亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

范文資料網(wǎng)>反思報(bào)告>教案大全>《八年級(jí)數(shù)學(xué)教案

八年級(jí)數(shù)學(xué)教案

時(shí)間:2022-11-16 13:35:08 教案大全 我要投稿

八年級(jí)數(shù)學(xué)教案

  作為一位杰出的教職工,時(shí)常需要編寫教案,教案有助于順利而有效地開展教學(xué)活動(dòng)。來參考自己需要的教案吧!下面是小編收集整理的八年級(jí)數(shù)學(xué)教案,僅供參考,希望能夠幫助到大家。

八年級(jí)數(shù)學(xué)教案

八年級(jí)數(shù)學(xué)教案1

  教學(xué)目標(biāo):

  【知識(shí)與技能】

  1、理解并掌握等腰三角形的性質(zhì)。

  2、會(huì)用符號(hào)語(yǔ)言表示等腰三角形的性質(zhì)。

  3、能運(yùn)用等腰三角形性質(zhì)進(jìn)行證明和計(jì)算。

  【過程與方法】

  1、通過觀察等腰三角形的對(duì)稱性,發(fā)展學(xué)生的形象思維。

  2、通過實(shí)踐、觀察、證明等腰三角形的性質(zhì),積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),感受數(shù)學(xué)思考過程的條理性,發(fā)展學(xué)生的合情推理能力。

  3、通過運(yùn)用等腰三角形的性質(zhì)解決有關(guān)問題,提高學(xué)生運(yùn)用幾何語(yǔ)言表達(dá)問題的,運(yùn)用知識(shí)和技能解決問題的能力。

  【情感態(tài)度】

  引導(dǎo)學(xué)生對(duì)圖形的觀察、發(fā)現(xiàn),激發(fā)學(xué)生的好奇心和求知欲,并在運(yùn)用數(shù)學(xué)知識(shí)解答問題的活動(dòng)中取得成功的體驗(yàn)。

  【教學(xué)重點(diǎn)】

  等腰三角形的性質(zhì)及應(yīng)用。

  【教學(xué)難點(diǎn)】

  等腰三角形的證明。

  教學(xué)過程:

  一、情境導(dǎo)入,初步認(rèn)識(shí)

  問題1什么叫等腰三角形?它是一個(gè)軸對(duì)稱圖形嗎?請(qǐng)根據(jù)自己的理解,利用軸對(duì)稱的知識(shí),自己做一個(gè)等腰三角形。要求學(xué)生獨(dú)立思考,動(dòng)手作圖后再互相交流評(píng)價(jià)。

  可按下列方法做出:

  作一條直線l,在l上取點(diǎn)A,在l外取點(diǎn)B,作出點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)C,連接AB,AC,CB,則可得到一個(gè)等腰三角形。

  問題2每位同學(xué)請(qǐng)拿出事先準(zhǔn)備好的長(zhǎng)方形紙片,按下圖方式折疊剪裁,再把它展開,觀察并討論:得到的△ABC有什么特點(diǎn)?

  教師指導(dǎo):上述過程中,剪刀剪過的`兩條邊是相等的,即△ABC中AB=AC,所以△ABC是等腰三角形。

  把剪出的等腰三角形ABC沿折痕對(duì)折,找出其中重合的線段和角。由這些重合的線段和角,你能發(fā)現(xiàn)等腰三角形的性質(zhì)嗎?說說你的猜想。

  在一張白紙上任意畫一個(gè)等腰三角形,把它剪下來,請(qǐng)你試著折一折。你的猜想仍然成立嗎?

  教學(xué)說明:通過學(xué)生的動(dòng)手操作與觀察發(fā)現(xiàn),加深學(xué)生對(duì)等腰三角形性質(zhì)的理解。

  二、思考探究,獲取新知

  教師依據(jù)學(xué)生討論發(fā)言的情況,歸納等腰三角形的性質(zhì):

  ①∠B=∠C→兩個(gè)底角相等。

  ②BD=CD→AD為底邊BC上的中線。

 、邸螧AD=∠CAD→AD為頂角∠BAC的平分線。

  ∠ADB=∠ADC=90°→AD為底邊BC上的高。

  指導(dǎo)學(xué)生用語(yǔ)言敘述上述性質(zhì)。

  性質(zhì)1等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫成:“等邊對(duì)等角”)。

  性質(zhì)2等腰三角形的頂角平分線、底邊上的中線,底邊上的高重合(簡(jiǎn)記為:“三線合一”)。

  教師指導(dǎo)對(duì)等腰三角形性質(zhì)的證明。

  1、證明等腰三角形底角的性質(zhì)。

  教師要求學(xué)生根據(jù)猜想的結(jié)論畫出相應(yīng)的圖形,寫出已知和求證。在引導(dǎo)學(xué)生分析思路時(shí)強(qiáng)調(diào):

  (1)利用三角形全等來證明兩角相等。為證∠B=∠C,需證明以∠B,∠C為元素的兩個(gè)三角形全等,需要添加輔助線構(gòu)造符合證明要求的兩個(gè)三角形。

  (2)添加輔助線的方法可以有多種方式:如作頂角平分線,或作底邊上的中線,或作底邊上的高等。

  2、證明等腰三角形“三線合一”的性質(zhì)。

  【教學(xué)說明】在證明中,設(shè)計(jì)輔助線是關(guān)鍵,引導(dǎo)學(xué)生用全等的方法去處理,在不同的輔助線作法中,由輔助線帶來的條件是不同的,重視這一點(diǎn),要求學(xué)生板書證明過程,以體會(huì)一題多解帶來的體驗(yàn)。

  三、典例精析,掌握新知

  例如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。

  解:∵AB=AC,BD=BC=AD,

  ∴∠ABC=∠C=∠BDC,∠A=∠ABD(等邊對(duì)等角)。

  設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,

  從而∠ABC=∠C=∠BDC=2x。

  于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,

  解得x=36°

  于是在△ABC中,有∠A=36°,∠ABC=∠C=72°。

  【教學(xué)說明】等腰三角形“等邊對(duì)等角”及“三線合一”性質(zhì),可以實(shí)現(xiàn)由邊到角的轉(zhuǎn)化,從而可求出相應(yīng)角的度數(shù)。要在解題過程中,學(xué)會(huì)從復(fù)雜圖形中分解出等腰三角形,用方程思想和數(shù)形結(jié)合思想解決幾何問題。

  四、運(yùn)用新知,深化理解

  第1組練習(xí):

  1、如圖,在下列等腰三角形中,分別求出它們的底角的度數(shù)。

  如圖,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底邊BC上的高,標(biāo)出∠B,∠C,∠BAD,∠DAC的度數(shù),指出圖中有哪些相等線段。

  2、如圖,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度數(shù)。

  第2組練習(xí):

  1、如果△ABC是軸對(duì)稱圖形,則它一定是( )

  A、等邊三角形

  B、直角三角形

  C、等腰三角形

  D、等腰直角三角形

  2、等腰三角形的一個(gè)外角是100°,它的頂角的度數(shù)是( )

  A、80° B、20°

  C、80°和20° D、80°或50°

  3、已知等腰三角形的腰長(zhǎng)比底邊多2cm,并且它的周長(zhǎng)為16cm。求這個(gè)等腰三角形的邊長(zhǎng)。

  4、如圖,在△ABC中,過C作∠BAC的平分線AD的垂線,垂足為D,DE∥AB交AC于E。求證:AE=CE。

  【教學(xué)說明】

  等腰三角形解邊方面的計(jì)算類型較多,引導(dǎo)學(xué)生見識(shí)不同類型,并適時(shí)概括歸納,幫學(xué)生形成解題能力,注意提醒學(xué)生分類討論思想的應(yīng)用。

  【答案】

  第1組練習(xí)答案:

  1、(1)72°;(2)30°

  2、∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD

  3、∠B=77°,∠C=38、5°

  第2組練習(xí)答案:

  1、C

  2、C

  3、設(shè)三角形的底邊長(zhǎng)為xcm,則其腰長(zhǎng)為(x+2)cm,根據(jù)題意,得2(x+2)+x=16。解得x=4!嗟妊切蔚娜呴L(zhǎng)為4cm,6cm和6cm。

  4、延長(zhǎng)CD交AB的延長(zhǎng)線于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC!唷螾=∠ACD。又∵DE∥AP,∴∠CDE=∠P!唷螩DE=∠ACD,∴DE=EC。同理可證:AE=DE。∴AE=CE。

  四、師生互動(dòng),課堂小結(jié)

  這節(jié)課主要探討了等腰三角形的性質(zhì),并對(duì)性質(zhì)作了簡(jiǎn)單的應(yīng)用。請(qǐng)學(xué)生表述性質(zhì),提醒每個(gè)學(xué)生要靈活應(yīng)用它們。

  學(xué)生間可交流體會(huì)與收獲。

八年級(jí)數(shù)學(xué)教案2

  【教學(xué)目標(biāo)】

  知識(shí)與技能

  能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法把多項(xiàng)式分解因式.

  過程與方法

  使學(xué)生經(jīng)歷探索多項(xiàng)式各項(xiàng)公因式的過程,依據(jù)數(shù)學(xué)化歸思想方法進(jìn)行因式分解.

  情感、態(tài)度與價(jià)值觀

  培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進(jìn)學(xué)生的合作交流意識(shí),主動(dòng)積極地積累確定公因式的初步經(jīng)驗(yàn),體會(huì)其應(yīng)用價(jià)值.

  【教學(xué)重難點(diǎn)】

  重點(diǎn):掌握用提公因式法把多項(xiàng)式分解因式.

  難點(diǎn):正確地確定多項(xiàng)式的最大公因式.

  關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

  【教學(xué)過程】

  一、回顧交流,導(dǎo)入新知

  【復(fù)習(xí)交流】

  下列從左到右的變形是否是因式分解,為什么?

  (1)2x2+4=2(x2+2);

  (2)2t2-3t+1=(2t3-3t2+t);

  (3)x2+4xy-y2=x(x+4y)-y2;

  (4)m(x+y)=mx+my;

  (5)x2-2xy+y2=(x-y)2.

  問題:

  1.多項(xiàng)式mn+mb中各項(xiàng)含有相同因式嗎?

  2.多項(xiàng)式4x2-x和xy2-yz-y呢?

  請(qǐng)將上述多項(xiàng)式分別寫成兩個(gè)因式的乘積的形式,并說明理由.

  【教師歸納】我們把多項(xiàng)式中各項(xiàng)都有的公共的因式叫做這個(gè)多項(xiàng)式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

  概念:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成兩個(gè)因式乘積形式,這種分解因式的方法叫做提公因式法.

  二、小組合作,探究方法

  教師提問:多項(xiàng)式4x2-8x6,16a3b2-4a3b2-8ab4各項(xiàng)的公因式是什么?

  【師生共識(shí)】提公因式的方法是先確定各項(xiàng)的公因式再將多項(xiàng)式除以這個(gè)公因式得到另一個(gè)因式,找公因式一看系數(shù)、二看字母,公因式的`系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

  三、范例學(xué)習(xí),應(yīng)用所學(xué)

  例1:把-4x2yz-12xy2z+4xyz分解因式.

  解:-4x2yz-12xy2z+4xyz

  =-(4x2yz+12xy2z-4xyz)

  =-4xyz(x+3y-1)

  例2:分解因式:3a2(x-y)3-4b2(y-x)2

  【分析】觀察所給多項(xiàng)式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.

  解法1:3a2(x-y)3-4b2(y-x)2

  =-3a2(y-x)3-4b2(y-x)2

  =-[(y-x)2·3a2(y-x)+4b2(y-x)2]

  =-(y-x)2[3a2(y-x)+4b2]

  =-(y-x)2(3a2y-3a2x+4b2)

  解法2:3a2(x-y)3-4b2(y-x)2

  =(x-y)2·3a2(x-y)-4b2(x-y)2

  =(x-y)2[3a2(x-y)-4b2]

  =(x-y)2(3a2x-3a2y-4b2)

  例3:用簡(jiǎn)便的方法計(jì)算:

  0.84×12+12×0.6-0.44×12.

  【教師活動(dòng)】引導(dǎo)學(xué)生觀察并分析怎樣計(jì)算更為簡(jiǎn)便.

  解:0.84×12+12×0.6-0.44×12

  =12×(0.84+0.6-0.44)

  =12×1=12.

  【教師活動(dòng)】在學(xué)生完成例3之后,指出例3是因式分解在計(jì)算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?

  四、隨堂練習(xí),鞏固深化

  課本115頁(yè)練習(xí)第1、2、3題.

  【探研時(shí)空】

  利用提公因式法計(jì)算:

  0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

  五、課堂總結(jié),發(fā)展?jié)撃?/p>

  1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)最大公因式.在找最大公因式時(shí)應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項(xiàng)都有的;(3)指數(shù)要找最低次冪.

  2.因式分解應(yīng)注意分解徹底,也就是說,分解到不能再分解為止.

  六、布置作業(yè),專題突破

  課本119頁(yè)習(xí)題14.3第1、4(1)、6題.

八年級(jí)數(shù)學(xué)教案3

  一元二次方程根與系數(shù)的關(guān)系的知識(shí)內(nèi)容主要是以前一單元中的求根公式為基礎(chǔ)的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根與系數(shù)的關(guān)系,以及以數(shù)x1、x2為根的一元二次方程的求方程模型。然后是通過4個(gè)例題介紹了利用根與系數(shù)的關(guān)系簡(jiǎn)化一些計(jì)算的知識(shí)。例如,求方程中的特定系數(shù),求含有方程根的一些代數(shù)式的值等問題,由方程的根確定方程的系數(shù)的方法等等。

  根與系數(shù)的關(guān)系也稱為韋達(dá)定理(韋達(dá)是法國(guó)數(shù)學(xué)家)。韋達(dá)定理是初中代數(shù)中的一個(gè)重要定理。這是因?yàn)橥ㄟ^韋達(dá)定理的學(xué)習(xí),把一元二次方程的研究推向了高級(jí)階段,運(yùn)用韋達(dá)定理可以進(jìn)一步研究數(shù)學(xué)中的許多問題,如二次三項(xiàng)式的因式分解,解二元二次方程組;韋達(dá)定理對(duì)后面函數(shù)的學(xué)習(xí)研究也是作用非凡。

  通過近些年的中考數(shù)學(xué)試卷的分析可以得出:韋達(dá)定理及其應(yīng)用是各地市中考數(shù)學(xué)命題的熱點(diǎn)之一。出現(xiàn)的題型有選擇題、填空題和解答題,有的將其與三角函數(shù)、幾何、二次函數(shù)等內(nèi)容綜合起來,形成難度系數(shù)較大的`壓軸題。

  通過韋達(dá)定理的教學(xué),可以培養(yǎng)學(xué)生的創(chuàng)新意識(shí)、創(chuàng)新精神和綜合分析數(shù)學(xué)問題的能力,也為學(xué)生今后學(xué)習(xí)方程理論打下基礎(chǔ)。

  (二)重點(diǎn)、難點(diǎn)

  一元二次方程根與系數(shù)的關(guān)系是重點(diǎn),讓學(xué)生從具體方程的根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的關(guān)系,并用語(yǔ)言表述,以及由一個(gè)已知方程求作新方程,使新方程的根與已知的方程的根有某種關(guān)系,比較抽象,學(xué)生真正掌握有一定的難度,是教學(xué)的難點(diǎn)。

  (三)教學(xué)目標(biāo)

  1、知識(shí)目標(biāo):要求學(xué)生在理解的基礎(chǔ)上掌握一元二次方程根與系數(shù)的關(guān)系式,能運(yùn)用根與系數(shù)的關(guān)系由已知一元二次方程的一個(gè)根求出另一個(gè)根與未知數(shù),會(huì)求一元二次方程兩個(gè)根的倒數(shù)和與平方數(shù),兩根之差。

八年級(jí)數(shù)學(xué)教案4

  【教學(xué)目標(biāo)】

  知識(shí)目標(biāo):

  解單項(xiàng)式乘以多項(xiàng)式的意義,理解單項(xiàng)式與多項(xiàng)式的乘法法則,會(huì)進(jìn)行單項(xiàng)式與多項(xiàng)式的乘法運(yùn)算。

  能力目標(biāo):

 。1)經(jīng)歷探索乘法運(yùn)算法則的過程,發(fā)展觀察、歸納、猜測(cè)、驗(yàn)證等能力;

 。2)體會(huì)乘法分配律的作用與轉(zhuǎn)化思想,發(fā)展有條理的思考及語(yǔ)言表達(dá)能力。

  情感目標(biāo):

  充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性、主動(dòng)性

  【教學(xué)重點(diǎn)】

  單項(xiàng)式與多項(xiàng)式的乘法運(yùn)算

  【教學(xué)難點(diǎn)】

  推測(cè)整式乘法的運(yùn)算法則。

  【教學(xué)過程】

  一、復(fù)習(xí)引入

  通過對(duì)已學(xué)知識(shí)的復(fù)習(xí)引入課題(學(xué)生作答)

  1.請(qǐng)說出單項(xiàng)式與單項(xiàng)式相乘的法則:

  單項(xiàng)式與單項(xiàng)式相乘,把它們的系數(shù)、相同字母的冪分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里出現(xiàn)的字母,則連同它的指數(shù)作為積的一個(gè)因式。

 。ㄏ禂(shù)×系數(shù))×(同字母冪相乘)×單獨(dú)的.冪

  例如:( 2a2b3c) (-3ab)

  解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c

  = -6a3b4c

  2.說出多項(xiàng)式2x2-3x-1的項(xiàng)和各項(xiàng)的系數(shù)項(xiàng)分別為:2x2、-3x、-1系數(shù)分別為:2、-3、-1

  問:如何計(jì)算單項(xiàng)式與多項(xiàng)式相乘?例如:2a2· (3a2 - 5b)該怎樣計(jì)算?

  這便是我們今天要研究的問題。

  二、新知探究

  已知一長(zhǎng)方形長(zhǎng)為(a+b+c),寬為m,則面積為:m(a+b+c)

  現(xiàn)將這個(gè)長(zhǎng)方形分割為寬為m,長(zhǎng)分別為a、b、c的三個(gè)小長(zhǎng)方形,其面積之和為ma+mb+mc因?yàn)榉指钋昂箝L(zhǎng)方形沒變所以m(a+b+c)=ma+mb+mc

  上一等式根據(jù)什么規(guī)律可以得到?從中可以得出單項(xiàng)式與多項(xiàng)式相乘的運(yùn)算法則該如何表述?(學(xué)生分組討論:前后座為一組;找個(gè)別同學(xué)作答,教師作評(píng))

  結(jié)論單項(xiàng)式與多項(xiàng)式相乘的運(yùn)算法則:

  用單項(xiàng)式分別去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

  用字母表示為:m(a+b+c)=ma+mb+mc

  運(yùn)算思路:單×多

  轉(zhuǎn)化

  分配律

  單×單

  三、例題講解

  例計(jì)算:(1)(-2a2)· (3ab2– 5ab3)

 。2)(- 4x) ·(2x2+3x-1)

  解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②

  (2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①

八年級(jí)數(shù)學(xué)教案5

  教學(xué)目標(biāo):

  1、知識(shí)目標(biāo):探索圖形之間的變換關(guān)系(軸對(duì)稱、平移、旋轉(zhuǎn)及其組合)。

  2、能力目標(biāo):

 、俳(jīng)歷對(duì)具有旋轉(zhuǎn)特征的圖形進(jìn)行觀察、分析、動(dòng)手操作和畫圖等過程,掌握畫圖技能。

 、谀軌虬匆笞鞒龊(jiǎn)單平面圖形旋轉(zhuǎn)后的圖形,并在此基礎(chǔ)上達(dá)到鞏固旋轉(zhuǎn)的有關(guān)性質(zhì)。

  3、情感體驗(yàn)點(diǎn):培養(yǎng)學(xué)生的觀察能力和審美能力,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  重點(diǎn)與難點(diǎn):

  重點(diǎn):圖形之間的變換關(guān)系(軸對(duì)稱、平移、旋轉(zhuǎn)及其組合);

  難點(diǎn):綜合利用各種變換關(guān)系觀察圖形的形成。

  疑點(diǎn):基本圖案不同,形成方式不同。

  教學(xué)方法:

  新授課在教師引導(dǎo)下,以學(xué)生的分組討論、合作交流為主展開教學(xué)。

  教學(xué)過程設(shè)計(jì):

  1、情境導(dǎo)入

  播放自制圖形形成的影片,如圖351。

  2、充分利用本課時(shí)引入開放性的問題:圖351由四部分組成,每部分都包括兩個(gè)小十字,其中一部分能經(jīng)過適當(dāng)?shù)男D(zhuǎn)得到其他三部分嗎?能經(jīng)過平移嗎?能經(jīng)過軸對(duì)稱嗎?還有其它方式嗎?

  問題本身為學(xué)生創(chuàng)設(shè)了一個(gè)探究圖形之間變化關(guān)系的情景,圖形雖十簡(jiǎn)單,但變換方式綜合性強(qiáng),可以讓學(xué)生自由發(fā)揮,各抒已見,后由教師進(jìn)行適當(dāng)歸納小結(jié):

  (1)整個(gè)圖形可以看做是由一個(gè)十字組成部分通過連續(xù)七次平移前后的圖形共同組成;

  (2)整個(gè)圖形也可以看做是由左邊的兩個(gè)十字組成的部分通過三次放置形成的;

  (3)整個(gè)圖形不定期可以看做把左邊的兩個(gè)十字組成的部分先通過平移一次形成左右四個(gè)十字組成的圖形,然后繞圖形中心旋轉(zhuǎn)90度前后的圖形共同組成;

  (4)整個(gè)圖形還可以看做把左邊的兩個(gè)十字組成的部分通過二次軸對(duì)稱形成的。

  (學(xué)生可能還有其他不同描述,教師應(yīng)予以肯定)

  3、通過上述問題的討論,我們看到圖形的平移、旋轉(zhuǎn),軸對(duì)稱變換是圖形變換中最基本的三種變換方式,它們是今后設(shè)計(jì)圖案的主要手段。

  4、利用想一想你能將圖352的左圖,通過平移或旋轉(zhuǎn)得到右圖嗎?

  學(xué)生議論或動(dòng)手操作會(huì)發(fā)現(xiàn)這是不可能的,教材意圖十分明確,要告訴學(xué)生并不是所有圖形都可以通過一次平移或旋轉(zhuǎn)而得到的,從而要求我們今后分析圖形之間的關(guān)系時(shí),要充分利用它們各自的性質(zhì)、特征正確判斷和識(shí)別。那么上述圖形能通過軸對(duì)稱變換從左圖變成右圖嗎?進(jìn)一步讓學(xué)生思考,從而得到結(jié)論是可能的。

  5、例1、怎樣將圖353中的甲圖變成乙圖案?

  通過相對(duì)簡(jiǎn)單活潑的問題,讓學(xué)生能運(yùn)用圖形變換的幾種不同方式解答問題(先旋轉(zhuǎn)再平移后等到或先平移后旋轉(zhuǎn)也可以)

  例2、怎樣將圖354中右邊的圖案變成左邊的圖案?

  留給學(xué)生充足的時(shí)間討論交流。

  (師):哪位同學(xué)有好好方法,請(qǐng)告訴大家!

  (生):以右圖案的中心為旋轉(zhuǎn)中心,將圖案按逆時(shí)針方向旋轉(zhuǎn)900 。

  (生):以右圖案的中心為旋轉(zhuǎn)中心,將圖案順逆時(shí)針方向旋轉(zhuǎn)2700 。

  明確可以通過不同的辦法達(dá)到同樣的效果,激勵(lì)學(xué)生動(dòng)手動(dòng)腦。

  5、學(xué)習(xí)小結(jié)

  (1)內(nèi)容總結(jié)

  兩個(gè)圖案前后變化彩用了哪些方法?(平移、旋轉(zhuǎn),軸對(duì)稱)

  (2)方法歸納

  ①了解并知道圖案變化的一般方法。

 、趫D案變化的方法很多,在生活中要養(yǎng)成多途徑觀察,思考問題的習(xí)慣。

  6、目標(biāo)檢測(cè)

  圖355是由三個(gè)正三角形拼成的',它可以看做由其中一個(gè)三角形經(jīng)過怎樣的變換而得到?

  延伸拓展:

  1、鏈接生活

  鏈接一:奧運(yùn)會(huì)的五環(huán)旗圖案是大家熟悉的圖案,請(qǐng)你根據(jù)所學(xué)知識(shí)分析它的形成。(用課本知識(shí)解釋生活中的圖形變換)

  鏈接二:夏季是荷花盛開的季節(jié),同學(xué)們都贊美過它出淤泥而不染的品質(zhì),很多同學(xué)曾畫過荷花,請(qǐng)你用所學(xué)知識(shí)再畫一朵荷花,看與以前有什么不同的感受(讓學(xué)生進(jìn)一步體會(huì)數(shù)學(xué)與生活的密切聯(lián)系)

  實(shí)踐探索:

  ①實(shí)踐活動(dòng)列舉實(shí)例歸納圖形之間的變換關(guān)系(平移、旋轉(zhuǎn),軸對(duì)稱及其組合)

  ②鞏固練習(xí)課本74頁(yè)中的習(xí)題3.6。

  板書設(shè)計(jì):

  3.5它們是怎樣變過來的。

  軸對(duì)稱、平移、旋轉(zhuǎn)的性質(zhì)例題;

  圖形之間的變換關(guān)系;

八年級(jí)數(shù)學(xué)教案6

  一、教材的地位和作用

  現(xiàn)實(shí)生活中,等腰三角形的應(yīng)用比比皆是、所以,利用“軸對(duì)稱”的知識(shí),進(jìn)一步研究等腰三角形的特殊性質(zhì),不僅是現(xiàn)實(shí)生活的需要,而且從思想方法和知識(shí)儲(chǔ)備上,為今后研究“四邊形”和“圓”的性質(zhì)打下堅(jiān)實(shí)的基礎(chǔ)、

  性質(zhì)“等腰三角形的兩個(gè)底角相等”是幾何論證過程中,證明“兩個(gè)角相等”的重要方法之一、“等腰三角形底邊上的三條重要線段重合”的性質(zhì)是今后證明“兩條線段相等” “兩條直線互相垂直”“兩個(gè)角相等”等結(jié)論的重要理論依據(jù)、

  教學(xué)重點(diǎn):

  1、讓學(xué)生主動(dòng)經(jīng)歷思考和探索的過程、

  2、掌握等腰三角形性質(zhì)及其應(yīng)用、

  教學(xué)難點(diǎn):等腰三角形性質(zhì)的理解和探究過程、

  二、學(xué)情分析

  本年級(jí)的學(xué)生已經(jīng)研究過一般三角形的性質(zhì),積累了一定的經(jīng)驗(yàn),動(dòng)手能力強(qiáng),善于與同伴交流,這就為本節(jié)課的學(xué)習(xí)做好了知識(shí)、能力、情感方面的準(zhǔn)備、不同層次的學(xué)生因?yàn)榛A(chǔ)不同,在學(xué)習(xí)中必然會(huì)出現(xiàn)相異構(gòu)想,這也將是我在教學(xué)過程中著重關(guān)注的一點(diǎn)、

  三、目標(biāo)分析

  知識(shí)與技能

  1、了解等腰三角形的有關(guān)概念和掌握等腰三角形的性質(zhì)

  2、了解等邊三角形的概念并探索其性質(zhì)

  3、運(yùn)用等腰三角形的性質(zhì)解決問題

  過程與方法

  1、通過觀察等腰三角形的對(duì)稱性,發(fā)展學(xué)生的形象思維、

  2、探索等腰三角形的性質(zhì)時(shí),經(jīng)歷了觀察、動(dòng)手實(shí)踐、猜想、驗(yàn)證等數(shù)學(xué)過程,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),發(fā)展了學(xué)生的歸納推理,類比遷移的能力、在與他人交流的過程中,能運(yùn)用數(shù)學(xué)語(yǔ)言合乎邏輯的進(jìn)行討論和質(zhì)疑,提高了數(shù)學(xué)語(yǔ)言表達(dá)能力、

  情感態(tài)度價(jià)值觀:

  1、通過情境創(chuàng)設(shè),使學(xué)生感受到等腰三角形就在自己的身邊,從而使學(xué)生認(rèn)識(shí)到學(xué)習(xí)等腰三角形的必要性、

  2、通過等腰三角形的性質(zhì)的歸納,使學(xué)生認(rèn)識(shí)到科學(xué)結(jié)論的發(fā)現(xiàn),是一個(gè)不斷完善的過程,培養(yǎng)學(xué)生堅(jiān)強(qiáng)的意志品質(zhì)、

  3、通過小組合作,發(fā)展學(xué)生互幫互助的精神,體驗(yàn)合作學(xué)習(xí)中的樂趣和成就感、

  四、教法分析

  根據(jù)學(xué)生已有的認(rèn)知,采取了激疑引趣——猜想探究——應(yīng)用體驗(yàn)——建構(gòu)延伸的教學(xué)模式,并利用多媒體輔助教學(xué)、

  設(shè)計(jì)意圖

  同學(xué)們,我們?cè)谄吣昙?jí)已研究了一般三角形的性質(zhì),今天我們一起來探究特殊的三角形:等腰三角形、

  等腰三角形的定義

  有兩條邊相等的三角形叫做等腰三角形、

  等腰三角形中,相等的兩邊都叫做腰,另一邊叫做底邊,兩腰的夾角叫做頂角、腰和底邊的夾角叫做底角、

  提出問題:生活中有哪些現(xiàn)象讓你聯(lián)想到等腰三角形?

  首先讓學(xué)生明確:本學(xué)段的幾何圖形都是按一般的到特殊的順序研究的

  通過學(xué)生描述等腰三角形在生活中的應(yīng)用,讓學(xué)生感受到數(shù)學(xué)就在我們身邊,以及研究等腰三角形的必要性、

  剪紙游戲

  你能利用手中的這個(gè)矩形紙片剪出一個(gè)等腰三角形嗎?注意安全呦!

  學(xué)情分析:

  大部分學(xué)生會(huì)有自己的想法,根據(jù)軸對(duì)稱圖形的性質(zhì),利用對(duì)折紙片,再“剪一刀”就是就得到了兩條“腰”;

  可能還有的同學(xué)會(huì)利用正方形的折法,獲得特殊的等腰直角三角形;

  可能還有同學(xué)先畫圖,再依線條剪得、

  在這個(gè)過程中,注重落實(shí)三維目標(biāo)、讓學(xué)生在獲取新知的過程中更好的認(rèn)識(shí)自我,建立自信、我不失時(shí)機(jī)的對(duì)學(xué)生給予鼓勵(lì)和表?yè)P(yáng),使活動(dòng)更加深入,課堂充滿愉悅和溫馨、

  知其然,更重要的是知其所以然、因此,我力求讓學(xué)生關(guān)注剪法的'理性思考、

  我設(shè)計(jì)了問題:你是如何想到的?為的是剖析學(xué)生的思維過程:“折疊”就是為了得到“對(duì)稱軸”,“剪一刀”就是就得到了兩條“腰”,由“重合”保證了“等腰”、這樣就建立了“操作”與“證明”的中間橋梁、從實(shí)際操作中得到證明的方法,也為發(fā)現(xiàn)“三線合一”做了鋪墊、

  提出問題:

  等腰三角形還有什么性質(zhì)?請(qǐng)?zhí)岢瞿愕牟孪,?yàn)證你的猜想?并填寫在學(xué)案上、

  合作小組活動(dòng)規(guī)則:

  1、有主記錄員記錄小組的結(jié)論;

  2、定出小組的主發(fā)言人(其它同學(xué)可作補(bǔ)充);

  3、小組探究出的結(jié)論是什么?

  4、說明你們小組所獲得結(jié)論的理由、

  等腰三角形的性質(zhì):

  性質(zhì)一:等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱“等邊對(duì)等角”)、

  性質(zhì)二:等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(簡(jiǎn)稱“三線合一”)、

  學(xué)情分析:這個(gè)環(huán)節(jié)是本節(jié)課的重點(diǎn),也是教學(xué)難點(diǎn)、盡管在教學(xué)過程中,因?yàn)閷W(xué)生的相異構(gòu)想,數(shù)學(xué)猜想的初始敘述不準(zhǔn)確,甚至不正確,但我不會(huì)立即去糾正他們,而是讓同學(xué)們不斷地質(zhì)疑﹑辨析、研討和歸納,逐漸完善結(jié)論、讓他們真正經(jīng)歷數(shù)學(xué)知識(shí)的形成過程,真正的體現(xiàn)以人為本的教學(xué)理念,努力創(chuàng)設(shè)和諧的教育教學(xué)的生態(tài)環(huán)境、

  通過設(shè)置恰當(dāng)?shù)膭?dòng)手實(shí)踐活動(dòng),引導(dǎo)學(xué)生經(jīng)歷觀察、動(dòng)手實(shí)踐、猜想、驗(yàn)證等數(shù)學(xué)探究活動(dòng),這種探究的學(xué)習(xí)過程,恰恰是研究幾何圖形性質(zhì)的一般規(guī)律和方法、

  (1)在此環(huán)節(jié)中,我的教學(xué)要充分把握好“四讓”:能讓學(xué)生觀察的,盡量讓學(xué)生觀察;能讓學(xué)生思考的,盡量讓學(xué)生思考;能讓學(xué)生表達(dá)的,盡量讓學(xué)生表達(dá);能讓學(xué)生作結(jié)論的,盡量讓學(xué)生作結(jié)論、

  這種教學(xué)方式,把學(xué)習(xí)的過程真正還給學(xué)生,不怕學(xué)生說不好,不怕學(xué)生出問題,其實(shí)學(xué)生說不好的地方、學(xué)生出問題的地方都正是我們應(yīng)該教的地方,是教學(xué)的切入點(diǎn)、著眼點(diǎn)、增長(zhǎng)點(diǎn)、

  (2)教師在這個(gè)過程中,充分聽取和參與學(xué)生的小組討論,對(duì)有困難的學(xué)生,及時(shí)指導(dǎo)、

  鞏固知識(shí)

  1、等腰三角形頂角為70°,它的另外兩個(gè)內(nèi)角的度數(shù)分別為________;

  2、等腰三角形一個(gè)角為70°,它的另外兩個(gè)內(nèi)角的度數(shù)分別為_____;

  3、等腰三角形一個(gè)角為100°,它的另外兩個(gè)內(nèi)角的度數(shù)分別為_____、

  內(nèi)化知識(shí)

  1、如圖1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度數(shù)嗎?

  知識(shí)遷移

  等邊三角形有什么特殊的性質(zhì)?簡(jiǎn)單地?cái)⑹隼碛伞?/p>

  等邊三角形的性質(zhì)定理:

  等邊三角形的各角都相等,并且每一個(gè)角都等于60°、

  拓展延伸

  如圖2,在△ABC中,AB=AC,點(diǎn)D,E在BC上,AD=AE,你能說明BD=EC?

  由于學(xué)生之間存在知識(shí)基礎(chǔ)、經(jīng)驗(yàn)和能力的差異,我為學(xué)生提供了層次分明的反饋練習(xí)、將練習(xí)從易到難,從簡(jiǎn)到繁,以適應(yīng)不同階段、不同層次的學(xué)生的需要、讓學(xué)生拾階而上,逐步掌握知識(shí),使學(xué)困生達(dá)到簡(jiǎn)單運(yùn)用水平,中等生達(dá)到綜合運(yùn)用水平,優(yōu)等生達(dá)到創(chuàng)建水平、

  暢談收獲

  總結(jié)活動(dòng)情況,重在肯定與鼓勵(lì)、引導(dǎo)學(xué)生從本課學(xué)習(xí)中所得到的新知識(shí),運(yùn)用的數(shù)學(xué)思想方法,新舊知識(shí)的聯(lián)系等方面進(jìn)行反思,提高學(xué)生自主建構(gòu)知識(shí)網(wǎng)絡(luò)、分析解決問題的能力、

  幫助學(xué)生梳理知識(shí),回顧探究過程中所用到的從特殊到一般的數(shù)學(xué)方法,啟發(fā)學(xué)生更深層次的思考,為學(xué)生的下一步學(xué)習(xí)做好鋪墊、

  反思過程不僅是學(xué)生學(xué)習(xí)過程的繼續(xù),更重要的是一種提高和發(fā)展自己的過程、

  基礎(chǔ)性作業(yè):P65習(xí)題1、2、3、4

八年級(jí)數(shù)學(xué)教案7

  一、平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移。

  1.平移

  2.平移的性質(zhì):

 、沤(jīng)過平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等;

 、茖(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等。

  ⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。

  (4)平移后的圖形與原圖形全等。

  3.簡(jiǎn)單的平移作圖

 、俅_定個(gè)圖形平移后的位置的條件:

 、判枰瓐D形的位置;

  ⑵需要平移的方向;

 、切枰揭频木嚯x或一個(gè)對(duì)應(yīng)點(diǎn)的'位置。

 、谧髌揭坪蟮膱D形的方法:

 、耪页鲫P(guān)鍵點(diǎn);⑵作出這些點(diǎn)平移后的對(duì)應(yīng)點(diǎn);

  ⑶將所作的對(duì)應(yīng)點(diǎn)按原來方式順次連接,所得的;

  二、旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn),這個(gè)定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角稱為旋轉(zhuǎn)角。

  1.旋轉(zhuǎn)

  2.旋轉(zhuǎn)的性質(zhì)

 、判D(zhuǎn)變化前后,對(duì)應(yīng)線段,對(duì)應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。

 、菩D(zhuǎn)過程中,圖形上每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度。

 、侨我庖粚(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。

 、刃D(zhuǎn)前后的兩個(gè)圖形全等。

  3.簡(jiǎn)單的旋轉(zhuǎn)作圖

 、乓阎瓐D,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)點(diǎn),求作旋轉(zhuǎn)后的圖形。

 、埔阎瓐D,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)線段,求作旋轉(zhuǎn)后的圖形。

 、且阎瓐D,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。

  三、分析組合圖案的形成

 、俅_定組合圖案中的“基本圖案”

 、诎l(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系

  ③探索該圖案的形成過程,類型有:⑴平移變換;⑵旋轉(zhuǎn)變換;⑶軸對(duì)稱變換;⑷旋轉(zhuǎn)變換與平移變換的組合;

 、尚D(zhuǎn)變換與軸對(duì)稱變換的組合;⑹軸對(duì)稱變換與平移變換的組合。

八年級(jí)數(shù)學(xué)教案8

  一、教學(xué)目標(biāo):

  1、加深對(duì)加權(quán)平均數(shù)的理解

  2、會(huì)根據(jù)頻數(shù)分布表求加權(quán)平均數(shù),從而解決一些實(shí)際問題

  3、會(huì)用計(jì)算器求加權(quán)平均數(shù)的值

  二、重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:

  1、重點(diǎn):根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)

  2、難點(diǎn):根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)

  3、難點(diǎn)的突破方法:

  首先應(yīng)先復(fù)習(xí)組中值的定義,在七年級(jí)下教材P72中已經(jīng)介紹過組中值定義。因?yàn)樵诟鶕?jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值過程中要用到組中值去代替一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)的值,所以有必要在這里復(fù)習(xí)組中值定義。

  應(yīng)給學(xué)生介紹為什么可以利用組中值代替一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)的值,以及這樣代替的好處、不妨舉一個(gè)例子,在一組中如果數(shù)據(jù)分布較為均勻時(shí),比如教材P140探究問題的表格中的第三組數(shù)據(jù),它的范圍是41≤X≤61,共有20個(gè)數(shù)據(jù),若分布較為平均,41、42、43、44…60個(gè)出現(xiàn)1次,那么這組數(shù)據(jù)的和為41+42+…+60=1010。而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當(dāng)數(shù)據(jù)分布較為平均時(shí)組中值恰好近似等于它的平均數(shù)。所以利用組中值X頻數(shù)去代替這組數(shù)據(jù)的和還是比較合理的,而且這樣做的好處是簡(jiǎn)化了計(jì)算量。

  為了更好的理解這種近似計(jì)算的方法和合理性,可以讓學(xué)生去讀統(tǒng)計(jì)表,體會(huì)表格的實(shí)際意義。

  三、例習(xí)題的意圖分析

  1、教材P140探究欄目的意圖。

  (1)、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計(jì)算方法。

  (2)、加深了對(duì)“權(quán)”意義的'理解:當(dāng)利用組中值近似取代替一組數(shù)據(jù)中的平均值時(shí),頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán)。

  這個(gè)探究欄目也可以幫助學(xué)生去回憶、復(fù)習(xí)七年級(jí)下的關(guān)于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義。

  2、教材P140的思考的意圖。

  (1)、使學(xué)生通過思考這兩個(gè)問題過程中體會(huì)利用統(tǒng)計(jì)知識(shí)可以解決生活中的許多實(shí)際問題

  (2)、幫助學(xué)生理解表中所表達(dá)出來的信息,培養(yǎng)學(xué)生分析數(shù)據(jù)的能力。

  3、P141利用計(jì)算器計(jì)算平均值

  這部分篇幅較小,與傳統(tǒng)教材那種詳細(xì)介紹計(jì)算器使用方法產(chǎn)生明顯對(duì)比。一則由于學(xué)校中學(xué)生使用計(jì)算器不同,其操作過程有差別亦不同,再者,各種計(jì)算器的使用說明書都有詳盡介紹,同時(shí)也說明在今后中考趨勢(shì)仍是不允許使用計(jì)算器。所以本節(jié)課的重點(diǎn)內(nèi)容不是利用計(jì)算器求加權(quán)平均數(shù),但是掌握其使用方法確實(shí)可以運(yùn)算變得簡(jiǎn)單。統(tǒng)計(jì)中一些數(shù)據(jù)較大、較多的計(jì)算也變得容易些了。

  四、課堂引入

  采用教材原有的引入問題,設(shè)計(jì)的幾個(gè)問題如下:

  (1)、請(qǐng)同學(xué)讀P140探究問題,依據(jù)統(tǒng)計(jì)表可以讀出哪些信息

  (2)、這里的組中值指什么,它是怎樣確定的?

  (3)、第二組數(shù)據(jù)的頻數(shù)5指什么呢?

  (4)、如果每組數(shù)據(jù)在本組中分布較為均勻,比組數(shù)據(jù)的平均值和組中值有什么關(guān)系。

  五、隨堂練習(xí)

  1、某校為了了解學(xué)生作課外作業(yè)所用時(shí)間的情況,對(duì)學(xué)生作課外作業(yè)所用時(shí)間進(jìn)行調(diào)查,下表是該校初二某班50名學(xué)生某一天做數(shù)學(xué)課外作業(yè)所用時(shí)間的情況統(tǒng)計(jì)表

  所用時(shí)間t(分鐘)人數(shù)

  0

  0<≤ 6

  20

  30

  40

  50

  (1)、第二組數(shù)據(jù)的組中值是多少?

  (2)、求該班學(xué)生平均每天做數(shù)學(xué)作業(yè)所用時(shí)間

  2、某班40名學(xué)生身高情況如下圖,

  請(qǐng)計(jì)算該班學(xué)生平均身高

  答案1.(1).15. (2)28. 2. 165

  六、課后練習(xí):

  1、某公司有15名員工,他們所在的部門及相應(yīng)每人所創(chuàng)的年利潤(rùn)如下表

  部門A B C D E F G

  人數(shù)1 1 2 4 2 2 5

  每人創(chuàng)得利潤(rùn)20 5 2.5 2 1.5 1.5 1.2

  該公司每人所創(chuàng)年利潤(rùn)的平均數(shù)是多少萬元?

  2、下表是截至到20xx年費(fèi)爾茲獎(jiǎng)得主獲獎(jiǎng)時(shí)的年齡,根據(jù)表格中的信息計(jì)算獲費(fèi)爾茲獎(jiǎng)得主獲獎(jiǎng)時(shí)的平均年齡?

  年齡頻數(shù)

  28≤X<30 4

  30≤X<32 3

  32≤X<34 8

  34≤X<36 7

  36≤X<38 9

  38≤X<40 11

  40≤X<42 2

  3、為調(diào)查居民生活環(huán)境質(zhì)量,環(huán)保局對(duì)所轄的50個(gè)居民區(qū)進(jìn)行了噪音(單位:分貝)水平的調(diào)查,結(jié)果如下圖,求每個(gè)小區(qū)噪音的平均分貝數(shù)。

  答案:1.約2.95萬元2.約29歲3.60.54分貝

八年級(jí)數(shù)學(xué)教案9

  教學(xué)目標(biāo):

  (1)理解通分的意義,理解最簡(jiǎn)公分母的意義;

  (2)掌握分式的通分法則,能熟練掌握通分運(yùn)算。

  教學(xué)重點(diǎn):分式通分的理解和掌握。

  教學(xué)難點(diǎn):分式通分中最簡(jiǎn)公分母的確定。

  教學(xué)工具:投影儀

  教學(xué)方法:啟發(fā)式、討論式

  教學(xué)過程:

  (一)引入

  (1)如何計(jì)算:

  由此讓學(xué)生復(fù)習(xí)分?jǐn)?shù)通分的意義、通分的根據(jù)、通分的法則以及最簡(jiǎn)公分母的概念。

  (2)如何計(jì)算:

  (3)何計(jì)算:

  引導(dǎo)學(xué)生思考,猜想如何求解?

  (二)新課

  1、類比分?jǐn)?shù)的通分得到分式的通分:

  把幾個(gè)異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

  注意:通分保證

  (1)各分式與原分式相等;

  (2)各分式分母相等。

  2.通分的依據(jù):分式的基本性質(zhì).

  3.通分的關(guān)鍵:確定幾個(gè)分式的最簡(jiǎn)公分母.

  通常取各分母的所有因式的最高次冪的積作最簡(jiǎn)公分母,這樣的公分母叫做最簡(jiǎn)公分母.

  根據(jù)分式通分和最簡(jiǎn)公分母的定義,將分式通分:

  最簡(jiǎn)公分母為:

  然后根據(jù)分式的基本性質(zhì),分別對(duì)原來的各分式的分子和分母乘一個(gè)適當(dāng)?shù)恼,使各分式的分母都化為通分如下:xxx

  通過本例使學(xué)生對(duì)于分式的通分大致過程和思路有所了解。讓學(xué)生歸納通分的思路過程。

  例1 通分:xxx

  分析:讓學(xué)生找分式的公分母,可設(shè)問“分母的`系數(shù)各不相同如何解決?”,依據(jù)分?jǐn)?shù)的通分找最小公倍數(shù)。

  解:∵ 最簡(jiǎn)公分母是12xy2,

  小結(jié):各分母的系數(shù)都是整數(shù)時(shí),通常取它們的系數(shù)的最小公倍數(shù)作為最簡(jiǎn)公分母的系數(shù).

  解:∵最簡(jiǎn)公分母是10a2b2c2,

  由學(xué)生歸納最簡(jiǎn)公分母的思路。

  分式通分中求最簡(jiǎn)公分母概括為:(1)取各分母系數(shù)的最小公倍數(shù);(2)凡出現(xiàn)的字母為底的冪的因式都要取;(3)相同字母的冪的因式取指數(shù)最大的。取這些因式的積就是最簡(jiǎn)公分母。

八年級(jí)數(shù)學(xué)教案10

  總課時(shí):7課時(shí) 使用人:

  備課時(shí)間:第八周 上課時(shí)間:第十周

  第4課時(shí):5、2平面直角坐標(biāo)系(2)

  教學(xué)目標(biāo)

  知識(shí)與技能

  1.在給定的直角坐標(biāo)系下,會(huì)根據(jù)坐標(biāo)描出點(diǎn)的位置;

  2.通過找點(diǎn)、連線、觀察,確定圖形的大致形狀的問題,能進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。

  過程與方法

  1.經(jīng)歷畫坐標(biāo) 系、描點(diǎn)、連線、看圖以及由點(diǎn)找坐標(biāo)等過程,發(fā)展學(xué)生的數(shù)形結(jié)合思想,培養(yǎng)學(xué)生的合作 交流能力;

  2.通過由點(diǎn)確定坐標(biāo)到根據(jù)坐標(biāo)描點(diǎn)的轉(zhuǎn)化過程,進(jìn)一步培養(yǎng)學(xué)生的轉(zhuǎn)化意識(shí)。

  情感態(tài)度與價(jià)值觀

  通過生動(dòng)有趣的教學(xué)活動(dòng),發(fā)展學(xué)生的合情推理能力和豐富的情感、態(tài)度,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  教學(xué)重點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。

  教學(xué)難點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。

  教學(xué)過程

  第一環(huán)節(jié) 感 受生活中的情境,導(dǎo)入新課(10分鐘,學(xué)生自己繪圖找點(diǎn))

  在上節(jié)課中我們學(xué)習(xí)了平面直角坐標(biāo)系的定義,以及橫軸、縱軸、點(diǎn) 的坐標(biāo)的定義,練習(xí)了在平面直角坐標(biāo)系中由點(diǎn)找坐標(biāo),還探討了橫坐標(biāo)或縱坐標(biāo)相同的點(diǎn)的連線與坐標(biāo)軸的關(guān)系,坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)。

  練習(xí):指出下列 各點(diǎn)以及所在象限或坐標(biāo)軸:

  A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(xiàn)(0, ), G(0,0) (抽取學(xué)生作答)

  由點(diǎn)找坐標(biāo)是已知點(diǎn)在直角坐標(biāo) 系中的位置,根據(jù)這點(diǎn)在方格紙上對(duì)應(yīng)的x軸、y軸上的數(shù)字寫出它的坐標(biāo),反過來,已知坐標(biāo),讓 你在直角坐標(biāo)系中找點(diǎn),你能找到嗎?這就是本節(jié)課的內(nèi)容。

  第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)

  1.請(qǐng)同學(xué)們拿出準(zhǔn)備好的方格紙,自己建立平面直角坐標(biāo)系,然后按照我給出的坐標(biāo),在直角坐標(biāo)系中描點(diǎn),并依次用線段連接起來。

  (-9,3),(-9,0),(-3,0),( -3,3)

  ( 學(xué)生操作完畢后)

  2.(出示投影)還是在這個(gè)平面直角坐標(biāo)系中,描出下列各組內(nèi)的點(diǎn)用線段依次連接起來。

  (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);

  (2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);

  (3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);

  (4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

  觀察所得的圖形,你覺得它像什么?

  分成4人小組,大家合作在剛才建立的平面直角坐標(biāo)系中(選出小組中最好的)添畫。各人分工,每人畫一小題?茨膫(gè)小組做得最快?

  (出示學(xué)生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?

  這個(gè)圖形像一棟房子旁邊還有一棵大樹。

  3.做一做

  (出示投影)

  在書上已建立的`直角坐標(biāo)系畫,要求每位同學(xué)獨(dú)立完成。

  (學(xué)生描點(diǎn)、畫圖)

  (拿出一位做對(duì)的學(xué)生的作品投影)

  你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?

  (像貓臉)

  第三環(huán)節(jié) 學(xué)有所用.(10分鐘,先獨(dú)立完成,后小組討論)

  (補(bǔ)充)1.在直角坐標(biāo)系中描出下列各點(diǎn),并將各組內(nèi)的點(diǎn)用線段順次連接起來。

  (1)(0,3),(-4,0),(0,-3),(4,0),(0,3);

  (2)(0,0),(4,-3),(8,0),(4,3),(0,0);

  (3)(2,0)

  觀察所得的圖形,你覺得它像什么?(像移動(dòng)的菱形)

  2.在直角坐標(biāo)系中,設(shè)法找到若干個(gè)點(diǎn)使得連接各點(diǎn)所得的封閉圖形是如下圖所示的十字。

  先獨(dú)立完成,然后小組討論是否正確。

  第四環(huán)節(jié) 感悟與收獲(5分鐘,學(xué)生總結(jié),全班交流)

  本節(jié)課在復(fù)習(xí)上節(jié)課的基礎(chǔ)上,通過找點(diǎn)、連 線、觀察,確定圖形的大致形狀,進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。

  在例題和練習(xí)中,我們畫出了不少美麗的圖形,自己設(shè)計(jì)一些圖形,并把圖形放在直角坐標(biāo)系下,寫出點(diǎn)的坐標(biāo)。

  第五環(huán)節(jié) 布置作業(yè)

  習(xí)題5、4

  A組(優(yōu)等生)1、2、3

  B組(中等生)1、2

  C組(后三分之一生)1、2

八年級(jí)數(shù)學(xué)教案11

  【教學(xué)目標(biāo)】

  一、教學(xué)知識(shí)點(diǎn)

  1.命題的組成.

  2.命題真假的判斷。

  二、能力訓(xùn)練要求:

  1.使學(xué)生能夠分清命題的條件和結(jié)論,能判斷命題的真假

  2.通過舉例判定一個(gè)命題是假命題,使學(xué)生學(xué)會(huì)反面思考問題的方法

  三、情感與價(jià)值觀要求:

  1.通過反例說明假命題,使學(xué)生認(rèn)識(shí)到任何事情都是正反兩方面對(duì)立統(tǒng)一

  2.幫助學(xué)生了解數(shù)學(xué)發(fā)展史,拓展視野,激發(fā)學(xué)習(xí)興趣

  3.通過對(duì)《原本》介紹,使學(xué)生感受數(shù)學(xué)發(fā)展史和人類文明價(jià)值

  【教學(xué)重點(diǎn)】準(zhǔn)確的找出命題的條件和結(jié)論

  【教學(xué)難點(diǎn)】理解判斷一個(gè)真命題需要證明

  【教學(xué)方】探討、合作交流

  【教具準(zhǔn)備】投影片

  【教學(xué)過程】

  一、情景創(chuàng)設(shè)、引入新課

  師:如果這個(gè)星期不下雨,我們就去郊游,這是命題嗎?分析這句話,這個(gè)周日,我們郊游一定能成行嗎?為什么?

  新課:

  (1)觀察下列命題,你能發(fā)現(xiàn)這些命題有什么共同結(jié)構(gòu)特征?與同伴交流。

  1.如果兩個(gè)三角形的三條邊對(duì)應(yīng)相等,那么這兩個(gè)三角形全等。

  2.如果一個(gè)四邊形的一組對(duì)邊平行且相等,那么這個(gè)四邊形是平行四邊形。

  3.如果一個(gè)三角形是等腰三角形,那么這個(gè)三角形的兩個(gè)底角相等。

  4.如果一個(gè)四邊形的對(duì)角線相等,那么這個(gè)四邊形是矩形。

  5.如果一個(gè)四邊形的兩條對(duì)角線相互垂直,那么這個(gè)四邊形是菱形。

  師:由此可見,每個(gè)命題都是由條件和結(jié)論兩部分組成的,條件是已知的事項(xiàng),結(jié)論是由已知事項(xiàng)推出的事項(xiàng)。一般地,命題都可以寫成“如果……那么……”的形式,其中“如果”引出部分是條件,“那么”引出部分是結(jié)論。

  二、例題講解:

  例1:師:下列命題的條件是什么?結(jié)論是什么?

  1.如果兩個(gè)角相等,那么他們是對(duì)頂角;

  2.如果a>b,b>c,那么a=c;

  3.兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等;

  4.菱形的四條邊都相等;

  5.全等三角形的面積相等。

  例題教學(xué)建議:1:其中(1)、(2)請(qǐng)學(xué)生直接回答,(3)、(4)、(5)請(qǐng)學(xué)生分成小組交流然后回答。

  2:有的命題的描述沒有用“如果……那么……”的形式,在分析時(shí)可以擴(kuò)展成這種形式,以分清條件和結(jié)論。

  例2:上述命題哪些是正確的,哪些是不正確的?你是怎么知道它是不正確的?與同伴交流。

  師:正確的命題叫真命題,不正確的命題叫假命題。要說明一個(gè)命題是假命題,通?梢耘e一個(gè)例子,使之具備命題的條件,卻不具備命題的結(jié)論,即反例。

  教學(xué)建議:對(duì)于反例的要求可以采取啟發(fā)式層層遞進(jìn)方式給出,即:說明命題錯(cuò)誤可以舉例→綜合命題(1)、(2)的兩例,兩例條件具備→例子結(jié)論不吻合→給出如何舉反例要求。

  三、思維拓展:

  拓展1.師:如何證實(shí)一個(gè)命題是真命題呢?請(qǐng)同學(xué)們分小組交流一下。

  教學(xué)建議:不急于解決學(xué)生怎么證實(shí)真命題的問題,可按以下程序設(shè)計(jì)教學(xué)過程

 。1)首先給學(xué)生介紹歐幾里得的《原本》

 。2)引出概念:公理、定理,證明

 。3)啟發(fā)學(xué)生,現(xiàn)在如何證實(shí)一個(gè)命題的正確性

  (4)給出本套教材所選用如下6個(gè)命題作為公理

 。5)等式性質(zhì)、不等式有關(guān)性質(zhì),等量代換也看作定理。

  拓展2.師:任何公理、定理是命題嗎?是真命題嗎?為什么?

  建議:在學(xué)生回答后歸納總結(jié):公理是經(jīng)過長(zhǎng)期實(shí)踐驗(yàn)證的,不需要再進(jìn)行推理論證都承認(rèn)的真命題。定理是經(jīng)過推理論證的真命題。

  練習(xí)書p197習(xí)題6.31

  四、問題式總結(jié)

  師:經(jīng)過本節(jié)課我們?cè)谝黄鸸餐接懡涣,你了解了有關(guān)命題的哪些知識(shí)?

  建議:可對(duì)學(xué)生進(jìn)行提示性引導(dǎo),如:命題的構(gòu)成特點(diǎn)、命題是否都正確、如何判斷一個(gè)命題是假命題、如何證實(shí)一個(gè)命題是真命題。

  作業(yè):書p197習(xí)題6.32、3

  板書設(shè)計(jì):

  定義與命題

  課時(shí)2

  條件

  1.命題的結(jié)構(gòu)特征

  結(jié)論

  1.假命題——可以舉反例

  2.命題真假的`判別

  2.真命題——需要證明 學(xué)生活動(dòng)一——

  探索命題的結(jié)構(gòu)特征

  學(xué)生觀察、分組討論,得出結(jié)論:

  (1)這五個(gè)命題都是用“如果……那么……”形式敘述的

 。2)這五個(gè)命題都是由已知得到結(jié)論

 。3)這五個(gè)命題都有條件和結(jié)論

  學(xué)生活動(dòng)二——

  探索命題的條件和結(jié)論

  生:命題1、2如果部分是條件,那么部分是結(jié)論;命題3如果兩個(gè)三角形兩角和其中一角對(duì)邊對(duì)應(yīng)相等是條件,那么這兩個(gè)三角形全等是結(jié)論;命題4如果是菱形是條件,那么四條邊相等是結(jié)論;命題5如果兩三角形全等是條件,那么面積相等是結(jié)論。

  學(xué)生活動(dòng)三

  探索命題的真假——如何判斷假命題

  生:可以舉一個(gè)例子,說明命題1是不正確的,如圖:

  已知:∠AOB,∠1=∠2,∠1,∠2不是對(duì)頂角

  生:命題2,若a=10,b=8,c=5,此時(shí)a>b,b>c,但a≠c

  生:由此說明:命題1、2是不正確的

  生:命題3、4、5是正確的

  學(xué)生活動(dòng)四

  探索命題的真假——如何證實(shí)一個(gè)命題是真命題

  學(xué)生交流:

  生:用我們以前學(xué)過的觀察、實(shí)驗(yàn)、驗(yàn)證特例等方法

  生:這些方法往往并不可靠

  生:能夠根據(jù)已知道的真命題證實(shí)呢?

  生:那已經(jīng)知道的真命題又是如何證實(shí)的?

  生:那可怎么辦呢?

  生:可通過證明的方法

  學(xué)生分小組討論得出結(jié)論

  生:命題的結(jié)構(gòu)特征:條件和結(jié)論

  生:命題有真假之分

  生:可以通過舉反例的方法判斷假命題

  生:可通過證明的方法證實(shí)真命題

八年級(jí)數(shù)學(xué)教案12

  一、學(xué)情分析

  本學(xué)期本人繼續(xù)擔(dān)任八年級(jí)(2)班的數(shù)學(xué)教學(xué)工作,八年級(jí)是初中學(xué)習(xí)過程中的關(guān)鍵時(shí)期,學(xué)生基礎(chǔ)的好壞,直接影響到將來是否能升學(xué)。從上期期末考試的成績(jī)來看1班、2班的成績(jī)差異很大,2班有少數(shù)學(xué)生不上進(jìn),思維不緊跟老師,有部分同學(xué)基礎(chǔ)較差,問題較嚴(yán)重。要在本期獲得理想成績(jī),老師和學(xué)生都要付出努力,查漏補(bǔ)缺,充分發(fā)揮學(xué)生是學(xué)習(xí)的主體,教師是教的主體作用,注重方法,培養(yǎng)能力。

  二、教材分析

  本學(xué)期教學(xué)內(nèi)容共計(jì)五章,知識(shí)的前后聯(lián)系,教材的教學(xué)目標(biāo),重、難點(diǎn)分析如下:

  第十七章分式

  本章的主要內(nèi)容包括:分式的概念,分式的基本性質(zhì),分式的約分與通分,分式的加、減、乘、除運(yùn)算,整數(shù)指數(shù)冪的概念及運(yùn)算性質(zhì),分式方程的概念及可化為一元一次方程的分式方程的解法。

  第十八章函數(shù)及其圖像

  函數(shù)是研究現(xiàn)實(shí)世界變化規(guī)律的一個(gè)重要模型,本單元學(xué)生在學(xué)習(xí)了一次函數(shù)后,進(jìn)一步研究反比例函數(shù)。學(xué)生在本章中經(jīng)歷:反比例函數(shù)概念的抽象概括過程,體會(huì)建立數(shù)學(xué)模型的思想,進(jìn)一步發(fā)展學(xué)生的抽象思維能力;經(jīng)歷反比例函數(shù)的圖象及其性質(zhì)的探索過程,在交流中發(fā)展能力這是本章的重點(diǎn)之一;經(jīng)歷本章的重點(diǎn)之二:利用反比例函數(shù)及圖象解決實(shí)際問題的過程,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力;經(jīng)歷函數(shù)圖象信息的識(shí)別應(yīng)用過程,發(fā)展學(xué)生形象思維;能根據(jù)所給信息確定反比例函數(shù)表達(dá)式,會(huì)作反比例函數(shù)圖象,并利用它們解決簡(jiǎn)單的實(shí)際問題。本章的難點(diǎn)在于對(duì)學(xué)生抽象思維的'培養(yǎng),以及提高數(shù)形結(jié)合的意識(shí)和能力。

  第十九章全等三角形

  本章主要內(nèi)容是探索三角形全等的判定方法,領(lǐng)略推理證明的奧秘,由于三角形全等的判定方法與全等三角形的性質(zhì)具有“互逆”的特點(diǎn),所以本章因勢(shì)利導(dǎo),介紹了命題與定理、逆命題與逆命題的有關(guān)知識(shí)。此外,本章教材最后還介紹了幾種常用的基本作圖和簡(jiǎn)單的尺規(guī)作圖的方法。

  第二十章平行四邊形的判定

  本章的內(nèi)容包括平行四邊形的判定;矩形、菱形、正方形等幾種特殊平行四邊形的判定;等腰梯形的判定等幾個(gè)部分。本章首先通過回顧平行四邊形的性質(zhì),由性質(zhì)引出判定方法,在此基礎(chǔ)上,學(xué)習(xí)矩形、菱形、正方形等特殊平行四邊形的判定,最后介紹了等腰梯形的判定與應(yīng)用。本章知識(shí)是在學(xué)習(xí)了平行線、三角形、平行四邊形的性質(zhì)等知識(shí)的基礎(chǔ)上的進(jìn)一步深化和提高,是今后學(xué)習(xí)其他幾何知識(shí)的基礎(chǔ)。

  第二十一章數(shù)據(jù)的整理與初步處理

  本章主要研究平均數(shù)、中位數(shù)、眾數(shù)以及極差、方差等統(tǒng)計(jì)量的統(tǒng)計(jì)意義,學(xué)習(xí)如何利用這些統(tǒng)計(jì)量分析數(shù)據(jù)的集中趨勢(shì)和離散情況,并通過研究如何用樣本的平均數(shù)和方差估計(jì)總體的平均數(shù)和方差,進(jìn)一步體會(huì)用樣本估計(jì)總體的思想。

  三、提高學(xué)科教育質(zhì)量的主要措施:

  1、認(rèn)真做好教學(xué)六認(rèn)真工作。把教學(xué)六認(rèn)真作為提高成績(jī)的主要方法,認(rèn)真研讀新課程標(biāo)準(zhǔn),鉆研新教材,根據(jù)新課程標(biāo)準(zhǔn),擴(kuò)充教材內(nèi)容,認(rèn)真上課,批改作業(yè),認(rèn)真輔導(dǎo),認(rèn)真制作測(cè)試試卷,也讓學(xué)生學(xué)會(huì)認(rèn)真學(xué)習(xí)。

  2、興趣是最好的老師,愛因斯坦如是說。激發(fā)學(xué)生的興趣,給學(xué)生介紹數(shù)學(xué)家,數(shù)學(xué)史,介紹相應(yīng)的數(shù)學(xué)趣題,給出數(shù)學(xué)課外思考題,激發(fā)學(xué)生的興趣。

  3、引導(dǎo)學(xué)生積極參與知識(shí)的構(gòu)建,營(yíng)造民主、和諧、平等、自主、探究、合作、交流、分享發(fā)現(xiàn)快樂的高效的學(xué)習(xí)課堂,讓學(xué)生體會(huì)學(xué)習(xí)的快樂,享受學(xué)習(xí)。引導(dǎo)學(xué)生寫小論文,寫復(fù)習(xí)提綱,使知識(shí)來源于學(xué)生的構(gòu)造。

  4、引導(dǎo)學(xué)生積極歸納解題規(guī)律,引導(dǎo)學(xué)生一題多解,多解歸一,培養(yǎng)學(xué)生透過現(xiàn)象看本質(zhì),提高學(xué)生舉一反三的能力,這是提高學(xué)生素質(zhì)的根本途徑之一,培養(yǎng)學(xué)生的發(fā)散思維,讓學(xué)生處于一種思如泉涌的狀態(tài)。

  5、運(yùn)用新課程標(biāo)準(zhǔn)的理念指導(dǎo)教學(xué),積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。

  6、培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,陶行知說:教育就是培養(yǎng)習(xí)慣,有助于學(xué)生穩(wěn)步提高學(xué)習(xí)成績(jī),發(fā)展學(xué)生的非智力因素,彌補(bǔ)智力上的不足。

  7、指導(dǎo)成立“課外興趣小組”的民間組織,開展豐富多彩的課外活動(dòng),開展對(duì)奧數(shù)題的研究,課外調(diào)查,操作實(shí)踐,帶動(dòng)班級(jí)學(xué)生學(xué)習(xí)數(shù)學(xué),同時(shí)發(fā)展這一部分學(xué)生的特長(zhǎng)。

  8、開展分層教學(xué),布置作業(yè)設(shè)置A、B、C三類分層布置分別適合于差、中、好三類學(xué)生,課堂上的提問照顧好好、中、差三類學(xué)生,使他們都等到發(fā)展。

  9、進(jìn)行個(gè)別輔導(dǎo),優(yōu)生提升能力,扎實(shí)打牢基礎(chǔ)知識(shí),對(duì)差生,一些關(guān)鍵知識(shí),輔導(dǎo)差生過關(guān),為差生以后的發(fā)展鋪平道路。

  10、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的良好習(xí)慣。這些習(xí)慣包括:

 、僬J(rèn)真做作業(yè)的習(xí)?包括作業(yè)前清理好桌面,作業(yè)后認(rèn)真檢查;

  ②預(yù)習(xí)的習(xí)慣;

 、壅J(rèn)真看批改后的作業(yè)并及時(shí)更正的習(xí)慣;

  ④認(rèn)真做好課前準(zhǔn)備的習(xí)慣;

 、菰跁献骶P記的習(xí)慣;

  ⑥妥善保管書籍資料和學(xué)習(xí)用品的習(xí)慣;

  ⑦認(rèn)真閱讀數(shù)學(xué)教材的習(xí)慣。

八年級(jí)數(shù)學(xué)教案13

  菱形

  學(xué)習(xí)目標(biāo)(學(xué)習(xí)重點(diǎn)):

  1.經(jīng)歷探索菱形的識(shí)別方法的過程,在活動(dòng)中培養(yǎng)探究意識(shí)與合作交流的習(xí)慣;

  2.運(yùn)用菱形的識(shí)別方法進(jìn)行有關(guān)推理.

  補(bǔ)充例題:

  例1. 如圖,在△ABC中,AD是△ABC的角平分線。DE∥AC交AB于E,DF∥AB交AC于F.四邊形AEDF是菱形嗎?說明你的理由.

  例2.如圖,平行四邊形ABCD的對(duì) 角線AC的垂直平分線與邊AD、BC分別交于E、F.

  四邊形AFCE是菱形嗎?說明理由.

  例3.如圖 , ABCD是矩形紙片,翻折B、D,使BC、AD恰好落在AC上,設(shè)F、H分別是B、D落在AC上的.兩點(diǎn),E、G分別是折痕CE、AG與AB、CD的交點(diǎn)

  (1)試說明四邊形AECG是平行四邊形;

  (2)若AB=4cm,BC=3cm,求線段EF的長(zhǎng);

  (3)當(dāng)矩形兩邊AB、BC具備怎樣的關(guān)系時(shí),四邊形AECG是菱形.

  課后續(xù)助:

  一、填空題

  1.如果四邊形ABCD是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形

  2.如圖,D、E、F分別是△ABC的邊BC、CA、AB上的點(diǎn),

  且DE∥BA,DF∥ CA

  (1)要使四邊形AFDE是菱形,則要增加條件______________________

  (2)要使四邊形AFDE是矩形,則要增加條件______________________

  二、解答題

  1.如圖,在□ABCD中 ,若2,判斷□ABCD是矩形還是菱形?并說明理由。

  2.如圖 ,平行四邊形A BCD的兩條對(duì)角線AC,BD相交于點(diǎn)O,OA=4,OB=3,AB=5.

  (1) AC,BD互相垂直嗎?為什么?

  (2) 四邊形ABCD是菱形 嗎?

  3.如圖,在□ABCD中,已知ADAB,ABC的平分線交AD于E,EF∥AB交BC于F,試問: 四 邊形ABFE是菱形嗎?請(qǐng)說明理由。

  4.如圖,把一張矩形的紙ABCD沿對(duì)角線BD折疊,使點(diǎn)C落在點(diǎn)E處,BE與AD交于點(diǎn)F.

 、徘笞C:ABF≌

  ⑵若將折疊的圖形恢復(fù)原狀,點(diǎn)F與BC邊上的點(diǎn)M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.

八年級(jí)數(shù)學(xué)教案14

  八年級(jí)下數(shù)學(xué)教案-變量與函數(shù)(2)

  一、教學(xué)目的

  1.使學(xué)生理解自變量的取值范圍和函數(shù)值的意義。

  2.使學(xué)生理解求自變量的取值范圍的兩個(gè)依據(jù)。

  3.使學(xué)生掌握關(guān)于解析式為只含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并會(huì)求其函數(shù)值。

  4.通過求函數(shù)中自變量的取值范圍使學(xué)生進(jìn)一步理解函數(shù)概念。

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):函數(shù)自變量取值的求法。

  難點(diǎn):函靈敏處變量取值的確定。

  三、教學(xué)過程

  復(fù)習(xí)提問

  1.函數(shù)的定義是什么?函數(shù)概念包含哪三個(gè)方面的內(nèi)容?

  2.什么叫分式?當(dāng)x取什么數(shù)時(shí),分式x+2/2x+3有意義?

 。ù穑悍帜咐锖凶帜傅挠欣硎浇蟹质,分母≠0,即x≠3/2。)

  3.什么叫二次根式?使二次根式成立的條件是什么?

  (答:根指數(shù)是2的根式叫二次根式,使二次根式成立的條件是被開方數(shù)≥0。)

  4.舉出一個(gè)函數(shù)的實(shí)例,并指出式中的`變量與常量、自變量與函數(shù)。

  新課

  1.結(jié)合同學(xué)舉出的實(shí)例說明解析法的意義:用教學(xué)式子表示函數(shù)方法叫解析法。并指出,函數(shù)表示法除了解析法外,還有圖象法和列表法。

  2.結(jié)合同學(xué)舉出的實(shí)例,說明函數(shù)的自變量取值范圍有時(shí)要受到限制這就可以引出自變量取值范圍的意義,并說明求自變量的取值范圍的兩個(gè)依據(jù)是:

 。1)自變量取值范圍是使函數(shù)解析式(即是函數(shù)表達(dá)式)有意義。

 。2)自變量取值范圍要使實(shí)際問題有意義。

  3.講解P93中例2。并指出例2四個(gè)小題代表三類題型:(1),(2)題給出的是只含有一個(gè)自變量的整式;(3)題給出的是只含有一個(gè)自變量的分式;(4)題給出的是只含有一個(gè)自變量的二次根式。

  推廣與聯(lián)想:請(qǐng)同學(xué)按上述三類題型自編3個(gè)題,并寫出解答,同桌互對(duì)答案,老師評(píng)講。

  4.講解P93中例3。結(jié)合例3引出函數(shù)值的意義。并指出兩點(diǎn):

 。1)例3中的4個(gè)小題歸納起來仍是三類題型。

 。2)求函數(shù)值的問題實(shí)際是求代數(shù)式值的問題。

  補(bǔ)充例題

  求下列函數(shù)當(dāng)x=3時(shí)的函數(shù)值:

 。1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4)。

  (答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)

  小結(jié)

  1.解析法的意義:用數(shù)學(xué)式子表示函數(shù)的方法叫解析法。

  2.求函數(shù)自變量取值范圍的兩個(gè)方法(依據(jù)):

  (1)要使函數(shù)的解析式有意義。

 、俸瘮(shù)的解析式是整式時(shí),自變量可取全體實(shí)數(shù);

  ②函數(shù)的解析式是分式時(shí),自變量的取值應(yīng)使分母≠0;

  ③函數(shù)的解析式是二次根式時(shí),自變量的取值應(yīng)使被開方數(shù)≥0。

  (2)對(duì)于反映實(shí)際問題的函數(shù)關(guān)系,應(yīng)使實(shí)際問題有意義。

  3.求函數(shù)值的方法:把所給出的自變量的值代入函數(shù)解析式中,即可求出相慶原函數(shù)值。

  練習(xí):P94中1,2,3。

  作業(yè):P95~P96中A組3,4,5,6,7。B組1,2。

  四、教學(xué)注意問題

  1.注意滲透與訓(xùn)練學(xué)生的歸納思維。比如例2、例3中各是4個(gè)小題,對(duì)每一個(gè)例題均可歸納為三類題型。而對(duì)于例2、例3這兩道例題,雖然要求各異,但題目結(jié)構(gòu)仍是三類題型:整式、分式、二次根式。

  2.注意訓(xùn)練與培養(yǎng)學(xué)生的優(yōu)質(zhì)聯(lián)想能力。要求學(xué)生仿照例題自編題目是有效手段。

  3.注意培養(yǎng)學(xué)生對(duì)于“具體問題要具體分析”的良好學(xué)習(xí)方法。比如對(duì)于有實(shí)際意義來確定,由于實(shí)際問題千差萬別,所以我們就要具體分析,靈活處置。

八年級(jí)數(shù)學(xué)教案15

  一、教學(xué)內(nèi)容:

  本節(jié)內(nèi)容是人教版教材八年級(jí)上冊(cè),第十四章第2節(jié)乘法公式的第二課時(shí)——完全平方公式。

  二、教材分析:

  完全平方公式是乘法公式的重要組成部分,也是乘法運(yùn)算知識(shí)的升華,它是在學(xué)生學(xué)習(xí)整式乘法后,對(duì)多項(xiàng)式乘法中出現(xiàn)的一種特殊的算式的總結(jié),體現(xiàn)了從一般到特殊的思想方法。完全平方公式是學(xué)生后續(xù)學(xué)好因式分解、分式運(yùn)算的必備知識(shí),它還是配方法的基本模式,為以后學(xué)習(xí)一元二次方程、函數(shù)等知識(shí)奠定了基礎(chǔ),所以說完全平方公式屬于代數(shù)學(xué)的基礎(chǔ)地位。

  本節(jié)課內(nèi)容是在學(xué)生掌握了平方差公式的基礎(chǔ)上,研究完全平方公式的推導(dǎo)和應(yīng)用,公式的發(fā)現(xiàn)與驗(yàn)證為學(xué)生體驗(yàn)規(guī)律探索提供了一種較好的'模式,培養(yǎng)學(xué)生逐步形成嚴(yán)密的邏輯推理能力。完全平方公式的學(xué)習(xí)對(duì)簡(jiǎn)化某些代數(shù)式的運(yùn)算,培養(yǎng)學(xué)生的求簡(jiǎn)意識(shí)很有幫助。使學(xué)生了解到完全平方公式是有力的數(shù)學(xué)工具。

  重點(diǎn):掌握完全平方公式,會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。

  難點(diǎn):理解公式中的字母含義,即對(duì)公式中字母a、b的理解與正確應(yīng)用。

  三、教學(xué)目標(biāo)

  (1)經(jīng)歷探索完全平方公式的推導(dǎo)過程,掌握完全平方公式,并能正確運(yùn)用公式進(jìn)行簡(jiǎn)單計(jì)算。

  (2)進(jìn)一步發(fā)展學(xué)生的符號(hào)感和推理能力,了解公式的幾何背景,感受數(shù)與形之間的聯(lián)系,學(xué)會(huì)獨(dú)立思考。

  (3)通過推導(dǎo)完全平方公式及分析結(jié)構(gòu)特征,培養(yǎng)學(xué)生觀察、分析、歸納的能力,學(xué)會(huì)與他人合作交流,體驗(yàn)解決問題的多樣性。

  (4)體驗(yàn)完全平方公式可以簡(jiǎn)化運(yùn)算從而激發(fā)學(xué)生的學(xué)習(xí)興趣;在自主探究、合作交流的學(xué)習(xí)過程中獲得體驗(yàn)成功的喜悅,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心。

  四、學(xué)情分析與教法學(xué)法

  學(xué)情分析:課程標(biāo)準(zhǔn)提出數(shù)學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識(shí)經(jīng)驗(yàn)基礎(chǔ)之上,本節(jié)課就是在前面的學(xué)習(xí)中,學(xué)生已經(jīng)掌握了整式的乘法運(yùn)算及平方差公式的基礎(chǔ)上開展的,具備了初步的總結(jié)歸納能力。另外,14歲的中學(xué)生充滿了好奇心,有較強(qiáng)的求知欲、創(chuàng)造欲、表現(xiàn)欲,所以只有能調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情,本節(jié)內(nèi)容才較易掌握。但八年級(jí)學(xué)生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節(jié)課要注意的問題。

  學(xué)法:以自主探究為主要學(xué)習(xí)方式,使學(xué)生在獨(dú)立思考、歸納總結(jié)、合作交流

  總結(jié)反思中獲得數(shù)學(xué)知識(shí)與技能。

  教法:以啟發(fā)引導(dǎo)式為主要教學(xué)方式,在引導(dǎo)探究、歸納總結(jié)、典例精析、合作交流的教學(xué)過程中,教師做好組織者和引導(dǎo)者,讓學(xué)生在老師的指導(dǎo)下處于主動(dòng)探究的學(xué)習(xí)狀態(tài)。

  五、教學(xué)過程

  (略)

  六、教學(xué)評(píng)價(jià)

  在教學(xué)中,教師在精心設(shè)置教學(xué)環(huán)節(jié)中,做到以學(xué)生為主體,做好組織者和引導(dǎo)者,全面評(píng)價(jià)學(xué)生在知識(shí)技能、數(shù)學(xué)思考、問題解決和情感態(tài)度等方面的表現(xiàn)。教師通過情境引入、提供問題引導(dǎo)學(xué)生從已有的知識(shí)為出發(fā)點(diǎn),自主探究,發(fā)現(xiàn)問題,深入思考。學(xué)生解決問題要以獨(dú)立思考為主,當(dāng)遇到困難時(shí)學(xué)會(huì)求助交流,教師也要給學(xué)生思考交流的時(shí)間,讓學(xué)生經(jīng)歷得出結(jié)論的過程,培養(yǎng)發(fā)現(xiàn)問題解決問題的能力。

  在整個(gè)學(xué)習(xí)過程中,通過對(duì)學(xué)生參與自主探究的程度、合作交流的意識(shí)以及獨(dú)立思考的習(xí)慣,發(fā)現(xiàn)問題的能力進(jìn)行評(píng)價(jià),并對(duì)學(xué)生的想法或結(jié)論給予鼓勵(lì)評(píng)價(jià)。

【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:

八年級(jí)上冊(cè)數(shù)學(xué)教案12-23

八年級(jí)數(shù)學(xué)教案(精選20篇)04-10

八年級(jí)數(shù)學(xué)教案(15篇)01-08

關(guān)于八年級(jí)數(shù)學(xué)教案01-11

八年級(jí)數(shù)學(xué)教案精選15篇02-22

八年級(jí)上冊(cè)數(shù)學(xué)教案(15篇)01-13

八年級(jí)數(shù)學(xué)教案通用15篇01-31

八年級(jí)上冊(cè)數(shù)學(xué)教案15篇12-23

初中數(shù)學(xué)教案06-03