高二數(shù)學期末復習的知識點總結(jié)
一、直線與圓:
1、直線的傾斜角 的范圍是
在平面直角坐標系中,對于一條與 軸相交的直線 ,如果把 軸繞著交點按逆時針方向轉(zhuǎn)到和直線 重合時所轉(zhuǎn)的最小正角記為, 就叫做直線的傾斜角。當直線 與 軸重合或平行時,規(guī)定傾斜角為0;
2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.
過兩點(x1,y1),(x2,y2)的直線的斜率k=( y2-y1)/(x2-x1),另外切線的斜率用求導的方法。
3、直線方程:⑴點斜式:直線過點 斜率為 ,則直線方程為 ,
、菩苯厥剑褐本在 軸上的截距為 和斜率,則直線方程為
4、 , ,① ∥ , ; ② .
直線 與直線 的位置關系:
。1)平行 A1/A2=B1/B2 注意檢驗(2)垂直 A1A2+B1B2=0
5、點 到直線 的距離公式 ;
兩條平行線 與 的距離是
6、圓的標準方程: .⑵圓的一般方程:
注意能將標準方程化為一般方程
7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.
8、直線與圓的位置關系,通常轉(zhuǎn)化為圓心距與半徑的關系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.① 相離② 相切③ 相交
9、解決直線與圓的關系問題時,要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形) 直線與圓相交所得弦長
二、圓錐曲線方程:
1、橢圓: ①方程 (a>b>0)注意還有一個;②定義: PF1+PF2=2a>2c; ③ e= ④長軸長為2a,短軸長為2b,焦距為2c; a2=b2+c2 ;
2、雙曲線:①方程 (a,b>0) 注意還有一個;②定義: PF1-PF2=2a<2c; ③e= ;④實軸長為2a,虛軸長為2b,焦距為2c;漸進線 或 c2=a2+b2
3、拋物線 :①方程y2=2px注意還有三個,能區(qū)別開口方向; ②定義:PF=d焦點F( ,0),準線x=- ;③焦半徑 ; 焦點弦=x1+x2+p;
4、直線被圓錐曲線截得的弦長公式:
5、注意解析幾何與向量結(jié)合問題:1、 , . (1) ;(2) .
2、數(shù)量積的定義:已知兩個非零向量a和b,它們的夾角為θ,則數(shù)量abcosθ叫做a與b的數(shù)量積,記作a·b,即
3、模的計算:a= . 算?梢韵人阆蛄康钠椒
4、向量的運算過程中完全平方公式等照樣適用:
三、直線、平面、簡單幾何體:
1、學會三視圖的分析:
2、斜二測畫法應注意的地方:
。ǎ保┰谝阎獔D形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸 o'x'、o'y'、使∠x'o'y'=45°(或135° );(2)平行于x軸的線段長不變,平行于y軸的線段長減半.(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.
3、表(側(cè))面積與體積公式:
⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)= ;③體積:V=S底h
、棋F體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)= ;③體積:V= S底h:
、桥_體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=
⑷球體:①表面積:S= ;②體積:V=
4、位置關系的證明(主要方法):注意立體幾何證明的書寫
。1)直線與平面平行:①線線平行線面平行;②面面平行 線面平行。
。2)平面與平面平行:①線面平行面面平行。
。3)垂直問題:線線垂直 線面垂直 面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線
5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)
、女惷嬷本所成角的求法:平移法:平移直線,構(gòu)造三角形;
、浦本與平面所成的角:直線與射影所成的角
四、導數(shù): 導數(shù)的意義-導數(shù)公式-導數(shù)應用(極值最值問題、曲線切線問題)
1、導數(shù)的定義: 在點 處的`導數(shù)記作 .
2. 導數(shù)的幾何物理意義:曲線 在點 處切線的斜率
、賙=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t) 表示加速度。
3.常見函數(shù)的導數(shù)公式: ① ;② ;③ ;
4.導數(shù)的四則運算法則:
5.導數(shù)的應用:
(1)利用導數(shù)判斷函數(shù)的單調(diào)性:設函數(shù) 在某個區(qū)間內(nèi)可導,如果 ,那么 為增函數(shù);如果 ,那么為減函數(shù);
注意:如果已知 為減函數(shù)求字母取值范圍,那么不等式 恒成立。
(2)求極值的步驟:
、偾髮(shù) ;
②求方程 的根;
③列表:檢驗 在方程 根的左右的符號,如果左正右負,那么函數(shù) 在這個根處取得極大值;如果左負右正,那么函數(shù) 在這個根處取得極小值;
(3)求可導函數(shù)最大值與最小值的步驟:
?求 的根; ?把根與區(qū)間端點函數(shù)值比較,最大的為最大值,最小的是最小值。
五、常用邏輯用語:
1、四種命題:
⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若 p則 q;⑷逆否命題:若 q則 p
注:1、原命題與逆否命題等價;逆命題與否命題等價。判斷命題真假時注意轉(zhuǎn)化。
2、注意命題的否定與否命題的區(qū)別:命題否定形式是 ;否命題是 .命題“ 或 ”的否定是“ 且 ”;“ 且 ”的否定是“ 或 ”.
3、邏輯聯(lián)結(jié)詞:
⑴且(and) :命題形式 p q; p q p q p q p
⑵或(or):命題形式 p q; 真 真 真 真 假
⑶非(not):命題形式 p . 真 假 假 真 假
假 真 假 真 真
假 假 假 假 真
“或命題”的真假特點是“一真即真,要假全假”;
“且命題”的真假特點是“一假即假,要真全真”;
“非命題”的真假特點是“一真一假”
4、充要條件
由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。
5、全稱命題與特稱命題:
短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號表示。含有全體量詞的命題,叫做全稱命題。
短語“有一個”或“有些”或“至少有一個”在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,并用符號 表示,含有存在量詞的命題,叫做存在性命題。
全稱命題p: ; 全稱命題p的否定 p:。
特稱命題p: ; 特稱命題p的否定 p:
【高二數(shù)學期末復習的知識點總結(jié)】相關文章:
高二數(shù)學復習知識點08-05
高二化學期末復習知識點總結(jié)02-13
高二數(shù)學復習的重要知識點06-22
數(shù)學期末知識點復習07-23
高二數(shù)學復習知識點(11篇)12-17
高二數(shù)學復習知識點梳理最新12-07
高二數(shù)學復習知識點精選11篇12-24