人教版八年級上冊數(shù)學期中《勾股定理》復習要點
勾股定理
在任何一個直角三角形(Rt△)中(等腰直角三角形也算在內),兩條直角邊的長度的平方和等于斜邊長度的平方,這就叫做勾股定理。即勾的長度的平方加股的長度的平方等于弦的長度的平方。[1]如果用a,b,c分別表示直角三角形的兩條直角邊和斜邊,那么a2+b2=c2.
簡介
勾股定理是余弦定理的一個特例。這個定理在中國又稱為“商高定理”(相傳大禹治水時,就會運用此定理來解決治水中的計算問題),在外國稱為“畢達哥拉斯定理”或者“百牛定理”。(畢達哥拉斯發(fā)現(xiàn)了這個定理后,即斬了百頭牛作慶祝,因此又稱“百牛定理”)。
他們發(fā)現(xiàn)勾股定理的時間都比中國晚(中國是最早發(fā)現(xiàn)這一幾何寶藏的國家)。目前初二學生開始學習,教材的證明方法大多采用趙爽弦圖,證明使用青朱出入圖。
勾股定理是一個基本的幾何定理,是數(shù)形結合的紐帶之一。
直角三角形兩直角邊的平方和等于斜邊的平方。如果用a、b和c分別表示直角三角形的`兩直角邊和斜邊,那么a^2+b^2=c^2。
勾股定理內容
直角三角形(等腰直角三角形也算在內)兩直角邊(即“勾”“股”短的為勾,長的為股)邊長平方和等于斜邊(即“弦”)邊長的平方。
也就是說設直角三角形兩直角邊為a和b,斜邊為c,那么a的平方+b的平方=c的平方a2+b2=c2。
勾股定理現(xiàn)發(fā)現(xiàn)約有500種證明方法,是數(shù)學定理中證明方法最多的定理之一。
中國古代著名數(shù)學家商高說:“若勾三,股四,則弦五。”它被記錄在了《九章算術》中。
推廣
1、如果將直角三角形的斜邊看作二維平面上的向量,將兩直角邊看作在平面直角坐標系坐標軸上的投影,則可以從另一個角度考察勾股定理的意義。即,向量長度的平方等于它在其所在空間一組正交基上投影長度的平方之和。
2.勾股定理是余弦定理的特殊情況。
【八年級上冊數(shù)學期中《勾股定理》復習要點】相關文章:
初二數(shù)學上冊期中復習要點05-09
八年級上冊數(shù)學期中復習要點05-10
八年級上冊政治期中復習要點01-05
初二上冊數(shù)學期中復習要點05-09
初二語文上冊期中復習要點07-14
八年級上冊數(shù)學期中復習要點整理05-29
八年級上冊期中物理重點復習要點11-26