亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

方程意義教學(xué)反思

時間:2023-02-15 19:15:16 宗睿 意義 我要投稿

方程意義教學(xué)反思(精選20篇)

  作為一名優(yōu)秀的人民教師,我們的任務(wù)之一就是課堂教學(xué),對教學(xué)中的新發(fā)現(xiàn)可以寫在教學(xué)反思中,如何把教學(xué)反思做到重點突出呢?以下是小編幫大家整理的方程意義教學(xué)反思,僅供參考,歡迎大家閱讀。

方程意義教學(xué)反思(精選20篇)

  方程意義教學(xué)反思 篇1

  這一次學(xué)校開展了活動,在活動中我們集體備課選定了《方程的意義》一課作為研討課。這課的難點是區(qū)分“等式”和“方程”,為能突破這一難點我們精心設(shè)計了這節(jié)課的教學(xué)過程。

  新課前先是出示了口算卡:

  接著在方程意義教學(xué)過程中為了使學(xué)生能明白什么是相等關(guān)系,我們先用了一把1米長粗細均勻的直尺橫放在手指上,通過這一簡單的小游戲使學(xué)生明白什么是平衡和不平衡,平衡的情況是當左右兩邊的重量相等時(食指位天直尺中央),緊接著引入了天平的演示,在天平的左右兩邊分邊放置20+30的兩只正方體、50的砝碼,并根據(jù)平衡關(guān)系列出了一個等式,20+30=50;接著把其中一個30只轉(zhuǎn)換了一個方向,但是30的標記是一個“?”天平仍是平衡狀態(tài)。得出另一個等式20+?=50,標有?的再轉(zhuǎn)換一個方向后上面標的是x,天平仍保持平衡狀態(tài),由此又可以寫出一個等式20+x=50。整個過程注重引導(dǎo)學(xué)生通過演示、觀察、思考、比較、概括等一系列活動,由淺入深,分層推進,逐步得出“等式”——“含有未知數(shù)的等式”——“方程”。

  雖然整個教學(xué)任務(wù)好象是完成了。但從學(xué)生的練習(xí)中我們發(fā)現(xiàn)還有一部分學(xué)生對“等式”和“方程”的關(guān)系還是沒有真正弄清,例好在練習(xí)題中有一道討論題:“方程都是等式,而等式不一定是方程!边@句話對嗎?(答案是對的) 但是通過小組同學(xué)的合作學(xué)習(xí)和爭論,答案不一。雖然做錯的`同學(xué)最后被做對的同學(xué)說服了,但這也說明了“等式”和“方程”的教學(xué)過程中還存在問題。其實我們是忽視了“等式”和“方程”的直接對比

  我們的口算題引入本來是為這節(jié)課的學(xué)習(xí)進行鋪墊,但在第一次上課時,口算題我們做完后沒有再回過頭來再充分利用。課后經(jīng)過大家的評課和科培中心老帥的指點,看起來是很簡單的幾道口算題,其中隱藏著等式和方程的關(guān)系。第二節(jié)課中我們通過改進,在講完“等式”和“方程”后又回到口算卡,將口算卡的題通過變化——只是等式| ,——既是等式又是方程,這樣進行對比使學(xué)生對 “等式”和“方程”的關(guān)系就弄得明明白白了。

  方程意義教學(xué)反思 篇2

  這一次學(xué)校開展了開課活動,在活動中我備課選定了《方程的意義》一課作為研討課。這課的難點是區(qū)分“等式”和“方程”,為能突破這一難點我設(shè)計了這節(jié)課的教學(xué)過程。

  本節(jié)課教學(xué)《方程的意義》,為準備這節(jié)課,我研讀了這節(jié)課的內(nèi)容,并與舊教材的進行了對比,思考著新教材為什么這樣設(shè)計?

  舊教材先利用天平認識等式,然后認識方程。而新教材通過情境,先讓學(xué)生提出問題,學(xué)生在解決問題的過程中,學(xué)到用含有字母的式子表示數(shù)量之間的關(guān)系,在此基礎(chǔ)上,利用天平理解等式的意義,最后揭示方程的意義。

  在設(shè)計這節(jié)課時,我把方程的意義作為教學(xué)重點,不僅讓學(xué)生了解方程的概念,還要會判斷哪些是方程。更多思考的是學(xué)生對方程的后繼學(xué)習(xí)與思考,注重知識的滲透。如后面學(xué)習(xí)的等式的性質(zhì)、用方程解應(yīng)用題等等。

  課堂上我讓學(xué)生根據(jù)創(chuàng)設(shè)的情境,提出數(shù)學(xué)問題,學(xué)生幾乎提不出表示兩者之間關(guān)系的問題,都是些求未知數(shù)的問題。這時教師就直接出示要求的問題,然后讓學(xué)生先找等量關(guān)系式,我發(fā)現(xiàn)只有極少數(shù)孩子能找到等量關(guān)系。由于找等量關(guān)系式教材中第一次出現(xiàn),學(xué)生不知道從哪入手。學(xué)生思考討論了一段時間,我發(fā)現(xiàn)也沒有結(jié)果,我就引導(dǎo)著學(xué)生進行分析信息,找到了等量關(guān)系。找到了等量關(guān)系式,再列含有字母的式子就簡單多了。課下我分析,主要是我在備課時,高估了學(xué)生,如何引導(dǎo)還需要多研究。這也是我下一步訓(xùn)練的重點。

  為了讓學(xué)生弄清楚方程與等式的關(guān)系,我通過天平的`演示,讓學(xué)生理解等式的意義,學(xué)生很容易根據(jù)天平列出算式。然后教師指出,我們剛才列出的這些式子都叫等式,在這些等式中,你們又發(fā)現(xiàn)了什么?學(xué)生很容易得出兩種等式:一是不含未知數(shù)的等式,一種是含有未知數(shù)的等式,在此基礎(chǔ)上,讓學(xué)生比較得出方程的概念,然后通過練習(xí)判斷哪是方程,那些不是方程?最后,讓學(xué)生用畫圖的形式表示出等式與方程的關(guān)系,教材中沒有出現(xiàn)這個內(nèi)容,但我補充進去了,我覺得這樣有助于學(xué)生加深對方程意義的理解。本節(jié)課從課堂整體來看,大部分學(xué)生思維比較清晰,會表述,但也有部分學(xué)生表述不清,發(fā)言不夠積極?磥,課堂教學(xué)還要激活學(xué)生的思維,調(diào)動起學(xué)生的積極性,作為教師,還要多想些辦法。

  “自主合作探究”一直是我們所倡導(dǎo)的學(xué)習(xí)方式,但如何有效地實施?我認為,“自主學(xué)習(xí)”必須在教師的科學(xué)指導(dǎo)下,通過創(chuàng)造性的學(xué)習(xí),才能實現(xiàn)自主發(fā)展!昂献魈骄俊北仨氃趯W(xué)生獨立思考的基礎(chǔ)上進行,否則,學(xué)生則沒有自己的主見,交流則會流于形式,沒有深度。有了學(xué)生的獨立思考,當學(xué)生展示交流時,不同的思路與方法就會發(fā)生碰撞,教師要尊重學(xué)生探求的結(jié)果,引導(dǎo)學(xué)生對自己的結(jié)果與方法進行反思與改進,促使全體參與,加生對知識形成過程的理解,培養(yǎng)梳理概括知識的的能力。

  在整個教學(xué)過程中,教師作為主導(dǎo)者,要啟發(fā)誘導(dǎo)學(xué)生發(fā)現(xiàn)知識,充分發(fā)揮學(xué)生的潛能,逐步的引導(dǎo)學(xué)生對問題的思考和解決向縱深發(fā)展,有利于培養(yǎng)學(xué)生的傾聽習(xí)慣和合作。先引入了天平的演示,然后在天平的左右兩邊分邊放置20g和30g的兩只正方體、50g的砝碼,并根據(jù)平衡關(guān)系列出了一個等式,20 +30=50;接著把其中一個30g只轉(zhuǎn)換了一個方向,但是30g的標記是一個“?”天平仍是平衡狀態(tài)。得出另一個等式20 +?=50,標有?的再轉(zhuǎn)換一個方向后上面標的是x,天平仍保持平衡狀態(tài),由此又可以寫出一個等式20 +x=50。整個過程注重引導(dǎo)學(xué)生通過演示、觀察、思考、比較、概括等一系列活動,由淺入深,分層推進,逐步得出“等式”――“含有未知數(shù)的等式”――“方程”。

  本節(jié)課的設(shè)計充分關(guān)注了學(xué)生已有的知識經(jīng)驗,結(jié)合具體的問題情境,引導(dǎo)學(xué)生通過操作、實驗、分析、比較,歸納出了方程的意義。教學(xué)中我沒有將等式、方程的概念強加給學(xué)生,而是充分尊重學(xué)生原有知識水平,結(jié)合具體情境,引導(dǎo)學(xué)生分析數(shù)量間的相等關(guān)系,再用含有未知數(shù)X的等式表示出等量關(guān)系,并用天平平衡原理來解釋各數(shù)量之間的相等關(guān)系,使學(xué)生理解等式及方程的意義,尊重了學(xué)生年齡特點和認知水平。

  教學(xué)中為學(xué)生創(chuàng)設(shè)了多次問題情境,引導(dǎo)學(xué)生獨立思考和小組合作研究。

  雖然整個教學(xué)任務(wù)好象是完成了。但從學(xué)生的練習(xí)中我們發(fā)現(xiàn)還有一部分學(xué)生對“等式”和“方程”的關(guān)系還是沒有真正弄清,例好在練習(xí)題中有一道討論題:“方程都是等式,而等式不一定是方程!边@句話對嗎?(答案是對的)但是通過同桌小組同學(xué)的合作學(xué)習(xí)和爭論,答案不一。雖然做錯的同學(xué)最后被做對的同學(xué)說服了,但這也說明了“等式”和“方程”的教學(xué)過程中還存在問題。學(xué)生對其還存在模糊概念。進一步研究。

  創(chuàng)建形象、生動、與生活密切聯(lián)系的數(shù)學(xué)情境,使學(xué)生經(jīng)歷“數(shù)學(xué)情境――建立模型――解釋應(yīng)用”這一學(xué)習(xí)過程,新課程標準指出:要讓學(xué)生自主經(jīng)歷知識的來龍去脈,努力的過程比成功的結(jié)論對學(xué)生的發(fā)展更有意義。學(xué)生最開心的,應(yīng)該是自己經(jīng)過探索后的發(fā)現(xiàn)。整個教學(xué)過程,是一個讓學(xué)生獲得豐富情感體驗的過程,是一個學(xué)生樂學(xué)、好學(xué)、積極進行情感體驗的過程。

  方程意義教學(xué)反思 篇3

  本節(jié)課,學(xué)生學(xué)習(xí)積極性非常高,課堂上同學(xué)們積極參與,認真思考,提出疑問,順利掌握了方程的定義。上完這節(jié)課我的主要收獲如下:

  1、通過天平平衡或者不平衡判斷出兩個物體的質(zhì)量是否相等,天平圖創(chuàng)設(shè)情境,科學(xué)課上認識了天平,利用鮮明的直觀形象寫出表示相等的式子和表示不相等的式子,可以幫助學(xué)生理解式子的意思,也充分利用了教材的主題圖。

  2、在教學(xué)過程中,學(xué)生通過觀察和操作得到了很多不同的式子,在得到相關(guān)式子時,直接引導(dǎo)學(xué)生進行對比,分別總結(jié)出各自的特征,最后我把方程的式子全部圈了出來,告訴學(xué)生,在數(shù)學(xué)上把這樣的.關(guān)系式叫做方程,讓后讓學(xué)生自己總結(jié)方程的概念,學(xué)生們很自然就歸納出這一類式子的特征,總結(jié)出了方程的概念。

  3、在學(xué)生總結(jié)出方程的意義之后,自己列方程,并同桌互相檢查,有解決不了的問題全班交流,在交流過程中,學(xué)生對方程的理解偏差和用字母表示數(shù)含糊的知識都暴露了出來,通過指名學(xué)生發(fā)言,學(xué)生在爭論中逐步明白了相關(guān)知識,以前沒問題的學(xué)生也在討論中深化了認識。

  方程意義教學(xué)反思 篇4

  本節(jié)課,我利用課件進行教學(xué),課前展示了一架天平,從學(xué)生認識天平平衡的特性導(dǎo)入新課,在新事物面前,學(xué)生學(xué)習(xí)積極性非常高,課堂上同學(xué)們積極參與,認真思考,提出疑問,順利掌握了方程的定義。上完這節(jié)課我的主要收獲如下:

  1、用天平創(chuàng)設(shè)情境直觀形象,有助學(xué)生理解式子的意思

  等式是一個數(shù)學(xué)概念。如果離開現(xiàn)實情境出現(xiàn)含有未知數(shù)的等式,學(xué)生很難體會等式的具體含義。通過天平平衡或者不平衡判斷出兩個物體的質(zhì)量是否相等,天平圖創(chuàng)設(shè)情境,利用鮮明的直觀形象寫出表示相等的式子和表示不相等的式子,可以幫助學(xué)生理解式子的意思,也充分利用了教材的主題圖。

  2、通過不斷比較,總結(jié)特點,讓學(xué)生逐步建立數(shù)學(xué)模型

  在對比總結(jié)中認識方程的主要特征。在教學(xué)過程中,學(xué)生通過觀察和操作得到了很多不同的式子,在得到相關(guān)式子時,直接引導(dǎo)學(xué)生進行對比,分別總結(jié)出各自的特征,最后我把方程的式子全部圈了出來,告訴學(xué)生,在數(shù)學(xué)上把這樣的關(guān)系式叫做方程,讓后讓學(xué)生自己總結(jié)方程的概念,學(xué)生們很自然就歸納出這一類式子的特征,總結(jié)出了方程的概念,在自己的腦海里建立起方程的數(shù)學(xué)模型。

  3、數(shù)學(xué)要以學(xué)生的錯誤為資源,讓學(xué)生在反思中加深認識

  在學(xué)生總結(jié)出方程的意義之后,自己列方程,并同桌互相檢查,有解決不了的問題全班交流,在交流過程中,學(xué)生對方程的理解偏差和用字母表示數(shù)含糊的知識都暴露了出來,通過指名學(xué)生發(fā)言,學(xué)生在爭論中逐步明白了相關(guān)知識,以前沒問題的學(xué)生也在討論中深化了認識。

  4、數(shù)學(xué)應(yīng)聯(lián)系生活,強化概念

  在建立方程的意義以后,我設(shè)計了根據(jù)情境圖寫出相應(yīng)的方程,并在最后引入生活實例,從中找出不同的方程等題型,體現(xiàn)了層層遞進,由易到難、學(xué)生參與的很積極,也覺得很有趣。這一過程學(xué)生在生活實際中尋找等量關(guān)系列方程,進一步體會方程的`意義,加深了對方程概念的理解,同時也為以后運用方程知識解決實際問題打下基礎(chǔ)。

  這節(jié)課存在的問題:

  1、對等式與方程的關(guān)系突出得不夠。對方程的定義中“含有未知數(shù)和等式”這兩個必要的條件強調(diào)不到位,導(dǎo)致學(xué)生在選擇題時有個別學(xué)生把y+24選擇為方程。

  2、對學(xué)生“說”的訓(xùn)練不夠,應(yīng)該給學(xué)生更多的表述的機會。

  3、自己的課堂語言還不夠準確、不夠豐富,有待于提高。 經(jīng)常有人說“課堂教學(xué)是一門遺憾的藝術(shù)”,只有不斷的總結(jié),不斷的反思,才有不斷的進步,也才能將遺憾降到最低點。

  方程意義教學(xué)反思 篇5

  《方程的意義》本課是人教版五年級上冊第五單元的起始課,屬于概念教學(xué)。對于概念的學(xué)習(xí)來說,如何理解定義是重要的,方程的意義不在于方程概念本身,而是方程更為豐富的內(nèi)涵。就本節(jié)課反思如下:

  1.埋新知伏筆

  等式的認識是學(xué)習(xí)方程的一個前概念,因此,在認識方程之前,我先安排了一個關(guān)于“等號”意義話題的討論。出示如:2+3=57+2=4+5,這兩個題中“=”分別表示什么意思?2+3=5這個題中“=”表示計算結(jié)果,而7+2=4+5表示是一種關(guān)系,讓學(xué)生對等號的認識實現(xiàn)一種轉(zhuǎn)變,從而為建立方程埋下伏筆,也體現(xiàn)了思考問題著眼點的變化。但在實際教學(xué)中,由于我臨時改變思路,根據(jù)課件天平左盤放著20千克和50千克的物體,右盤放著70千克的物體,學(xué)生列出算式20+50=70,我就問這個等號表示什么意思?由于這個算式有了天平具體的直觀形象,學(xué)生一下子過渡到等號表示一種關(guān)系。我想讓學(xué)生體會等號從表示一種過程過渡到表示一種關(guān)系,但課后我反思沒有必要,以前學(xué)生已經(jīng)知道等號表示一種過程,本節(jié)課主要讓學(xué)生認識到等號還表示一種關(guān)系,為建立方程打下基礎(chǔ),所以,當學(xué)生已經(jīng)在天平直觀形象中認識到等號表示一種關(guān)系,就可以往下進行。所以,這個環(huán)節(jié)浪費了時間,同時我認識到課前每個環(huán)節(jié)都要慎思。

  2.導(dǎo)概念實質(zhì)。

  新授環(huán)節(jié)是本節(jié)課的核心環(huán)節(jié)。我讓學(xué)生以講故事的形式生動講解每幅圖的意思,讓學(xué)生經(jīng)歷認識方程的過程,力求讓學(xué)生在愉悅的氛圍里深刻的思考中,體驗方程從現(xiàn)實生活中抽象出來。從而列出方程并認識方程。但我認為這還不夠,還要對方程的內(nèi)涵和外延要有更深層次的理解。于是我安排了以下4道習(xí)題:

  第1題:下面這些式子是方程嗎?

  X×2-5=100y-2=35()+3=5蘋果+50=300

  通過這些習(xí)題的訓(xùn)練,讓學(xué)生明白方程中的未知數(shù)可以是任何字母,可以是圖形,也可以是物體或者畫括號等。讓學(xué)生體會到其實方程在一年級就已經(jīng)悄悄地來到了我們的身邊,和我們已經(jīng)是老朋友了,只是在一年級我們沒有給出它名字,()+3=5就是方程的雛形。

  課后我反思這一環(huán)節(jié)應(yīng)該增加一些不是方程的習(xí)題,如:2X-3>62X+9讓學(xué)生在各種形式的式子中辨別方程會更好些。

  第2題,出示天平圖,左盤放著一個160克的蘋果和一個重X的梨,右盤放著240克砝碼,你能列出方程嗎?很多學(xué)生列的方程是160+X=240,我就出示240-160=X這個式子是方程嗎?讓學(xué)生在思辨中明晰,它只有方程的形式而沒有方程的實質(zhì),進一步明白方程的定義中“含有”未知數(shù)指的就是未知數(shù)要與已知數(shù)參加列式運算,從而進一步理解方程的意義。

  第3題,出示了天平圖,左盤放著250克砝碼,右盤放著一個重a克和b克的物體,讓學(xué)生列方程。通過此題的.訓(xùn)練,學(xué)生知道了方程中的未知數(shù)可以不只是一個,可以是兩個或者更多個。方程的內(nèi)涵和外延逐漸浮出水面。

  課后我反思,通過此題的訓(xùn)練,也應(yīng)該讓學(xué)生明白不同的數(shù)用不同的未知數(shù)表示。

  第4題,一瓶800克果汁正好倒?jié)M5小杯和容量300克的一大杯,現(xiàn)在沒有天平還有方程嗎?

  生1:800=300+5X

  生2:800=300+y

  師;為了不讓別人產(chǎn)生誤會,要寫上一句話,寫清X、y分別表示什么。

  這樣為以后學(xué)習(xí)列方程解決問題打下基礎(chǔ),會減少漏寫設(shè)句的幾率。也讓學(xué)生明白,沒有天平要想列出方程,要在已知數(shù)與未知數(shù)之間建立起等量關(guān)系。

  本節(jié)課我以等式入手建立方程的概念,以判斷方程為依托,讓學(xué)生進一步理解方程的意義,以解決問題為抓手,讓學(xué)生產(chǎn)生矛盾沖突,深刻體會“含有”未知數(shù)的真正含義,從而理解方程的意義,在層層遞進的練習(xí)中加深對方程意義的理解。整個教學(xué)過程為學(xué)生提供了豐富的感性材料,使學(xué)生在一種思辨的狀態(tài)中體驗到方程是表達等量關(guān)系的數(shù)學(xué)模型,又為學(xué)生的后續(xù)學(xué)習(xí)列方程解決實際問題做了很好的鋪墊。

  方程意義教學(xué)反思 篇6

  方程的意義這部分內(nèi)容是學(xué)生初步接觸了一點代數(shù)知識之后進行教學(xué)的,重點是“方程的意義”。設(shè)計的意圖是想通過觀察天平“平衡現(xiàn)象→不平衡到平衡→不確定現(xiàn)象”三個直觀活動,抽象出相關(guān)的數(shù)學(xué)式子,再通過觀察這些數(shù)學(xué)式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象過程,然后通過必要的練習(xí)鞏固加深對方程概念的理解和應(yīng)用。因此本課設(shè)計了活動探索、自主分類、抽象概括、靈活運用4個環(huán)節(jié),讓學(xué)生通過觀察、分析、抽象、概括,建立起方程的概念,明確方程與等式的關(guān)系。

  根據(jù)兒童思維發(fā)展的`遞進性,設(shè)計了三個層次的活動,一是通過學(xué)生觀察,抽象出相應(yīng)的數(shù)學(xué)式子,建立起“平衡—相等、不平衡—不相等”的概念;二是通過自主探索,合作交流的學(xué)習(xí)方式,使不同能力的學(xué)生都得到有效發(fā)展;三是引導(dǎo)學(xué)生對“等式”觀察,將等式分為“含有未知數(shù)”和“不含未知數(shù)”兩類,然后抽象出方程的概念。最后通過判斷與獨立創(chuàng)作方程兩個學(xué)生活動,進一步理解了方程的意義,明確方程與等式的關(guān)系。教學(xué)實施中的不足之處:教師在教學(xué)中用語不夠準確精練,對學(xué)生的數(shù)學(xué)語言表達能力指導(dǎo)欠缺,對學(xué)生的發(fā)言教師傾聽程度不夠,未能很好把握課堂教學(xué)中生成的課堂教學(xué)資源。

  方程意義教學(xué)反思 篇7

  《方程的意義》是一節(jié)數(shù)學(xué)概念課,概念教學(xué)是一種理論教學(xué),理論性、學(xué)術(shù)性較強,往往會顯得枯燥無味,但同時它又是一種基礎(chǔ)教學(xué),是以后學(xué)習(xí)更深一層知識,解決更多實際問題的知識支撐,因此我們應(yīng)該重視概念教學(xué)的開放性,自主性與概念形成的自然性。而且數(shù)學(xué)課程標準指出:數(shù)學(xué)教學(xué),要緊密聯(lián)系學(xué)生的生活環(huán)境,從學(xué)生的經(jīng)驗和已有知識出發(fā),創(chuàng)設(shè)有助于學(xué)生自主學(xué)習(xí)、合作交流的情境,使學(xué)生通過觀察、操作、歸納、類比、猜測、交流、反思等活動,獲得基本的數(shù)學(xué)知識和技能,進一步發(fā)展思維能力,激發(fā)學(xué)生的學(xué)習(xí)興趣,增強學(xué)生學(xué)好數(shù)學(xué)的信心。

  《方程的意義》這節(jié)課與學(xué)生的生活有密切聯(lián)系,通過本節(jié)課的學(xué)習(xí),要使學(xué)生經(jīng)歷從實際問題中總結(jié)概括出數(shù)學(xué)概念的過程。讓學(xué)生初步了解方程的意義,理解方程的概念,感受方程思想。使學(xué)生經(jīng)歷從生活情境到方程概念的建立過程,培養(yǎng)學(xué)生觀察、猜想、驗證、分類、抽象、概括、應(yīng)用等能力。通過自主探究,合作交流等數(shù)學(xué)活動,激發(fā)學(xué)生的興趣,所以我在教學(xué)設(shè)計的過程中十分重視學(xué)生原有的知識基礎(chǔ),用直觀手法向抽象過渡,用遞進形式層層推進,讓學(xué)生經(jīng)歷一個知識形成的過程,并盡可能讓他們用語言表達描述出自己對學(xué)習(xí)過程中的理解,最后形成新的知識脈絡(luò)。下面就結(jié)合這節(jié)課,談?wù)勎以诮虒W(xué)中的做法和看法。

  一、復(fù)習(xí)導(dǎo)入,激趣揭題

  該環(huán)節(jié)主要復(fù)習(xí)與新知識有間接聯(lián)系的舊知識,為學(xué)習(xí)新知識鋪墊搭橋,以舊引新,方程是表達實際問題數(shù)量關(guān)系的一種數(shù)學(xué)模型,是在學(xué)生熟悉了常見的數(shù)量關(guān)系,能夠用字母表示數(shù)的基礎(chǔ)上教學(xué)的,因此開課伊始我結(jié)合與學(xué)生有關(guān)的一些生活現(xiàn)象出示了一組題,要求學(xué)生用含有字母的式子表示出來。這些題的出現(xiàn)即能讓學(xué)生復(fù)習(xí)鞏固以前所學(xué)的知識也能讓學(xué)生體會到我們生活中有很多現(xiàn)象都能用式子表示出來,激起學(xué)生的學(xué)習(xí)興趣,引出這節(jié)課的學(xué)習(xí)內(nèi)容,這樣的開課很實際,很干脆,也很有用。

  二、實踐操作,建立方程模型

  本節(jié)課的探究交流主要體現(xiàn)在“含有未知數(shù)的等式,稱為方程”的這一概念獲取過程中,在這個過程中我首先是讓學(xué)生通過觀察天平“平衡現(xiàn)象→不平衡到平衡→不確定現(xiàn)象”三個直觀活動,抽象出相關(guān)的數(shù)學(xué)式子,再通過觀察這些數(shù)學(xué)式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象過程,然后通過必要的練習(xí)鞏固加深對方程概念的理解和應(yīng)用。通過這一系列的觀察、思考、分類、歸納突破本課的重難點。在這幾個環(huán)節(jié)中有這樣幾個特點:

  1、用天平創(chuàng)設(shè)情境直觀形象,有助學(xué)生理解式子的意思

  等式是一個數(shù)學(xué)概念。如果離開現(xiàn)實背景出現(xiàn)都是已知數(shù)組成的等式,雖然可以通過計算體會相等,但枯躁乏味,學(xué)生不會感興趣。如果離開現(xiàn)實情境出現(xiàn)含有未知數(shù)的等式,學(xué)生很難體會等式的具體含義。天平是計量物體質(zhì)量的工具,但它也可以通過平衡或者不平衡判斷出兩個物體的質(zhì)量是否相等,天平圖創(chuàng)設(shè)情境,利用鮮明的直觀形象寫出表示相等的式子和表示不相等的式子,可以幫助學(xué)生理解式子的意思,也充分利用了教材的主題圖。

  2、自主操作,提高能力,激發(fā)興趣

  在探究方程的意義時我特意給學(xué)生提供操作天平平衡的不同材料,讓學(xué)生分組實踐,通過操作、觀察天平的狀態(tài)得到許多不同的式子,由于材料不同,每個組所得的式子也不同,有的全是已知數(shù)的`式子,有的是含有未知數(shù)的式子,多種多樣的式子激起學(xué)生的探究欲望激發(fā)學(xué)生觀察興趣。

  3、對方程的認識從表面趨向本質(zhì)

 。1)在分類比較中認識方程的主要特征。

  在教學(xué)過程中,學(xué)生通過觀察和操作得到了很多不同的式子,然后讓學(xué)生把寫出的式子進行分類。先讓學(xué)生獨立思考,再在組內(nèi)交流,討論思考發(fā)現(xiàn)式子的不同,分類概括。有人可能先分成等式和不是等式兩類,再把等式分成不含未知數(shù)和含有未知數(shù)兩種情況;有人可能先分成不含未知數(shù)和含有未知數(shù)兩類,再把含有未知數(shù)的式子分成等式和不是等式兩種情況。盡管分的過程不完全一致,但最后都分出了含有未知數(shù)的等式,經(jīng)過探索和交流,認識方程的特征,歸納出方程的意義。

 。2)要體會方程是一種數(shù)學(xué)模型。

  “含有未知數(shù)的等式”描述了方程的外部特征,并不是本質(zhì)特征。方程用等式表示數(shù)量關(guān)系,它由已知數(shù)和未知數(shù)共同組成,表達的相等關(guān)系是現(xiàn)象、事件中最主要的數(shù)量關(guān)系。要讓學(xué)生體會方程的本質(zhì)特征。在教學(xué)過程中,通過觀察天平的相等關(guān)系(如左盤中是100克的杯子和x克水右盤中是250克砝碼,天平平衡,解釋方程的具體含義),感受方程與日常生活的聯(lián)系,體會方程用數(shù)學(xué)符號抽象地表達了等量關(guān)系,對方程的認識從表面趨向本質(zhì)。

  4、在“看”“說”和“寫”中體會式子

  當方程的意義建立后,我讓學(xué)生觀察一組式子判斷它們是不是方程,通過判斷說明這些式子為什么是“方程”,為什么“不是方程”,體會方程與等式的關(guān)系,加深對方程意義的理解。再讓學(xué)生自己寫出一些方程,展示自己寫的方1

  三、實際運用,升華提高

  在練習(xí)設(shè)計中由易到難,由淺入深,使學(xué)生的思維不斷發(fā)展,使學(xué)生對于方程意義的理解更為深刻,特別使讓學(xué)生自由創(chuàng)作方程這一練習(xí)題,既讓學(xué)生應(yīng)用了知識又培養(yǎng)了學(xué)生的創(chuàng)新思維。

  本課時教學(xué)設(shè)計,改變了傳統(tǒng)學(xué)習(xí)方式,利用課本的靜態(tài)資源通過現(xiàn)代化教學(xué)手段,把數(shù)學(xué)情景動態(tài)化,大大激發(fā)了學(xué)生的學(xué)習(xí)興趣,充分體現(xiàn)了以學(xué)生為主,讓學(xué)生獨立思考,不斷歸納,把學(xué)生從被動地接受知識轉(zhuǎn)為自己探究,為學(xué)生提供了自主探究,合作交流的空間。在學(xué)習(xí)中體會到了學(xué)習(xí)數(shù)學(xué)的樂趣,在獲取知識的同時,情感態(tài)度,能力等方面都得到發(fā)展。當然這節(jié)課還存在一些問題,比如對等式與方程的關(guān)系突出得不夠,讀學(xué)生“說”的訓(xùn)練不夠,應(yīng)該給學(xué)生更多的表述的機會。

  方程意義教學(xué)反思 篇8

  《方程的意義》這一課的教學(xué)。難點是區(qū)分“等式”和“方程”,建立方程的數(shù)模模型在腦中。

  事先我曾經(jīng)試教用天平來為學(xué)生建立等式模型,效果比較好,后進生也能理解方程的意義,但是會出現(xiàn)使用方程的過程中,經(jīng)常會產(chǎn)生誤差,學(xué)生就經(jīng)常誤解方程是不相等的。

  為了解決這一誤解我就嘗試著用蹺蹺板做游戲來讓他們感受同等的等量關(guān)系,用文字來陳述第三種情境,讓他們感受到大于、小于、等于關(guān)系。學(xué)生的興趣此時如我所料確實比較高,可是我忽視了后進生,用這三種情境太過于抽象,讓基礎(chǔ)薄弱的學(xué)生不一定能立馬反應(yīng)過來。經(jīng)過萬主任的點撥,我好好的思考后我覺得應(yīng)該給他們把天平和蹺蹺板同時呈現(xiàn),用形象的圖片呈現(xiàn)三種情境,他們的數(shù)模才會更容易建立。

  第二環(huán)節(jié)的鞏固新知識時候,我讓學(xué)生小組討論被墨汁擋住的式子是否是方程時候,我回頭想想我有點操之過急,我應(yīng)該讓他們先從基礎(chǔ)的辨析后再來做這題,然后滲透集合思想讓他們區(qū)分方程,這樣這題的回答可能會更加的出彩。

  第三個知識深入時候,看圖列式我也應(yīng)該更加明確告知學(xué)生式子的`要求。也就是因為前面的起點太高,所以一些后進生把題意理解錯誤,使答題不夠準確。

  總之,本節(jié)課從學(xué)生認知規(guī)律和知識結(jié)構(gòu)的實際出發(fā),讓他們通過有目的的交流、討論,主動構(gòu)建自己的認知結(jié)構(gòu),調(diào)動了學(xué)生的學(xué)習(xí)熱情,加深對方程意義的認識,激發(fā)了學(xué)生的探究欲望,培養(yǎng)了學(xué)生的學(xué)習(xí)興趣。在今后的教學(xué)中:我應(yīng)該注意后進生,盡量多多從基礎(chǔ)出發(fā),注意幫助學(xué)生建立數(shù)學(xué)模型,更要把數(shù)學(xué)思想時刻灌輸?shù)恼n堂中。

  方程意義教學(xué)反思 篇9

  本節(jié)課從兩個學(xué)生比較熟悉的實際問題入手,通過對所列方程的觀察,并與一元一次方程類比,自然導(dǎo)出一元二次方程的意義及其相關(guān)的一些概念,既滲透了類比的數(shù)學(xué)思想,又加強了新舊知識間的聯(lián)系,有助于學(xué)生對新知識的理解與接受,降低了知識點的難度,減輕了學(xué)生的學(xué)習(xí)負擔。

  計過程中,不過于強調(diào)形式化的定義,也不要求學(xué)生死記硬背,只要能辨認一些概念即可,最后出示的一個實際問題,目的讓學(xué)生進一步體會一元二次方程學(xué)習(xí)的重要性及實際價值,同時也為下一節(jié)一元二次方程的解法及應(yīng)用的學(xué)習(xí)設(shè)置懸念、埋下伏筆,激發(fā)學(xué)生的求知欲望,培養(yǎng)學(xué)生自主探究的習(xí)慣與能力。

  本節(jié)課教學(xué),注重知識與實際的聯(lián)系,讓學(xué)生認識到學(xué)習(xí)數(shù)學(xué)的重要性,注重學(xué)生的`個性發(fā)展,采取自主探究與合作交流的學(xué)習(xí)方法,讓學(xué)生經(jīng)歷思考、討論、合作、交流的過程,使學(xué)生始終處于學(xué)習(xí)的主體地位,培養(yǎng)學(xué)生與人交流、與人合作的能力。從學(xué)生已有的生活經(jīng)驗出發(fā),讓學(xué)生親身經(jīng)歷將實際問題抽象成數(shù)學(xué)模型并進行解釋與應(yīng)用的過程,進而使學(xué)生獲得數(shù)學(xué)理解的同時,在思維能力、情感、態(tài)度與價值觀等多方面得到發(fā)展.

  分層作業(yè)中必做題鞏固本節(jié)課的基本要求,體現(xiàn)了“人人都能獲得必要的數(shù)學(xué)”;選做題密切聯(lián)系生活,體現(xiàn)“人人學(xué)有價值的數(shù)學(xué);不同的人在數(shù)學(xué)上得到不同的發(fā)展”,創(chuàng)設(shè)了具有實踐性、開放性的問題情境,啟發(fā)學(xué)生思考現(xiàn)實生活中可能蘊涵某些數(shù)學(xué)知識的現(xiàn)象,初步學(xué)會“用數(shù)學(xué)”的意識。通過訓(xùn)練,在日常生活中,學(xué)生就會用數(shù)學(xué)的眼光觀察、探究現(xiàn)實世界,發(fā)現(xiàn)問題,通過自己的思考解決問題。

  方程意義教學(xué)反思 篇10

  本節(jié)課的重點是理解方程的意義,能正確地判斷一個式子是否是方程。我從學(xué)生已有的知識出發(fā),結(jié)合學(xué)生的認知規(guī)律,尋找新舊知識點銜接點。決定打破教材的教學(xué)程序。分以下四個層次展示探究過程:

 。ㄒ唬┪蚁瘸鍪疽患芴炱,讓學(xué)生觀察,天平處于平衡狀態(tài),然后,在天平的左邊加兩個砝碼(例:10克、20克),右邊加一個30克的砝碼,讓學(xué)生再次觀察天平仍然處于平衡狀態(tài)。讓學(xué)生初步感知天平左邊的質(zhì)量10+20是30(克),和天平右邊的30克是相等的。然后在平衡的天平左邊仍然放兩個砝碼(例:20克、?克),右邊放一個砝碼(60克),這時天平仍然處于平衡狀態(tài),學(xué)生再次感知天平左右兩邊所放砝碼的質(zhì)量是相等的。不同的是,由具體的數(shù)量過渡到了未知數(shù)量的'參與,這在孩子認知思維上又加深了一步。

 。ǘ┲貑l(fā)學(xué)生根據(jù)信息表達題目中數(shù)量間的相等關(guān)系,為正確列出方程打下堅實的基礎(chǔ)。逐個出示課本信息窗的主題圖,首先讓學(xué)生仔細閱讀信息,引導(dǎo)學(xué)生用文字表述題目中的相等關(guān)系,再鼓勵學(xué)生任意用一個未知數(shù)表示題中的問題,并列出含有未知數(shù)的式子。在這個環(huán)節(jié),速度一定放慢,鼓勵每個學(xué)生都要參與。

 。ㄈ⿴燑c撥,像這樣左右兩邊表示的意義一樣,我們可以用等號連接,像這樣的式子,我們給它起個名字叫——等式,而后讓學(xué)生舉出幾個等式的例子。(注意:學(xué)生舉例時,要鼓勵學(xué)生呈現(xiàn)不同的形式。純數(shù)字的等式和含有字母的等式)引導(dǎo)讓學(xué)生對以上等式進行分類,學(xué)生很容易把等式分成了兩類,一類是純數(shù)字的等式,另一類是含有字母的等式。通過讀課本學(xué)生明白了:含有字母的等式就叫方程,為了加深學(xué)生對方程的理解,讓每人舉出3個方程,同桌判斷對否。這樣由直觀到抽象,做符合學(xué)生的認知規(guī)律,學(xué)生學(xué)得輕松,積極性很高、效果也很理想。

  特別是在探討“等式”和“方程”的區(qū)別與聯(lián)系時,學(xué)生的思維被激活,課堂活動的氣氛達到了高潮。那就是學(xué)生舉得例子很形象,恰如其分,超出了我的意料。他們把“等式”比做一個雞蛋(蛋清和蛋黃),“方程”就是雞蛋中的蛋黃。他們解釋說:“蛋黃一定是雞蛋,也就是方程一定是等式,雞蛋不全是蛋黃也就是說等式不一定是方程”。孩子們的潛力真是不可低估、他們語出驚人,令我震驚,我及時就給他們高度的評價,孩子們創(chuàng)新之花是多么的美麗、燦爛。我要保存這火花的余溫,讓它再次綻放在我的課堂上。

  方程意義教學(xué)反思 篇11

  作為開學(xué)第一課,課本就將方程這樣一種重要的數(shù)學(xué)思想方法凸顯出來,可見方程的地位之大,的確,方程對豐富學(xué)生解決問題的策略,提高解決問題的能力,發(fā)展數(shù)學(xué)素養(yǎng)有著非常重要的意義。方程是一種特殊的等式,而等式的原型便是天平,可惜沒找到實物,但不妨礙學(xué)生通過已有經(jīng)驗來自我構(gòu)建。

  首先出示5個式子,讓學(xué)生根據(jù)自己的標準分成兩類:等式與不等式,用“=”連接的便是等式,用其他如“﹥﹤≠≈”等不等號連接的式子是不等式。然后指出不等式需要到初中學(xué)習(xí),今天我們研究等式。觀察這幾個等式,可以分為幾類?指出,已經(jīng)知道的數(shù)叫已知數(shù),不知道的叫未知數(shù),等式里有未知數(shù),便是方程,方程包括在等式里,是一種特殊的等式。這樣,算是新課內(nèi)容結(jié)束了。接著根據(jù)關(guān)系式列方程。

  從認知規(guī)律來看,本節(jié)課的設(shè)計完全符合標準,正本反饋,還是有些問題的。

  一、學(xué)生生活經(jīng)驗不足,導(dǎo)致找不準數(shù)量關(guān)系。

  媽媽買一臺電話機,單價116元,付出x元,找回84元。學(xué)生的答案讓你意象不到,什么形式都有,他們會將這三個數(shù)通過一定的符號隨意地組合起來,讓我哭笑不得。在此之前有一個文具盒與筆記本共20元的.問題,還引導(dǎo)學(xué)生編成了應(yīng)用題加以理解,不想還是有問題。所以學(xué)校應(yīng)該斥資建立一個超市,讓學(xué)生在真實的生活情境中找到發(fā)展的可能,有些數(shù)學(xué)問題真的只是生活,根本就不是數(shù)學(xué)。

  二、加強備課力度,任何小的問題都不能存在。

  還是上面一道題,根據(jù)以往列算式的經(jīng)驗,很多學(xué)生列成116+84=x,這是可以理解的,正因為我只是在課堂上強調(diào):根據(jù)經(jīng)驗,未知數(shù)不單獨放一邊,這樣跟算式的區(qū)別不大,但效果不很好。我想,將三種式子都板書出來,116+84=x,x-116=84,x-84=116,然后指出我們列方程習(xí)慣上不采用第一種,因為將x去掉,不影響答案,而選擇二、三兩種中的一種,

  方程意義教學(xué)反思 篇12

  教材比舊教材對方程教學(xué)的要求提高了!斗匠痰囊饬x》是本單元教學(xué)的第一課時,這堂課的概念多,“含有未知數(shù)的等式,叫做方程”“使等式左右兩邊相等的未知數(shù)的值,叫做方程的解”“求未知數(shù)的值的過程,叫做解方程”,而且學(xué)生容易混淆。在教學(xué)設(shè)計時,把“方程的意義”作為教學(xué)的重點,而對“方程的解和解方程”概念的教學(xué)想通過學(xué)生的自學(xué)和新舊知識(求未知數(shù)x)的聯(lián)系,讓學(xué)生自己去理解。所以在設(shè)計教學(xué)方案時,重點考慮的是方程意義的教學(xué)。方程意義的教學(xué)目標定位是,不僅僅是讓學(xué)生了解方程的概念,能指出哪些是方程;更多思考的是學(xué)生對方程后繼的學(xué)習(xí)和發(fā)展,注重知識的滲透,如:近期的“用字母表示數(shù)”“用方程解應(yīng)用題”、遠期的解較復(fù)雜方程或方程組時用到的“等式的性質(zhì)”以及“不等式”“集合”知識等。

  在課堂教學(xué)中,方程意義的教學(xué)初步達到了預(yù)期的教學(xué)目標。在討論等式和方程的.關(guān)系時,學(xué)生能清楚的表達,指出哪些是方程哪些不是方程能說明自己的理由。在知識滲透方面:當教師在天平放上未知重量的物體時,學(xué)生能自覺用字母表示求知數(shù)x+50=200;在左邊放入一個一元硬幣和一個五角硬幣,右邊放一個5克砝碼,天平平衡時,學(xué)生通過爭論用不同的字母表示不同的求和數(shù)x+y=5,學(xué)生自己說明了理由;在討論等式和方程的關(guān)系時,學(xué)生也能自己理解集合圖的含義。由此可見,學(xué)生的潛力是很大的,關(guān)鍵是看教師是否把握了合適的教學(xué)時機。這堂課上完,還有一個體會就是教學(xué)時間不夠,知識鞏固的時間太少。

  方程意義的教學(xué)的練習(xí)足足用了27分鐘。“方程的解和解方程”的教學(xué)因為練習(xí)時間不足,而不到位。課后我一直想“這27分鐘花得是否值得?怎樣處理知識目標和發(fā)展目標的關(guān)系?”。還有方程意義教學(xué)時天平的演示,一直是我在演示,學(xué)生在看,學(xué)生的自主性不夠,這是我教學(xué)設(shè)計時就有的困惑,但如果讓分小組學(xué)生自己操作,教學(xué)時間會更加不夠。該怎樣解決這個矛盾?我又設(shè)想,對教材作些處理。把“方程的解和解方程”的教學(xué)放到下一課時,剩下的時間,利用學(xué)生頭腦中剛剛建立的天平這一數(shù)學(xué)模型,加強學(xué)生列方程的練習(xí)。這樣處理是否會更好。

  方程意義教學(xué)反思 篇13

  《方程的意義》是一節(jié)數(shù)學(xué)概念課,概念教學(xué)是一種理論教學(xué),往往會顯得枯燥無味,但同時它又是一種基礎(chǔ)教學(xué),是以后學(xué)習(xí)更深一層知識,解決更多實際問題的知識支撐,因此我們應(yīng)該重視概念教學(xué)的開放性,自主性與概念形成的自然性。

  一、生活引入,注重體驗。

  數(shù)學(xué)課程標準指出:數(shù)學(xué)教學(xué),要緊密聯(lián)系學(xué)生的生活環(huán)境,從學(xué)生的經(jīng)驗和已有知識出發(fā),創(chuàng)設(shè)有助于學(xué)生自主學(xué)習(xí)、合作交流的情境,使學(xué)生通過觀察、操作、歸納、類比、猜測、交流、反思等活動,獲得基本的數(shù)學(xué)知識和技能,進一步發(fā)展思維能力,激發(fā)學(xué)生的學(xué)習(xí)興趣,增強學(xué)生學(xué)好數(shù)學(xué)的信心。

  《方程的意義》這節(jié)課與學(xué)生的生活有密切聯(lián)系,因此在課始,采用學(xué)生生活中常見的蹺蹺板游戲,讓學(xué)生感受到類似于天平的“相等”和“不等”。這樣在結(jié)合天平感受這種關(guān)系以及最終體會到方程中“相等”的關(guān)系時,學(xué)生就會感受水到渠成。

  二、自主學(xué)習(xí),辨析完善。

  因為五年級學(xué)生已經(jīng)進入了高年級,是有一定的學(xué)習(xí)能力的。所以,認識方程中,我選擇了放手讓學(xué)生進行自學(xué)。并給出了一定的自學(xué)提綱:

 。1)是方程,我的例子還有。

 。2)不是方程(可以舉例)。

  (3)我還知道。這里學(xué)生自學(xué)時是帶著自己例子進行思辨性的自學(xué),所以感覺學(xué)生理解的還是比較的透徹的,在交流哪些不是方程時,學(xué)生理解了等式、不等式、方程之間的關(guān)系:方程一定是等式,等式不一定是方程,不等式一定不是方程等等。

  三、結(jié)合實際、理解關(guān)系。

  根據(jù)數(shù)量之間的`關(guān)系列出方程也是本節(jié)課的重點之一。同時,這點也是后續(xù)列方程解決實際問題的一個基礎(chǔ)。所以在出示實際問題列出方程時,我總是追問:你是怎么想的?讓學(xué)生感受到搞清數(shù)量之間的關(guān)系是正確列出方程的前提條件。

  另外,在練習(xí)的設(shè)計上,增加一些思維的難度和挑戰(zhàn)也是鍛煉學(xué)生數(shù)學(xué)思維的一個常態(tài)化的工作。

  當然這節(jié)課還存在一些問題,比如對等式的突出得不夠,學(xué)生“說”的訓(xùn)練不夠,應(yīng)該給學(xué)生更多的表述的機會。

  方程意義教學(xué)反思 篇14

  《認識方程》是北師大四年級下冊第七單元《認識方程》的第三課時。這一內(nèi)容是學(xué)生第一次接觸方程,對于四年級的學(xué)生來說有一定的難度。 因為方程的意義是一節(jié)數(shù)學(xué)概念課,概念教學(xué)是一種理論教學(xué)往往會顯得枯燥無味,但是方程與學(xué)生的生活又有密切的聯(lián)系,因此在本課教學(xué)中始終注重學(xué)生興趣的培養(yǎng),讓學(xué)生感受方程與生活的密切聯(lián)系。從課前談話開始,我利用兩三分鐘與班上學(xué)生聊上幾句,輕松導(dǎo)入課題,消除彼此之間的緊張心情。在探究方程概念時,我放手讓學(xué)生自學(xué)課本,以天平圖,月餅圖、水壺圖整節(jié)課的主線,讓學(xué)生觀察情境圖,讓學(xué)生從這些具體的情境中獲取信息,去尋找隱含的相等關(guān)系并用自己的語言加以表述,然后嘗試用含有字母的等式—— 方程表示各個相等關(guān)系。

  讓學(xué)生親身體驗方程產(chǎn)生的需求,方程在運用中的優(yōu)越性并成功建立數(shù)學(xué)模型,最后總結(jié)出方程的意義。得出概念后,進入練一練環(huán)節(jié),我設(shè)計了兩個練習(xí):一是判斷是不是方程的練習(xí),通過學(xué)生自己合理判斷認識到方程的兩個特征缺一不可,弄清等式與方程的區(qū)別與聯(lián)系,加深學(xué)生對方程外部特征的印象,進一步體會方程的意義,加深了對方程概念的'理解:二是設(shè)計了根據(jù)情境圖寫出相應(yīng)的方程,借助媒體呈現(xiàn)一些線段圖,組織學(xué)生根據(jù)這些圖中的等量關(guān)系列出方程。

  這些題可以培養(yǎng)學(xué)生在現(xiàn)實情境里尋找等量關(guān)系的能力,也為以后運用方程知識解決實際問題打下基礎(chǔ)。查一查的練習(xí)是是從人類最普遍的日常生活中的衣、食、住、行這四大方面入手,把課本后的練習(xí)題套上適當?shù)那榫埃ぐl(fā)學(xué)生學(xué)習(xí)的積極性,使得學(xué)生感受到數(shù)學(xué)就在自己的身邊。

  最后拓展題,讓學(xué)生根據(jù)所給信息提出問題,列出方程,在較復(fù)雜的問題情境中,讓學(xué)生體會算術(shù)方法解決起來比較復(fù)雜的問題,可以比較容易地通過方程表示其中的數(shù)量關(guān)系,體會方程思想的魅力。經(jīng)歷方程建模的全過程,真正讓學(xué)生理解方程的含義,體驗方程思想,引領(lǐng)學(xué)生走方程世界。

  方程意義教學(xué)反思 篇15

  在以前人教版教材中,學(xué)習(xí)解方程之前首先要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用加減乘除各部分之間的關(guān)系來求出方程中的未知數(shù),而今的人教版教材的設(shè)計打破了傳統(tǒng)的教學(xué)方法,而是借用天平使學(xué)生首先感悟“等式”,知道“等式兩邊都加上或減去同一個數(shù),等式仍然成立”這個規(guī)律,這樣就能從真正意義上很好地揭示方程的意義,進而學(xué)會解方程,還能使之與中學(xué)的移項解方程建立起聯(lián)系。在這節(jié)課的教學(xué)中,我從以下幾個方面入手:

  一、感受天平的平衡現(xiàn)象,悟出等式的性質(zhì)變化。

  1、在學(xué)習(xí)中,我以天平的平衡來呈現(xiàn)等式的性質(zhì),學(xué)生能直觀形象的理解性質(zhì),平衡的條件是兩邊同時加上、或減少相同的重量,才能保持平衡。但具體到方程中應(yīng)用起來學(xué)生感覺比較抽象,我引導(dǎo)學(xué)生在反復(fù)操作中理解加、減一個數(shù)的目的和依據(jù)。

  我在天平的左側(cè)放5克砝碼,右側(cè)也放5克砝碼。(拋磚引玉)

  2、學(xué)生親自動手反復(fù)不斷的進行操作。(學(xué)生動手操作)

  在此基礎(chǔ)上,我再做進一步的引導(dǎo)。

  活動是獲取真知的有效途徑,通過以上的活動,學(xué)生可以很順利地得出結(jié)果:天平的兩側(cè)都加上相同的質(zhì)量,天平仍平衡。

  3、教師:請同學(xué)們都想一想,如果天平兩側(cè)都減去相同的質(zhì)量,天平會出現(xiàn)什么現(xiàn)象?你能列出幾個這樣的方程嗎?(學(xué)生同桌之間通過充分地交流,反饋交流結(jié)果,學(xué)生得知,如果我們把天平作為一個等式(當天平平衡時)的話,等式的兩邊都減去同一個數(shù),等式仍然成立。通過引導(dǎo),學(xué)生能完全得出了等式的性質(zhì)。最后我們通過學(xué)生自己的整理和總結(jié),把以上發(fā)現(xiàn)的`性質(zhì)合二為一。得出:等式的兩邊都加上(或減去)同一個數(shù),等式仍然成立。

  二、利用等式性質(zhì)解方程——初步感悟它的妙用

  在課堂上學(xué)生對用等式的性質(zhì)來解方程感到很陌生,在他們原有的經(jīng)驗中更喜歡用加減法各部分的關(guān)系來解,所以我們要特別注意引導(dǎo)學(xué)生認識到用等式的性質(zhì)來解方程的優(yōu)越性,從而養(yǎng)成用等式的性質(zhì)來解方程的習(xí)慣。

  在整節(jié)課的教學(xué)中,其實學(xué)生是非常主動的,他們總覺得天平能啟發(fā)著他們?nèi)ソ鉀Q這么神奇的方程,孩子們對方程都有一種難以割舍的好奇心。

  告訴學(xué)生利用等式的性質(zhì)來解方程熟練以后特別快。同時強調(diào)書寫格式。通過教學(xué),學(xué)生利用等式的性質(zhì)學(xué)生能解決簡單的方程,但我認為利用等式性質(zhì)解方程的方法單一化,內(nèi)容雖少問題很多。其表現(xiàn)在:

  1、從教材的編排上,整體難度下降,有意避開了形如:66—2方程=30等類型的題目。把用等式解決的方法單一化了。在實際教學(xué)中我們要求學(xué)生較熟練地利用等式的方法來解方程,但用這樣的方法來解方程之后,書本不再出現(xiàn)方程在后面的方程題了,學(xué)生在列方程解實際應(yīng)用時,我們并不能刻意地強調(diào)學(xué)生不會列出方程在后面的方程嗎?我們更頭痛于學(xué)生的實際解答能力。在實際的方程應(yīng)用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。對于好的學(xué)生來說,我們會讓他們嘗試接受——解答方程在后面這類方程的解答方法,就是等號二邊同時加上方程,再左右換位置,再二邊減一個數(shù),真有點麻煩了。而且有的學(xué)生還很難掌握這樣方法。

  2、內(nèi)容看似少實際教得多。難度下降后,看起來教師要教的內(nèi)容變得少了,可實際上反而是多了。教師要給他們補充方程在后面的方程的解法。要教他們列方程時怎么避免方程在后面這樣方程的出現(xiàn)等等。因此,我干脆就又把原來的老方法交給同學(xué)們,以便備用或請他們根據(jù)具體情況選擇適當?shù)慕忸}方法。

  3、我個人認為:現(xiàn)行教材的某些地方還有待于進一步的改進與完善。

  方程意義教學(xué)反思 篇16

  關(guān)于“直線的傾斜角和斜率“的教學(xué)設(shè)計花了我很長的時間,設(shè)計了多個方案,想在”傾斜角“和”斜率“的概念形成方面給予同學(xué)更多的空間,也用幾何畫板做了幾個課件,但覺得不是非常理想,以至于到了上課的時間仍舊沒有滿意的結(jié)果。但由于備課的時間還是非常的充分的,上課還是比較游刃有余的。但上是上了,感覺還是有點不爽。

  其一,對”傾斜角“概念的形成過程的教學(xué)過程中,發(fā)現(xiàn)普通班和重點班在表達能力上的區(qū)別還是比較明顯的,當問到”經(jīng)過一個定點的直線有什么聯(lián)系和區(qū)別時?”普通班所花的時間明顯要比重點班多,但這也表明自己的問題設(shè)計還缺乏針對性。如果按照“平面上任意一點——做直線(3條以上)——說明區(qū)別和聯(lián)系——加上直角坐標系——說明區(qū)別和聯(lián)系”的順序來設(shè)計問題,回答起來可能難度更低一點,同時也更加突出直角坐標系的作用。

  其二,對通過的直線的斜率的求解教學(xué),通過給出實際問題,引出疑問引起大家的思考的方式會更加自然一些。比如,一開始便推出“比較過點A(1,1),B(3,4)的`直線和通過點A(1,1),C(3,4.1)的直線”的斜率的大小”,然后得到直觀的感受:直線的斜率和直線上任意兩個點的坐標有關(guān)系。再推導(dǎo)本問題中的兩條直線的斜率公式,最后得到一般的公式。

  其三,”不是所有的直線都有斜率”以及斜率公式具備特定前提條件,在學(xué)習(xí)之處,要指出,但不要過分強調(diào),更符合學(xué)生的認知規(guī)律,使學(xué)生的知識結(jié)構(gòu)能夠逐步完善,知識能力螺旋上升。

  方程意義教學(xué)反思 篇17

  在本章節(jié)中,學(xué)生將在平面直角坐標系中建立直線的代數(shù)方程,運用代數(shù)方法研究它們的幾何性質(zhì)。 用代數(shù)方法研究幾何思路清晰,可以充分運用各種公式解題,解題方法自然。但是,代數(shù)方法一個致命的弱點就是“運算量大,解題過程繁瑣,結(jié)果容易出錯”等等,無疑也影響了解題的質(zhì)量及效率。新課程理念強調(diào):公式教學(xué),不僅要重視公式的應(yīng)用,教師更要充分展示公式的背景,與學(xué)生一道經(jīng)歷公式的形成過程,同時在應(yīng)用中鞏固公式。在推導(dǎo)公式的過程中,要讓學(xué)生充分體驗推導(dǎo)中所體現(xiàn)的數(shù)學(xué)思想、方法,從中學(xué)會學(xué)習(xí),樂于學(xué)習(xí)。

  教學(xué)過程中學(xué)生對函數(shù)圖像及其解析式和曲線及方程之間的聯(lián)系與區(qū)別,概念上還是比較模糊的。初中講直線,是將其視為一次函數(shù),它的解析式是y = kx + b,圖像是一條直線;高中講直線,是將其視為一條平面曲線(更確切地講是點的軌跡),它的方程是二元一次方程,而y = kx + b只是直線方程的一種形式。作為函數(shù)解析式的y = kx + b,x是自變量,y是因變量,只有當自變量x的`值取定,因變量y的值才能確定,它們的地位是“不平等”的。而作為直線方程的y = kx + b,x和y是直線上動點的橫坐標和縱坐標,它們的地位是平等的。函數(shù)的解析式一定可以轉(zhuǎn)化為曲線的方程,但曲線的方程卻不一定能夠轉(zhuǎn)化為函數(shù)的解析式。

  對直線的方程的教學(xué)應(yīng)該強調(diào),直線的方程有5種形式,要用哪種形式是與已知條件相關(guān)的。并且在教學(xué)中一定要強調(diào)每種形式的適用范圍,以防漏解。

  直線的斜率也是學(xué)生容易忽略的地方,解題時容易不對斜率討論而求解,漏掉斜率不存在的情況,在教學(xué)中要反復(fù)強調(diào)的。

  借助直線的方程來研究直線的位置關(guān)系也是學(xué)生第一次接觸,數(shù)與形的結(jié)合,方程與圖像的結(jié)合,是解析幾何的基本研究方法,教學(xué)中應(yīng)反復(fù)強調(diào)方程中的哪些量與圖像中的哪些性質(zhì)相吻合,學(xué)生可以在數(shù)與形之間靈活的轉(zhuǎn)化,那么解析幾何學(xué)起來就輕松多了。

  方程意義教學(xué)反思 篇18

  1.認知基礎(chǔ)的“頑固性”

  心理學(xué)研究表明,當人們熟練地掌握某種法則以后,往往就很難從另一種角度去思考問題,從而也就不容易順利地實現(xiàn)由“過程”向“對象”的轉(zhuǎn)變。在一至四年級,學(xué)生都是根據(jù)四則運算各部分之間的關(guān)系來做計算的,它既是學(xué)生十分熟悉的運算規(guī)律,同時又為新知的學(xué)習(xí)提供了合適的基礎(chǔ)。方程是把已知和未知看作同等的地位,一樣參與運算,從這個角度去看,當然也可以運用四則運算各部分之間的關(guān)系來做。而且,四則運算各部分之間的關(guān)系學(xué)生是先入為主、根深蒂固的',具有相對的“頑固性”,甚至在一定程度上會排斥新學(xué)的等式的性質(zhì),導(dǎo)致思維的“過早封閉”。因此,大多數(shù)學(xué)生這樣做也就可以理解了。

  2.兩種方法形式上的相似引發(fā)學(xué)生思維的惰性

  第一種方法書寫較少,形式簡單。第二種方法從表面看,顯得煩瑣、麻煩,而且方程左邊的“40x÷40”可以直接簡寫成“x”,這樣從表面上看就和第一種方法一樣了。根據(jù)已有的經(jīng)驗已經(jīng)能夠正確地解方程了,何必又多此一舉,再去理解、掌握等式的性質(zhì)呢?學(xué)生形成思維惰性,就不會再去深究思路和觀念的不同,更不會創(chuàng)新解法。

  方程變得順理成章、水到渠成。學(xué)生深刻認識到:利用等式的性質(zhì)解方程,看似麻煩,實則簡單,不須思考各部分之間的關(guān)系。這時,教師再適時介紹教材之所以這樣編排是為了中小學(xué)方程解法的銜接,使學(xué)生認識到利用等式的性質(zhì)解方程的必要性,觀念得以更新、深化。

  方程意義教學(xué)反思 篇19

  本課為人教版第四單元教學(xué)內(nèi)容,本教材解方程方法利用了天平平衡的原理,采用了等式的性質(zhì)來教學(xué)解方程。形如x±a=b一類的方程利用等式的基本性質(zhì)一學(xué)生很容易解決,形如ax=b與x÷a=b一類的方程,利用等式的基本性質(zhì)二學(xué)生也很容易解決。但行如a-x=b和a÷x=b此類的方程,學(xué)生就無從下手了,如果利用等式的基本性質(zhì)解,方程變形的過程及算理解釋比較麻煩。解決問題時當需要列出形如a-x=b或a÷x=b的方程時,我就要求學(xué)生根據(jù)實際問題的數(shù)量關(guān)系,列成形如x+b=a或bx=a的方程。但我覺得回避這兩類問題不是很好的方法,否則,我們的教學(xué)就會顯得片面和狹隘。如:一共有128人平均分成Х組,每組8人,學(xué)生們都不假思索地列出了128÷x=8,但是利用等式的基本性質(zhì)學(xué)生就不會解,但你也不能說這個方程列錯了呀。

  因此我當有學(xué)生列了a-x=b或a÷x=b的方程時,我借機教了利用算術(shù)思路解方程(被減數(shù)=差+減數(shù),被除數(shù)=商xx除數(shù))介紹老板教材的解方程的方法。基礎(chǔ)好的孩子就容易接受新的方法,而基礎(chǔ)差的孩子就還是無法解答此類問題。

  另外教材要求,在學(xué)生用等式基本性質(zhì)解方程時,方程的變形過程應(yīng)該要寫出來,等到熟練以后,再逐步省略。這樣的'要求,在實際操作中,帶來了書寫上的繁瑣。因為用等式基本性質(zhì)解方程,每兩步才能完成一次方程的變形。這相對于簡單的方程,尚沒什么,但對一些稍復(fù)雜的方程,其解的過程就顯得太繁瑣了。

  看來教材利用等式的基本性質(zhì)來解簡易方程也是存在著一些問題,不知各位老師有什么好的方法來解決這些問題呢?請不吝賜教!

  方程意義教學(xué)反思 篇20

  一、引入了天平,理解等式的性質(zhì)。

  新教材的突出之處從直觀的天平入手,天平的兩邊同時加上或減去相同的重量,仍然保持平衡,這樣就引入了等式的性質(zhì)1,利用這個性質(zhì),可以解決a+x=b,或a-x=b的方程,接著又從天平的兩邊同時乘或除以相同的非零的數(shù),天平仍然平衡,可以解決ax=b或x÷a=b的方程。從長遠角度看,學(xué)生經(jīng)過這樣的`學(xué)習(xí),對于七年級以后的后續(xù)學(xué)習(xí)減少了障礙,很好地做好了銜接。

  二、兩條腳走路,解決不便的問題。

  教材中有意避免了形如-x或÷x的方程的出現(xiàn),可是在實際中,出現(xiàn)這種方程是不可避免的,如果出現(xiàn)了,我們教者如何解釋呢?學(xué)生又應(yīng)如何解答呢?當然還可以根據(jù)等式的性質(zhì)來進行左右兩邊的化解,使得左邊或右邊變?yōu)樾稳鐇的情況,學(xué)生對于其中的減數(shù)與除數(shù)為未知數(shù)還可以啟發(fā)他運用四則運算的內(nèi)部的關(guān)系來解決。不要怕給了學(xué)生又一種選擇的機會,這樣在用等式的性質(zhì)解決問題不方便時,未嘗不是一種好的方法。

  三、抓住其本質(zhì),簡化方程的過程。

  兩邊同時加上或減去同一個數(shù)的過程,其本質(zhì)是為什么要這么做,當學(xué)生經(jīng)過思考發(fā)現(xiàn)這樣的過程就是把方程的一邊變?yōu)橹皇O挛粗獢?shù)的過程,因而可以簡化一些不必要的多余過程,典型的如x+5=20,x+5-5=20+5,讓學(xué)生通過計算體驗這樣的第二步過程實際即為x=20+5,因而可以使方程的解答變得簡便。學(xué)生覺得當然還是簡便的過程值得效仿,積極性顯得非常之高。

  四、確保正確率,及時進行檢驗。

  原來的檢驗過程需要完整地寫出左邊與右邊相等的過程,小學(xué)生在這個方面就會顯得不耐煩,在經(jīng)歷了一個詳細的檢驗過程之后,然后教給學(xué)生一個簡便的檢驗方法,學(xué)生都很興奮,積極性也很高漲,而且主動性也很好,這樣解決問題的正確率也提高了。

  同時,在這部分的教學(xué)期間,也有一些問題引發(fā)了個人的一些思考。

  首先是學(xué)習(xí)中如何提高學(xué)生的學(xué)習(xí)規(guī)范性,方程的解答是一種規(guī)范的過程,它有一些固定的格式,例如必須寫“解:”,必須“=”上下對齊,要正確必須進行檢驗等,而這些都必須讓學(xué)生多進行訓(xùn)練,多強化練習(xí),理解各種題型的結(jié)構(gòu)。

  其次是對于特殊方程的解答,如減數(shù)與除數(shù)為未知數(shù)的方程,用兩種方法解決的問題,可能會引起部分的的不理解,會不會與教材主倡導(dǎo)的用等式的性質(zhì)解決問題有矛盾呢

【方程意義教學(xué)反思】相關(guān)文章:

《方程的意義》教學(xué)反思09-24

方程的意義教學(xué)反思07-02

方程的意義的教學(xué)反思11-24

《方程的意義》的教學(xué)反思11-24

方程意義教學(xué)反思02-01

方程的意義教學(xué)反思06-28

《方程意義》教學(xué)反思07-11

方程的意義教學(xué)反思【熱門】02-16

《方程的意義》教學(xué)反思【熱】03-03

《方程的意義》教學(xué)反思【薦】03-03