△ABC外作等邊三角形ABD和等邊三角形ACE.連接BE,CD.請(qǐng)你完成圖形,并證明:BE=CD(尺規(guī)作圖,不寫做法,保留作圖痕跡);
(2)如圖6-3-18(2),已知△ABC,以AB,AC為邊向外作正方形ABFD和正方形ACGE.連接BE,CD.BE與CD有什么數(shù)量關(guān)系?簡單說明理由;
(3)運(yùn)用(1)(2)解答中積累的經(jīng)驗(yàn)和知識(shí),完成下題:
如圖6-3-18(3),要測量池塘兩岸相對(duì)的兩點(diǎn)B,E的距離,已經(jīng)測得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的.長.
(1) (2) (3)
圖6-3-18
尺規(guī)作圖
1.B 2.D 3.A 4.8
5.解:作線段AB的垂直平分線,作兩條公路夾角的平分線,兩線分別交于點(diǎn)C1,C2.如圖48,所以點(diǎn)C1、C2就是符合條件的點(diǎn).
6.解:如圖49,點(diǎn)M為所求.
7.解:(1)如圖50.
(2)直線BD與⊙A相切.證明如下:
∵∠ABD=∠BAC,∴AC∥BD.
∵∠ACB=90°,⊙A的半徑等于BC,
∴點(diǎn)A到直線BD的距離等于BC.
∴直線BD與⊙A相切.
8.解:(1)如圖51.
(2)∵BE平分∠ABC,∴∠ABO=∠FBO.
∵AF⊥BE于點(diǎn)O,
∴∠AOB=∠FOB=∠AOE=90°.
又∵BO=BO,
∴△AOB≌△FOB.∴AO=FO,AB=FB.
∵四邊形ABCD是平行四邊形,
∴AD∥BC,∴∠AEO=∠FBO.
∴△AOE≌△FOB.∴AE=BF.
又∵AE∥BF,∴四邊形ABFE是平行四邊形.
又∵AB=FB,∴平行四邊形ABFE是菱形.
11.(1)證明:如圖52.
∵△ABD和△ACE都是等邊三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=60°.
∴∠BAD+∠BAC=∠CAE+∠BAC.
即∠CAD=∠EAB.∴△CAD≌△EAB.
∴BE=CD.
圖52 圖53
(2)解:BE=CD.
理由:∵四邊形ABFD和ACGE均為正方形,
∴AD=AB,AC=AE,∠BAD=∠CAE=90°.
∴∠CAD=∠EAB.∴△CAD≌△EAB.
∴BE=CD.
(3)解:如圖53,過A作等腰直角三角形ABD,∠BAD=90°,則AD=AB=100,∠ABD=45°.∴BD=100 2.
連接CD,則由(2)可知BE=CD.
∵∠ABC=45°,在Rt△DBC中,BC=100,BD=100 2.
∴CD=1002+?100 2?2=100 3.
∴BE的長為100 3米.
【黃浦?jǐn)?shù)學(xué)一模答案】相關(guān)文章:
精選黃浦區(qū)初三二模語文試題09-24
中考數(shù)學(xué)一模復(fù)習(xí)指導(dǎo)07-04
中考數(shù)學(xué)一模模擬試題10-30
中考數(shù)學(xué)一模知識(shí)點(diǎn)07-28
常州化學(xué)一模答案04-15