- 相關(guān)推薦
圓柱的體積教案
作為一名無私奉獻(xiàn)的老師,可能需要進(jìn)行教案編寫工作,教案有助于順利而有效地開展教學(xué)活動(dòng)。教案應(yīng)該怎么寫才好呢?下面是小編收集整理的圓柱的體積教案,歡迎閱讀,希望大家能夠喜歡。
圓柱的體積教案1
設(shè)計(jì)說明
本節(jié)課是在學(xué)生已經(jīng)了解了圓柱的特征,掌握了長(zhǎng)方體體積的計(jì)算方法以及圓的面積計(jì)算公式的推導(dǎo)過程的基礎(chǔ)上進(jìn)行教學(xué)的。根據(jù)學(xué)生的認(rèn)知水平和已有經(jīng)驗(yàn),本節(jié)課在教學(xué)設(shè)計(jì)上體現(xiàn)了以下幾個(gè)特點(diǎn):
1.創(chuàng)設(shè)問題情境,點(diǎn)燃探索激情。
基于“數(shù)學(xué)來源于生活,又應(yīng)用于生活”這一理念,教學(xué)過程中通過呈現(xiàn)身邊圓柱的體積問題,使學(xué)生感受到數(shù)學(xué)與現(xiàn)實(shí)生活的密切聯(lián)系,認(rèn)識(shí)到學(xué)習(xí)圓柱的體積計(jì)算公式的必要性,從而激發(fā)了學(xué)生的探究興趣,使學(xué)習(xí)成為學(xué)生自覺的需求。
2.注重直觀教學(xué),引導(dǎo)合作遷移。
數(shù)學(xué)理論的表述往往是抽象的,它影響了學(xué)生數(shù)學(xué)思維的發(fā)展,而引導(dǎo)學(xué)生從觀察和分析有關(guān)具體實(shí)物入手,就比較容易理解概念的本質(zhì)特征。所以,教學(xué)中不但設(shè)計(jì)了通過排水法理解圓柱體積的實(shí)驗(yàn),而且還借助教具演示、課件演示等直觀教學(xué)手段幫助學(xué)生推導(dǎo)出圓柱體積的計(jì)算公式,使學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),體會(huì)到知識(shí)的由來。
3.滲透數(shù)學(xué)思想,發(fā)展數(shù)學(xué)思考。
在本節(jié)課的教學(xué)中,充分利用教材內(nèi)容,對(duì)學(xué)生有效地進(jìn)行轉(zhuǎn)化思想的滲透,使學(xué)生在體會(huì)運(yùn)用轉(zhuǎn)化思想可以化難為易、化復(fù)雜為簡(jiǎn)單、化生疏為熟悉等作用的同時(shí),參與數(shù)學(xué)活動(dòng),提高解決問題的能力。
課前準(zhǔn)備
教師準(zhǔn)備 PPT課件
學(xué)生準(zhǔn)備 圓柱形實(shí)物
教學(xué)過程
⊙情境引入
1.操作感知體積的意義。
通過出示一個(gè)裝了半杯水的燒杯,引導(dǎo)學(xué)生猜測(cè):在燒杯中投入一個(gè)圓柱形物體,會(huì)有什么現(xiàn)象發(fā)生?
(水面升高或者水會(huì)溢出來)
師:為什么會(huì)有這種現(xiàn)象發(fā)生?
預(yù)設(shè)
生1:圓柱占有一定的空間。
生2:圓柱占據(jù)了原來水占有的空間。
生3:圓柱是立體圖形,它具有一定的體積。
2.討論、概括圓柱的體積的意義。
師:你認(rèn)為什么是圓柱的體積?
(圓柱所占空間的大小,叫做圓柱的`體積)
3.引入:這節(jié)課我們就一起來探究圓柱體積的計(jì)算方法。
(板書課題:圓柱的體積)
設(shè)計(jì)意圖:通過操作、演示,使學(xué)生在猜測(cè)、觀察、討論中加深對(duì)抽象的“體積”概念的理解,自主概括出圓柱的體積的意義,為下面的探究活動(dòng)做好充分的準(zhǔn)備。
⊙自主探究
1.探究影響圓柱的體積大小的相關(guān)因素。
(1)課件出示兩個(gè)大小不等的圓柱。
師:哪個(gè)圓柱的體積比較大?為什么?
預(yù)設(shè)
生1:左面的圓柱的體積比較大,因?yàn)樗咭恍?/p>
生2:右面的圓柱的體積比較大,因?yàn)樗忠恍?/p>
生3:不好比較。因?yàn)樽竺娴膱A柱雖然高,但比較細(xì);右面的圓柱雖然粗,但比較矮。
(2)討論、概括。
師:圓柱的體積的大小與哪些因素有關(guān)?
(圓柱的體積的大小與圓柱的高及圓柱的底面積的大小有關(guān))
圓柱的體積教案2
教學(xué)內(nèi)容:
P19-20頁例5、例6及補(bǔ)充例題,完成做一做及練習(xí)三第1~4題。
教學(xué)目標(biāo):
1、通過用切割拼合的方法借助長(zhǎng)方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運(yùn)用公式正確地計(jì)算圓柱的體積和容積。
2、初步學(xué)會(huì)用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實(shí)際問題的能力
3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識(shí)。
教學(xué)重點(diǎn):
掌握?qǐng)A柱體積的計(jì)算公式。
教學(xué)難點(diǎn):
圓柱體積的計(jì)算公式的推導(dǎo)。
教學(xué)過程:
一、復(fù)習(xí)
1、長(zhǎng)方體的體積公式是什么?正方體呢?(長(zhǎng)方體的體積=長(zhǎng)寬高,長(zhǎng)方體和正方體體積的統(tǒng)一公式底面積高,即長(zhǎng)方體的體積=底面積高)
2、拿出一個(gè)圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。(刪掉)
3、復(fù)習(xí)圓面積計(jì)算公式的推導(dǎo)過程:把圓等分切割,拼成一個(gè)近似的長(zhǎng)方形,找出圓和所拼成的長(zhǎng)方形之間的關(guān)系,再利用求長(zhǎng)方形面積的計(jì)算公式導(dǎo)出求圓面積的計(jì)算公式。
師小結(jié):圓的面積公式的推導(dǎo)是利用轉(zhuǎn)化的思想把一個(gè)曲面圖形轉(zhuǎn)化成以前學(xué)的長(zhǎng)方形,今天我們學(xué)習(xí)圓柱體體積公式的推導(dǎo)也要運(yùn)用轉(zhuǎn)化的思想同學(xué)們猜猜會(huì)轉(zhuǎn)化成什么圖形?
二、新課
1、圓柱體積計(jì)算公式的推導(dǎo)。
。1)用將圓轉(zhuǎn)化成長(zhǎng)方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個(gè)近似長(zhǎng)方體的立體圖形課件演示)
。2)由于我們分的不夠細(xì),所以看起來還不太像長(zhǎng)方體;如果分成的.扇形越多,拼成的立體圖形就越接近于長(zhǎng)方體了。(課件演示將圓柱細(xì)分,拼成一個(gè)長(zhǎng)方體)
反復(fù)播放這個(gè)過程,引導(dǎo)學(xué)生觀察思考,討論:在變化的過程中,什么變了什么沒變?
長(zhǎng)方體和圓柱體的底面積和體積有怎樣的關(guān)系?
學(xué)生說演示過程,總結(jié)推倒公式。
(3)通過觀察,使學(xué)生明確:長(zhǎng)方體的底面積等于圓柱的底面積,長(zhǎng)方體的高就是圓柱的高。(長(zhǎng)方體的體積=底面積高,所以圓柱的體積=底面積高,V=Sh)
圓柱的體積教案3
教學(xué)目標(biāo):
1、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識(shí)。
2、初步學(xué)會(huì)用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實(shí)際問題的能力。
3、使學(xué)生能夠運(yùn)用公式正確地計(jì)算圓柱的體積和容積。
教學(xué)重點(diǎn):
掌握?qǐng)A柱體積的計(jì)算公式。
教學(xué)難點(diǎn):
靈活應(yīng)用圓柱的體積公式解決實(shí)際問題。
教學(xué)準(zhǔn)備:小黑板
教學(xué)過程:
一、復(fù)習(xí):
1、復(fù)習(xí)圓柱體積的推導(dǎo)過程:
長(zhǎng)方體的底面積等于圓柱的底面積,長(zhǎng)方體的高就是圓柱的高。
長(zhǎng)方體的體積=底面積×高,所以圓柱的體積=底面積×高,即V=Sh。
2、復(fù)習(xí)長(zhǎng)方體的體積公式后,讓學(xué)生獨(dú)立完成練習(xí)三第6題,并指名板演。
二、解決實(shí)際問題:
1、練習(xí)五第7題:
學(xué)生思考:要求糧囤所能裝的玉米的'重量,需先知道什么?然后獨(dú)立完成。
2、練習(xí)五第5題:
。1)指導(dǎo)學(xué)生變換公式:因?yàn)閂=Sh,所以h=V÷S。也可以列方程解答。
。2)學(xué)生選擇喜愛的方法解答這道題目。
3、練習(xí)五第8題:
。1)學(xué)生讀題后,指名說說對(duì)題意的理解:求減少的土方石就是求月亮門所占的空間,而月亮門所占的空間是一個(gè)底面直徑為2米,高為0.25米的圓柱。
。2)在充分理解題意后學(xué)生獨(dú)立完成,集體訂正。
4、練習(xí)五第9、10題:
。1)學(xué)生獨(dú)立審題,完成9、10兩題。
。2)評(píng)講第9題:要怎樣才能判斷出800ml的果汁夠倒三杯嗎?必須先求出什么?怎么求?
。3)指名說說解答第10題的思路:根據(jù)兩個(gè)圓柱的底面積相等這一條件,先求出其中一個(gè)圓柱的底面積。利用這個(gè)底面積再求出另一個(gè)圓柱的體積。
三、全課總結(jié):
圓柱的體積教案4
教學(xué)內(nèi)容:
教科書第8~9頁的圓柱體積公式的推導(dǎo)和例4,完成練習(xí)二的第1~4題。
教學(xué)目標(biāo):
1、通過學(xué)生動(dòng)手操作,分組交流,探究出圓柱體體積的計(jì)算方法。
2、使學(xué)生理解和掌握?qǐng)A柱體積的計(jì)算方法,并能結(jié)合實(shí)際計(jì)算出有關(guān)圓柱體的物體的體積。
教學(xué)重點(diǎn):
圓柱體積計(jì)算公式。
教學(xué)難點(diǎn):
圓柱體積計(jì)算公式的推導(dǎo)。
教學(xué)理念:
1、學(xué)習(xí)內(nèi)容緊密聯(lián)系生活實(shí)際。
2、學(xué)習(xí)的方式以多媒體展示、自主探索與小組討論為主。
教學(xué)設(shè)計(jì):
教學(xué)步驟:
教師活動(dòng)過程
學(xué)生活動(dòng)過程
一、激疑引入
1、求裝在圓柱形容器中水的體積。
2、求橡皮泥捏的圓柱形體積。
3、創(chuàng)設(shè)情境。
1、出示裝了水的圓柱容器。
2、師:容器里面的水什么形狀,你們能想什么方法求出水的體積嗎?
3、出示圓柱形橡皮泥。
4、你們有方法求這個(gè)圓柱形橡皮泥的體積嗎?
5、課件出示:圓形柱子、壓路機(jī)的圓柱形大前輪。你有辦法求出它們的體積嗎?
6、今天,就讓我們一起來研究圓柱體積的計(jì)算方法。
1、學(xué)生討論后匯報(bào)。
2、指名回答
二、媒體展示、引導(dǎo)探究
1、回顧舊知,幫助遷移
2、動(dòng)手操作,實(shí)現(xiàn)遷移。
3、得出公式。
圓柱的體積=底面積×高
4、教學(xué)例4
5、拓展圓柱的體積計(jì)算公式。
1、讓學(xué)生回憶我們?cè)鯓油茖?dǎo)出圓面積計(jì)算公式的?
2、課件演示。
3、想一想:怎樣計(jì)算圓柱的體積。
4、課件演示。
5、師:圓柱與所拼成的長(zhǎng)方體有什么關(guān)系?
6、根據(jù)學(xué)生的匯報(bào)師生共同概括公式。
長(zhǎng)方體的'體積=底面積×高
圓柱的體積=底面積×高
7、引導(dǎo)學(xué)生用字母表示公式。
8、出示例4,讓學(xué)生試做。提醒學(xué)生注意單位的處。
9、讓學(xué)生看可課本。
想一想:如果已知圓柱底面的半徑r和高h(yuǎn),圓柱的體積的計(jì)算公式師什么?
10、教師行間巡視檢查。
1、學(xué)生回答提問。
2、學(xué)生匯報(bào)。
3、學(xué)生分小組討論。
3、學(xué)生操作學(xué)具,進(jìn)行拼組。
4、學(xué)生討論、交流、匯報(bào)。
5、學(xué)生齊讀。
6、學(xué)生試做。
7、學(xué)生獨(dú)立思考,相互交流。
三、利用資源、鞏固練習(xí)。
1、做一做
2、練習(xí)二第一題
3、實(shí)踐與應(yīng)用
4、提高練習(xí)
1、讓學(xué)生獨(dú)立完成。
2、師:完成練習(xí)二第一題。
3、讓學(xué)生取出所準(zhǔn)備的圓柱形實(shí)物。
師:計(jì)算它的表面積,需要測(cè)量哪些數(shù)據(jù)并計(jì)算。
4、課件出示圓柱形的大柱子。要知道這根柱子的體積,測(cè)量哪些數(shù)據(jù)比較方便?
1、學(xué)生練習(xí)。
2、同桌相互檢查,然后訂正。
3、學(xué)生獨(dú)立填表,反饋。
4、學(xué)生討論,小組內(nèi)交流。
5、各小組匯報(bào)。
6、學(xué)生討論,全班交流。
四、課堂小結(jié)
師:這節(jié)課學(xué)習(xí)了什么內(nèi)容?圓柱的體積怎樣計(jì)算,這個(gè)公式是怎樣得到的?
學(xué)生回答
五、布置作業(yè)
師: 課堂作業(yè):練習(xí)二第2,3題。
圓柱的體積教案5
教學(xué)目標(biāo)
1.使學(xué)生理解和掌握?qǐng)A柱的體積計(jì)算公式,能運(yùn)用公式計(jì)算圓柱的體積、容積,解決一些簡(jiǎn)單的實(shí)際問題。
2.滲透極限思想,發(fā)展學(xué)生的空間觀念。
3、培養(yǎng)學(xué)生仔細(xì)計(jì)算的良好習(xí)慣。
重難點(diǎn)
1、圓柱體體積的計(jì)算
2、圓柱體體積公式的推導(dǎo)
教學(xué)過程
一、復(fù)習(xí)導(dǎo)入
1.解答下面各題
。1)圓的半徑是2厘米。圓的面積是多少平方厘米?
。2)一個(gè)長(zhǎng)方體,底面積是20平方米,高是2米,體積是多少?
2.導(dǎo)入
我們以前學(xué)過了長(zhǎng)方體、立方體的體積的計(jì)算方法,都可以用公式V=SH進(jìn)行計(jì)算,圓柱體的體積又該怎樣計(jì)算呢?這節(jié)課我們一起來研究圓柱體體積的計(jì)算方法。(揭示課題)
二、探索新知
1.公式推導(dǎo)
(1)自學(xué)課本,初步感知圓柱是怎樣轉(zhuǎn)化成長(zhǎng)方體的,讓學(xué)生去發(fā)現(xiàn)兩柱體之間的.聯(lián)系。
。2)操作研討:演示操作,討論:拼成的長(zhǎng)方體跟圓柱體有什么異同點(diǎn)?
異:長(zhǎng)方體變成圓柱體。同:體積、底面積、高都相同。
。3)比較歸納
在自學(xué)、操作、觀察、討論的基礎(chǔ)上得出:
圓柱體體積=圓柱底面積圓柱的高
V=SH
2.公式應(yīng)用
。1)例1.讀題,學(xué)生獨(dú)立解答,板演、反饋,說說列式依據(jù)與應(yīng)注意的問題。(單位)
類似題練習(xí):
書本試一試和練一練
請(qǐng)同學(xué)板演計(jì)算的過程,并說明列式的依據(jù).同學(xué)之間評(píng).
(3).深入練習(xí),書本第5題.
(4)實(shí)際應(yīng)用:
測(cè)量生活中常見圓柱物體:茶葉罐、搪瓷杯,學(xué)生自由選擇。量底面直徑和高,并計(jì)算它的體積.
三、課堂總結(jié)
回顧學(xué)習(xí)全過程,知道求圓柱體積所需要的條件。質(zhì)疑問難。
四、布置作業(yè)
作業(yè)本一面。
圓柱的體積教案6
一、教學(xué)內(nèi)容:人教版教材六年級(jí)下冊(cè)19——20頁例5例6及相關(guān)的練習(xí)題。
二、教學(xué)目標(biāo):
1、結(jié)合具體情境和實(shí)踐活動(dòng),了解圓柱體積(包括容積)的含義,進(jìn)一步理解體積和容積的含義。
2、經(jīng)歷“類比猜想——驗(yàn)證說明”的探索圓柱體積計(jì)算方法的過程,掌握?qǐng)A柱體積的計(jì)算方法,能正確計(jì)算圓柱的體積。并會(huì)解決一些簡(jiǎn)單的實(shí)際問題。
3、注意滲透類比、轉(zhuǎn)化思想。
三、教學(xué)重點(diǎn):理解、掌握?qǐng)A柱體積計(jì)算的公式,能運(yùn)用公式正確地計(jì)算圓柱的體積。
四、教學(xué)難點(diǎn):推導(dǎo)圓柱的體積計(jì)算公式。
五、教法要素:
1、已有的知識(shí)和經(jīng)驗(yàn):體積、體積單位,學(xué)習(xí)長(zhǎng)方體正方體的體積公式的經(jīng)驗(yàn)。
2、原型:圓柱模型。
3、探究的問題:
(1)圓柱的體積和什么有關(guān)?圓柱能否轉(zhuǎn)化成已學(xué)過的立體圖形來計(jì)算體積?
。2)把圓柱拼成一個(gè)近似的長(zhǎng)方體后,長(zhǎng)方體的.長(zhǎng)、寬、高是圓柱的哪個(gè)
部分?
(3)怎樣計(jì)算圓柱的體積?
六、教學(xué)過程:
(一)喚起與生成。
1、什么叫物體的體積?我們學(xué)過哪些立體圖形的體積計(jì)算?
2、長(zhǎng)方體和正方體的體積怎樣計(jì)算?它們可以用一個(gè)公式表示出來嗎?
切入教學(xué):怎樣計(jì)算圓柱的體積?圓柱的體積計(jì)算會(huì)和什么有關(guān)?
。ǘ┨骄颗c解決。
探究:圓柱的體積
1、 提出問題,啟發(fā)思考:如何計(jì)算圓柱的體積?
2、 類比猜測(cè),提出假設(shè):結(jié)合長(zhǎng)方體和正方體體積計(jì)算的知識(shí),即長(zhǎng)方
體和正方體的體積都等于底面積×高,據(jù)此分析并猜測(cè)圓柱的體積與誰有關(guān),有什么關(guān)系;提出假設(shè),圓柱的體積可能等于底面積×高。
3、 轉(zhuǎn)化物體,分析推理:
怎樣來驗(yàn)證我們的猜想?我們?cè)趯W(xué)圓的面積時(shí)是把圓平均分成若干份,然后拼成一個(gè)近似的長(zhǎng)方形,推導(dǎo)出圓的面積計(jì)算公式。我們能不能也把圓柱轉(zhuǎn)化為我們學(xué)過的立體圖形呢?應(yīng)該怎樣轉(zhuǎn)化?結(jié)合圓的面積計(jì)算小組討論。學(xué)生匯報(bào)交流。
。贸銎骄趾玫膱A柱模型,圓柱的底面用一種顏色,圓柱的側(cè)面用另一種顏色,以便學(xué)生觀察。)現(xiàn)在利用這個(gè)圓柱模型小組合作把它轉(zhuǎn)化為我們學(xué)過的立體圖形。學(xué)生在小組合作后匯報(bào)交流。
4、全班交流,公式歸納:
交流時(shí),要學(xué)生說明拼成的長(zhǎng)方體與原來的圓柱有什么關(guān)系?圓柱的底面積和拼成的長(zhǎng)方體的底面積有什么關(guān)系?拼成的長(zhǎng)方體的高和圓柱的高有什么關(guān)系?引導(dǎo)學(xué)生推導(dǎo)出圓柱的體積計(jì)算方法。圓柱的體積=底面積×高。(在這一過程中,使學(xué)生認(rèn)識(shí)到:把圓柱平均分成若干份切開,可以拼成近似的長(zhǎng)方體,這樣“化曲為直”,圓柱的體積就轉(zhuǎn)化為長(zhǎng)方體的體積,分的份數(shù)越多,拼起來就越接近長(zhǎng)方體,滲透“極限”思想。)教師板書計(jì)算公式,并用字母表示。
回想一下,剛才我們是怎樣推導(dǎo)出圓柱的體積計(jì)算公式的?
5、舉一反三,應(yīng)用規(guī)律:
(1)你能用這個(gè)公式解決實(shí)際問題嗎?20頁做一做,學(xué)生獨(dú)立完成,全班訂正。
如果我們只知道圓柱的半徑和高,你能不能求出圓柱的體積?引導(dǎo)學(xué)生推導(dǎo)出V=∏r2h
。2)教學(xué)例6
學(xué)生審題之后,引導(dǎo)學(xué)生思考:解決這個(gè)問題就是要計(jì)算什么?然后指出求杯子的容積就是求這個(gè)圓柱形杯子可容納東西的體積,計(jì)算方法跟圓柱體積的計(jì)算方法一樣,再讓學(xué)生獨(dú)立解決。反饋時(shí),要引導(dǎo)學(xué)生交流自己的解題步驟,著重說明杯子內(nèi)部的底面積沒有直接給出,因此先要求底面積,再求杯子的容積。
(三)訓(xùn)練與強(qiáng)化。
1、基本練習(xí)。
練習(xí)三第1題,學(xué)生獨(dú)立完成,這兩個(gè)都可以直接用V=sh來計(jì)算。全班訂正,注意培養(yǎng)學(xué)生良好的計(jì)算習(xí)慣。
2、變式練習(xí)。
第2題,這題中給的條件不同,不管是知道半徑還是直徑,我們都要先求出底面積,再求體積。學(xué)生獨(dú)立完成,在交流時(shí),注意計(jì)算方法的指導(dǎo)。
第3題。求裝多少水,實(shí)際是求這個(gè)水桶的容積。學(xué)生獨(dú)立完成,全班交流。水是液體,單位應(yīng)用毫升或升。
3、綜合練習(xí)。
第5題。這題中知道了圓柱的體積和底面積求高,引導(dǎo)學(xué)生推出h=V÷s,如果有困難,也可列方程解答。學(xué)生獨(dú)立完成,有困難的小組交流。
4、提高性練習(xí)。22頁第10題,學(xué)生先小組討論,再全班交流。
。ㄋ模┛偨Y(jié)與提高。
這節(jié)課我們是怎樣推導(dǎo)出圓柱體積的計(jì)算方法的?圓柱和長(zhǎng)方體、正方體在形體上有什么相同的地方?像這樣上下兩個(gè)底面一樣,粗細(xì)不變的立體圖形叫做直柱體,直柱體的體積都可以用底面積×高計(jì)算。出示幾個(gè)直柱體(例:三棱柱、鋼管等),讓學(xué)生計(jì)算出他們的體積。
圓柱的體積教案7
教學(xué)目標(biāo):
1.結(jié)合實(shí)際讓學(xué)生探索并掌握?qǐng)A柱體積的計(jì)算方法,能正確運(yùn)用公式解決簡(jiǎn)單的實(shí)際問題。
2.讓學(xué)生經(jīng)歷觀察、猜想、驗(yàn)證等數(shù)學(xué)活動(dòng)過程,培養(yǎng)學(xué)生空間想象能力和探究推理能力,滲透“轉(zhuǎn)化”、“極限”等數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究的方法。
3.通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,獲得成功的喜悅。
教學(xué)重點(diǎn):
理解并掌握?qǐng)A柱體積計(jì)算公式,并能應(yīng)用公式計(jì)算圓柱的體積。
教學(xué)準(zhǔn)點(diǎn):
掌握?qǐng)A柱體積公式的推導(dǎo)過程。
教學(xué)準(zhǔn)備:
圓柱的體積演示教具、多媒體課件、圓柱實(shí)物2個(gè)(一個(gè)為橡皮泥)、水槽、水。
教學(xué)過程:
一、情境激趣導(dǎo)入新課
1、課始師首先出示一個(gè)長(zhǎng)方體和一個(gè)正方體,說說怎樣求它們的體積,接著師往正方體容器中倒入一定量的水,然后拿出一個(gè)圓柱形物體準(zhǔn)備投入水中并讓學(xué)生觀察:有什么現(xiàn)象發(fā)生?由這個(gè)發(fā)現(xiàn)你想到了些什么?
2、提問:“能用一句話說說什么是圓柱的體積嗎?” (板書課題)
二、自主探究, 學(xué)習(xí)新知
。ㄒ唬┰O(shè)疑
1、從剛才的實(shí)驗(yàn)中你有辦法得到這個(gè)圓柱學(xué)具的體積嗎?
2、再出示一個(gè)用橡皮泥捏成的圓柱體模型,你又能用什么好辦法求出它的體積?
3、如果要求大廳內(nèi)圓柱的體積,或壓路機(jī)前輪的體積,還能用剛才的方法嗎?(生搖頭)
師:看來,我們剛才的方法有一定的局限性,要是能像求長(zhǎng)方體或正方體那樣,有一個(gè)通用的公式
(二)猜想
1、猜想一下圓柱的體積大小可能與什么有關(guān)?理由是什么?
2、大家再來大膽猜測(cè)一個(gè),圓柱的體積公式可能是什么?說說你的理由?
。ㄈ(yàn)證
1、為了證實(shí)剛才的猜想,我們可以通過實(shí)驗(yàn)來驗(yàn)證。怎樣進(jìn)行這個(gè)實(shí)驗(yàn)?zāi)?結(jié)合我們以往學(xué)習(xí)幾何圖形的經(jīng)驗(yàn),說說自己的想法。(用轉(zhuǎn)化的方法,根據(jù)學(xué)生敘述課件演示圓的面積公式推導(dǎo)過程)
2、圓柱能轉(zhuǎn)化成我們學(xué)過的什么圖形呢?它又是怎么轉(zhuǎn)化成這種圖形的?(小組討論后匯報(bào)交流)
3、指名兩位學(xué)生上臺(tái)用圓柱體積教具進(jìn)行操作,把圓柱體轉(zhuǎn)化為近似的長(zhǎng)方體。
4、根據(jù)學(xué)生操作,師再次課件演示圓柱轉(zhuǎn)化成長(zhǎng)方體的過程。并引導(dǎo)學(xué)生分析當(dāng)分的份數(shù)越多時(shí),拼成的圖形越接近長(zhǎng)方體。
5、通過上面的觀察小組討論:
(1) 圓柱體通過切拼后,轉(zhuǎn)化為近似的長(zhǎng)方體,什么變了?什么沒變?
(2) 長(zhǎng)方體的底面積與原來圓柱體的哪部分有關(guān)系?有什么關(guān)系?
(3) 長(zhǎng)方體的高與原來圓柱體的哪部分有關(guān)系?有什么關(guān)系?
(4) 你認(rèn)為圓柱的體積可以怎樣計(jì)算?
(生匯報(bào)交流,師根據(jù)學(xué)生講述適時(shí)板書。)
小結(jié):把圓柱體轉(zhuǎn)化成長(zhǎng)方體后,形狀變了,體積不變,長(zhǎng)方體的底面積等于圓柱的底面積,高等于圓柱的高,因?yàn)殚L(zhǎng)方體的體積等于底面積×高,所以圓柱體積也等于底面積×高,用字母表示是V=Sh。
6、同桌相互說說圓柱體積的推導(dǎo)過程。
7、完成“做一做 ”:一根圓形木料,底面積為75cm2,長(zhǎng)是90cm。它的體積是多少?(生練習(xí)展示并評(píng)價(jià))
8、求圓柱體積要具備什么條件?
9、思考:如果只知道圓柱的底面半徑和高,你有辦法求出圓柱的體積嗎?如果是底面直徑和高,或是底面周長(zhǎng)和高呢?(學(xué)生討論交流)
小結(jié):可以根據(jù)已知條件先求出圓柱的底面積,再求圓柱的體積。
10、出示課前的圓柱,說一說現(xiàn)在你可以用什么辦法求出這個(gè)圓柱的體積?(測(cè)不同數(shù)據(jù)計(jì)算)
11、練一練:列式計(jì)算求下列各圓柱體的體積。
。1)底面半徑2cm,高5cm。
(2)底面直徑6dm,高1m。
。3)底面周長(zhǎng)6.28m,高4m。
三、練習(xí)鞏固拓展提升
1、判斷正誤:
(1)等底等高的圓柱體和長(zhǎng)方體體積相等!ǎ
。2)一個(gè)圓柱的底面積是10cm2,高是5m,它的體積是10×5=50cm3。.....()
。3)圓柱的底面積越大,它的體積就越大。............( )
。4)一個(gè)圓柱的體積是80cm3,底面積是20cm2,它的高是4cm。......( )
2、這是我們學(xué)校種榕樹的一個(gè)花壇,測(cè)得花壇內(nèi)直徑是4m,花壇內(nèi)填土高度是0.5m,算一算這個(gè)花壇內(nèi)一共填土多少立方米?
3、學(xué)習(xí)很愉快,我們來慶祝一下:在一個(gè)棱長(zhǎng)為20厘米正方體紙盒中,放一個(gè)最大的圓柱體蛋糕,系上180厘米長(zhǎng)的`絲帶(打結(jié)部分忽略不計(jì)),那么這個(gè)蛋糕的體積到底是多少呢?
四、全課總結(jié)自我評(píng)價(jià)
通過這節(jié)課的學(xué)習(xí)你有什么感受和收獲?
教學(xué)反思:
圓柱的體積是幾何知識(shí)的綜合運(yùn)用,它是在學(xué)生了解了圓柱的特征、掌握了長(zhǎng)方體和正方體體積以及圓的面積計(jì)算公式推導(dǎo)過程的基礎(chǔ)上進(jìn)行教學(xué)的。由于圓柱是一種含有曲面的幾何體,這給體積的認(rèn)識(shí)和計(jì)算增加了難度。為了降低學(xué)習(xí)難度,讓學(xué)生更好地理解和掌握?qǐng)A柱體積的計(jì)算方法,為后面學(xué)習(xí)圓錐體積打下堅(jiān)實(shí)的基礎(chǔ),因此在本節(jié)課的教學(xué)設(shè)計(jì)上我十分注重從生活情境入手,讓學(xué)生經(jīng)歷圓柱體積的探究過程,通過一系列的數(shù)學(xué)活動(dòng),培養(yǎng)學(xué)生探究數(shù)學(xué)知識(shí)的能力和方法,同時(shí)在學(xué)習(xí)活動(dòng)中體驗(yàn)學(xué)習(xí)的樂趣。
從本節(jié)課教學(xué)目標(biāo)的達(dá)成來看,較好地體現(xiàn)了以下幾方面:
一、創(chuàng)設(shè)生活情境,體現(xiàn)數(shù)學(xué)生活化。
《新課程標(biāo)準(zhǔn)》指出:要?jiǎng)?chuàng)設(shè)與學(xué)生生活環(huán)境、知識(shí)背景密切相關(guān)的,又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、操作、猜測(cè)、交流、反思等活動(dòng)中逐步體會(huì)數(shù)學(xué)知識(shí)的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗(yàn),感受數(shù)學(xué)的力量,同時(shí)掌握必要的基礎(chǔ)知識(shí)與基本技能。在本節(jié)課中,我從生活情境入手,創(chuàng)設(shè)了一個(gè)裝水的學(xué)具槽放入圓柱學(xué)具使水面上升的情境,引導(dǎo)學(xué)生觀察思考,直觀感知圓柱體積的概念,同時(shí)意識(shí)到過去學(xué)的排水法可以用來求圓柱的體積,緊接著當(dāng)老師再出示橡皮泥捏成的圓柱體模型,并追問大廳內(nèi)圓柱的體積等問題時(shí),學(xué)生意識(shí)到前面所說求體積計(jì)算方法的局限性,從而產(chǎn)生思維困惑,進(jìn)一步激發(fā)了探究圓柱體積計(jì)算方法的欲望。這樣的導(dǎo)入不僅為學(xué)生創(chuàng)造了一個(gè)十分寬松的生活化學(xué)習(xí)環(huán)境,還為學(xué)生后面構(gòu)建數(shù)學(xué)模型,發(fā)現(xiàn)圓柱體積公式奠定了基礎(chǔ)。在練習(xí)的設(shè)計(jì)上,為避免純數(shù)學(xué)的計(jì)算,我以學(xué)生熟悉的學(xué)校圓柱形花壇為背景,提出求花壇填土體積這樣的問題,讓學(xué)生學(xué)會(huì)靈活應(yīng)用知識(shí)解決簡(jiǎn)單的實(shí)際問題,在鞏固體積計(jì)算方法的同時(shí),進(jìn)一步感受到數(shù)學(xué)知識(shí)的使用價(jià)值。這樣的教學(xué)安排不僅體現(xiàn)了數(shù)學(xué)來源于生活,又應(yīng)用于生活的思想,也使數(shù)學(xué)的課堂教學(xué)充滿濃濃的生活味。
二、引導(dǎo)學(xué)生經(jīng)歷知識(shí)探究的全過程。
動(dòng)手實(shí)踐、自主探究、合作交流是《新課程標(biāo)準(zhǔn)》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。在本課教學(xué)中,由于學(xué)具的欠缺,沒能給學(xué)生提供小組動(dòng)手操作的機(jī)會(huì),為了彌補(bǔ)這一不足,最大限度發(fā)揮學(xué)生自主學(xué)習(xí)的作用,教學(xué)中我努力為學(xué)生搭建探究平臺(tái),通過觀察、設(shè)疑、猜想、驗(yàn)證,經(jīng)歷圓柱體積的轉(zhuǎn)化過程,發(fā)展學(xué)生的空間想象能力。在探究圓柱體積的過程中,我從本班學(xué)情出發(fā),大膽放手讓學(xué)生猜想“圓柱體積大小可能與什么有關(guān),可能怎樣計(jì)算,為什么?”,然后再結(jié)合以往學(xué)習(xí)幾何圖形的經(jīng)驗(yàn),回顧圓的面積推導(dǎo)過程,實(shí)現(xiàn)知識(shí)遷移,明確“轉(zhuǎn)化”思想在數(shù)學(xué)研究中的重要意義。為了讓學(xué)生直觀感受到圓柱體轉(zhuǎn)化為長(zhǎng)方體的過程,我較好地借助實(shí)物模型和多媒體課件演示,把二者有機(jī)結(jié)合,先讓兩個(gè)學(xué)生上臺(tái)操作演示,然后再課件動(dòng)態(tài)模擬,在學(xué)生充分觀察的基礎(chǔ)上,小組討論交流:當(dāng)圓柱體轉(zhuǎn)化成近似的長(zhǎng)方體后什么變了,什么沒變?長(zhǎng)方體的底面積與圓柱的底面積有什么關(guān)系?長(zhǎng)方體的高與圓柱的高有什么關(guān)系?從而得出結(jié)論:圓柱的體積等于底面積乘以高。整個(gè)探究過程以學(xué)生自主學(xué)習(xí)為主,知識(shí)的形成給學(xué)生留下深刻的印象。伴隨著問題的圓滿解決,學(xué)生體驗(yàn)到了成功的喜悅與滿足。
三、注重學(xué)法指導(dǎo)和數(shù)學(xué)思想方法的滲透。
“學(xué)會(huì)學(xué)習(xí)”是對(duì)學(xué)生“學(xué)”的最高要求,因此在教學(xué)中不但要教給學(xué)生知識(shí),更要教給學(xué)生學(xué)習(xí)的方法,讓學(xué)生終身受用。在本節(jié)課的教學(xué)中,我把“觀察、猜想、驗(yàn)證”的學(xué)法指導(dǎo),貫穿于整個(gè)學(xué)習(xí)過程,使學(xué)生學(xué)得主動(dòng)有效。在探究方法的引導(dǎo)上從回憶圓的面積公式推導(dǎo)入手,確定轉(zhuǎn)化的方法,體驗(yàn)轉(zhuǎn)化的過程,驗(yàn)證轉(zhuǎn)化的結(jié)果,使“轉(zhuǎn)化”、“極限”等數(shù)學(xué)思想在課中得到良好滲透,學(xué)生進(jìn)一步體會(huì)到科學(xué)、條理的數(shù)學(xué)思維方式,從而發(fā)展了學(xué)生的數(shù)學(xué)能力。
圓柱的體積教案8
教學(xué)目標(biāo):
1、理解圓柱體積公式的推導(dǎo)過程。
2、能夠初步地學(xué)會(huì)運(yùn)用體積公式解決簡(jiǎn)單的實(shí)際問題。
3、進(jìn)一步提高學(xué)生解決問題的能力。
教學(xué)重、難點(diǎn):
1、理解圓柱體積公式的推導(dǎo)過程。
2、能夠初步地學(xué)會(huì)運(yùn)用體積公式解決簡(jiǎn)單的實(shí)際問題。
3、理解圓柱體積公式的推導(dǎo)過程。
教學(xué)準(zhǔn)備:圓柱切割組合模具、小黑板。
教學(xué)過程:
一、創(chuàng)設(shè)情境,生成問題
1、什么是體積?( 物體所占空間的大小叫做物體的體積。)
2、長(zhǎng)方體的體積該怎樣計(jì)算?歸納到底面積乘高上來。
3、圓的面積怎樣計(jì)算?
二、探索交流,解決問題
1、計(jì)算圓的面積時(shí),是把圓面積轉(zhuǎn)化成我們學(xué)過的`長(zhǎng)方形進(jìn)行計(jì)算的,能不能把圓柱轉(zhuǎn)化成我們學(xué)過的立體 圖形來計(jì)算它的體積?
。▎l(fā)學(xué)生思考。)
2、把圓柱的底面分成許多相等的扇形(16等分),然后把圓柱沿高切開,可能會(huì)拼成怎樣的圖形?教師演示,引導(dǎo)學(xué)生進(jìn)行觀察。
3、思考:
。1)圓柱切開后可以拼成一個(gè)什么形體?(長(zhǎng)方體)
。2)通過實(shí)驗(yàn)?zāi)惆l(fā)現(xiàn)了什么?
小組討論:實(shí)驗(yàn)前后,什么變了?什么沒變?
討論后,整理出來,再進(jìn)行匯報(bào)。
。ㄆ闯傻慕崎L(zhǎng)方體體積大小沒變,形狀變了,拼成的近似長(zhǎng)方
體和圓柱相比,底面形狀變了,由圓變成了近似長(zhǎng)方形,而底面的面積大小沒有發(fā)生變化。近似長(zhǎng)方形的高就是圓柱的高,沒有變化。)
4、推導(dǎo)圓柱體積公式
小組討論:怎樣計(jì)算圓柱的體積?
學(xué)生匯報(bào)討論結(jié)果。
長(zhǎng)方體的體積可以用底面積乘高來計(jì)算,而在推導(dǎo)過程中,長(zhǎng)方體的底面積就是圓柱的底面積,高就是圓柱的高,所以圓柱的體積也可以用底面積乘高來計(jì)算。
師:圓柱的體積怎樣計(jì)算?用字母公式,怎樣表示?
板書: V=Sh
5、算一算:已知一根柱子的底面半徑為0.4米,高為5米。你能算出它的體積嗎?
三、鞏固應(yīng)用練習(xí)。
1、一個(gè)圓柱形水桶,從桶內(nèi)量得底面直徑是3分米,高是4分米,
這個(gè)水桶的容積是多少升?
說明:求水桶的容積,就是求水桶的體積。想一想先求什么?
2、一根圓柱形鐵棒,底面周長(zhǎng)是12.56厘米,長(zhǎng)是100厘米,它的體積是多少?
先求底面半徑再求底面積,最后求體積。
已知底面周長(zhǎng)對(duì)解決問題有什么幫助嗎?必須先求出什么? 四:課堂小結(jié):
通過這節(jié)課你學(xué)會(huì)了哪些知識(shí),有什么收獲?五:課后作業(yè):
教材第9頁,練一練第1、3、4、題
圓柱的體積教案9
教學(xué)目標(biāo):
1、使學(xué)生掌握?qǐng)A柱體積公式,會(huì)用公式計(jì)算圓柱體積,能解決一些實(shí)際問題。
2、讓學(xué)生經(jīng)歷觀察、操作、討論等數(shù)學(xué)活動(dòng)過程,理解圓柱體積公式的推導(dǎo)過程,引導(dǎo)學(xué)生探討問題,體驗(yàn)轉(zhuǎn)化和極限的思想。
3、在圖形的變換中,培養(yǎng)學(xué)生的遷移能力、邏輯思維能力,并進(jìn)一步發(fā)展其空間觀念,領(lǐng)悟?qū)W習(xí)數(shù)學(xué)的方法,激發(fā)學(xué)生興趣,滲透事物是普遍聯(lián)系的唯物辨證思想。
教學(xué)重點(diǎn):
圓柱體積計(jì)算公式的推導(dǎo)過程并能正確應(yīng)用。
教學(xué)難點(diǎn):
借助教具演示,弄清圓柱與長(zhǎng)方體的關(guān)系。
教具準(zhǔn)備:
多媒體課件、長(zhǎng)方體、圓柱形容器若干個(gè);學(xué)生準(zhǔn)備推導(dǎo)圓柱體積計(jì)算公式用學(xué)具。
教學(xué)設(shè)想:
《 圓柱的體積 》是學(xué)生在有了圓柱、圓和長(zhǎng)方體的相關(guān)的基礎(chǔ)上進(jìn)行教學(xué)的。在知識(shí)與技能上,通過對(duì)圓柱的具體研究,理解圓柱的體積公式的推導(dǎo)過程,會(huì)計(jì)算圓柱的體積,在方法的選擇上,抓住新舊知識(shí)的聯(lián)系,通過想象、課件演示、實(shí)踐操作,從經(jīng)歷和體驗(yàn)中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實(shí)際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識(shí)從生活中來到生活去的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對(duì)科學(xué)知識(shí)的求知欲,使學(xué)生樂于探索,善于探索。
教學(xué)過程:
一、創(chuàng)設(shè)情境,激疑引入
水是生命之源!節(jié)約用水是我們每個(gè)公民應(yīng)盡的義務(wù)。前兩天,老師家的水龍頭出了問題,擰上閥門之后,還是不停的滴水,你們看,一刻鐘就滴了這么多的水。
1、出示裝了水的圓柱容器。
。1)啟發(fā)思考:容器里面的水形成了什么形狀?(圓柱)你能知道這些水的體積?
(2)討論后匯報(bào)
生1:用量筒或量杯直接量出它的體積;
生2:用秤稱出水的重量,然后進(jìn)一步知道體積;
生3:把它倒入長(zhǎng)方體容器中,從里面量出長(zhǎng)、寬和水面的高后再計(jì)算。
師:現(xiàn)在老師只有這些工具(圓柱形容器,長(zhǎng)方形容器,半圓形容器和其他不規(guī)則容器),你怎么辦?
生1:把水到入長(zhǎng)方體容器中
生2:我們學(xué)過了長(zhǎng)方體的體積計(jì)算,只要量出長(zhǎng)、寬、高就行
[設(shè)計(jì)意圖:通過本環(huán)節(jié),給學(xué)生創(chuàng)設(shè)一個(gè)生活中的情境,提出問題,學(xué)習(xí)身邊的數(shù)學(xué),激起學(xué)生的學(xué)習(xí)興趣;根據(jù)需要滲透圓柱體(新問題)和長(zhǎng)方體(已知)的知識(shí)聯(lián)系為所學(xué)內(nèi)容作了鋪墊的準(zhǔn)備]
2、創(chuàng)設(shè)問題情境。
師:(課件顯示)如果要求某些建筑中圓柱形柱子的體積,或是求壓路機(jī)圓柱形大前輪的體積,能用同學(xué)們想出來的辦法嗎?
[設(shè)計(jì)意圖:進(jìn)一步從實(shí)際需要提出問題,激發(fā)學(xué)生從問題中思考尋求一種更廣泛的方法來解決圓柱體積的問題的欲望]
師:今天,就讓我們來研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)
二、經(jīng)歷體驗(yàn),探究新知
1、回顧舊知,幫助遷移
。1)教師首先提出具體問題:圓柱體和我們以前學(xué)過的哪些幾何圖形有聯(lián)系?
生1:圓柱的上下兩個(gè)底面是圓形
生2:側(cè)面展開是長(zhǎng)方形
生3:說明圓柱和我們學(xué)過的圓和長(zhǎng)方形有聯(lián)系
師:請(qǐng)同學(xué)們想想圓柱的體積與什么有關(guān)?
生1:可能與它的大小有關(guān)
生2:不是吧,應(yīng)該與它的高有關(guān)
[設(shè)計(jì)意圖:溫故而知新,既復(fù)習(xí)了舊知識(shí)又引出了新知識(shí),學(xué)生在不知不覺中就學(xué)到了新知。]
。2)請(qǐng)大家回憶一下:在學(xué)習(xí)圓的面積時(shí),我們是怎樣將圓轉(zhuǎn)化成已學(xué)過的圖形,來推導(dǎo)出圓面積公式的。
配合學(xué)生回答演示課件。
[設(shè)計(jì)意圖:通過想象,進(jìn)一步發(fā)展學(xué)生的空間觀念,由形到體;同時(shí)使學(xué)生感悟圓柱的體積與它的底面積和高的'聯(lián)系,通過圓面積推導(dǎo)過程的再現(xiàn),為實(shí)現(xiàn)經(jīng)驗(yàn)和方法的遷移作鋪墊]
2、小組合作,探究新知
。1)啟發(fā)猜想:我們要解決圓柱的體積的問題,可以怎么辦?(引導(dǎo)學(xué)生說出圓柱可能轉(zhuǎn)化成我們學(xué)過的長(zhǎng)方體。并通過討論得出:反圓柱的底面積分成許多相等的扇形,然后反圓柱切開,再拼起來,就轉(zhuǎn)化近似的長(zhǎng)方體了。)
。2)學(xué)生以小組為單位操作體驗(yàn)。
把圓柱的底面積分成許多相等的扇形,然后把圓柱切開,再把它拼起來,就轉(zhuǎn)化成近似的長(zhǎng)方體了。使學(xué)生進(jìn)一步明確分的份數(shù)越多,形體中的 越接近 ,也就越接近長(zhǎng)方體。同時(shí)演示一組動(dòng)畫(將圓柱底面等分成32份、64等份、128等份)
[設(shè)計(jì)意圖:教師提出問題,學(xué)生帶著問題大膽猜測(cè)、動(dòng)手體驗(yàn)。這樣學(xué)生在自主探索、體驗(yàn)、領(lǐng)悟的過程中成為了發(fā)現(xiàn)者和創(chuàng)造者。]
。3)學(xué)生小組匯報(bào)交流
近似的長(zhǎng)方體的體積等于圓柱的體積, 近似的長(zhǎng)方體的底面積等于圓柱的底面積,近似的長(zhǎng)方體的高就是圓柱的高。根據(jù)長(zhǎng)方體的體積等于底面積乘高,得出圓柱的體積也等于底面積乘高。
教師根據(jù)學(xué)生匯報(bào),用教具進(jìn)行演示。
(4)概括板書:根據(jù)圓柱與近似長(zhǎng)方體的關(guān)系,推導(dǎo)公式
長(zhǎng)方體的體積 = 底面積 高
圓柱的體積 = 底面積 高
用字母表示計(jì)算公式V= sh
[設(shè)計(jì)意圖:首先通過學(xué)生的聯(lián)想建立圓柱體和長(zhǎng)方體的聯(lián)系,初步建立轉(zhuǎn)化的雛形,然后再通過實(shí)踐操作,動(dòng)畫演示,驗(yàn)證了學(xué)生的發(fā)現(xiàn),從學(xué)生的認(rèn)識(shí)和發(fā)現(xiàn)中,圍繞著圓柱體和長(zhǎng)方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個(gè)過程,學(xué)生從形象具體的知識(shí)形成過程(想象、操作、演示)中,認(rèn)識(shí)得以升華(較抽象的認(rèn)識(shí) 公式)]
三、實(shí)踐應(yīng)用,鞏固新知。
1、火眼金睛判對(duì)錯(cuò)。
(1)長(zhǎng)方體、正方體、圓柱的體積都等于底面積乘高。( )
。2)圓柱的高越大,圓柱的體積就越大。( )
。3)如果兩個(gè)圓柱的體積相等,則它們一定等底等高。( )
[設(shè)計(jì)意圖:加深對(duì)剛學(xué)知識(shí)的分析和理解。]
2、計(jì)算下面各圓柱的體積。
。1)底面積是30平方厘米,高4厘米。
(2)底面周長(zhǎng)是12。56米,高是2米。
。3)底面半徑是2厘米,高10厘米。
[設(shè)計(jì)意圖:讓學(xué)生靈活運(yùn)用公式進(jìn)行計(jì)算。]
3、實(shí)踐練習(xí)。
提供在創(chuàng)設(shè)情景中圓柱形接水容器的內(nèi)底面直徑和高。
這個(gè)圓柱形容器,內(nèi)底面直徑是10厘米,高12厘米,水面高度10厘米。
[設(shè)計(jì)意圖:讓學(xué)生領(lǐng)悟數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系。]
4、課堂作業(yè)。
為了美化環(huán)境,陽光小區(qū)在樓前的空地上建了四個(gè)同樣大小的圓柱形花壇;▔牡酌鎯(nèi)直徑為4米,高為0、6米,如果里面填土的高度是0、4米,這四個(gè)花壇共需要填土多少立方米?
[設(shè)計(jì)意圖:使學(xué)生進(jìn)一步感受到生活中處處有數(shù)學(xué),同時(shí)培養(yǎng)學(xué)生的環(huán)保意識(shí)。]
四、反思回顧
師:通過本節(jié)課的學(xué)習(xí),你有什么收獲嗎?
[設(shè)計(jì)意圖:讓不同層次的學(xué)生談學(xué)習(xí)收獲,可使每個(gè)學(xué)生都體驗(yàn)到成功的喜悅。這樣,學(xué)生的收獲不僅只有知識(shí),還包括能力、方法、情感等,學(xué)生體驗(yàn)到學(xué)習(xí)的樂趣,增強(qiáng)了學(xué)好數(shù)學(xué)的信心。]
板書設(shè)計(jì):
圓柱的體積
根據(jù)圓柱與近似長(zhǎng)方體的關(guān)系,推導(dǎo)公式
長(zhǎng)方體的體積 = 底面積 高
圓柱的體積 = 底面積 高
用字母表示計(jì)算公式V= sh
教學(xué)反思:
本節(jié)的教學(xué)從生活的實(shí)際創(chuàng)設(shè)情境,提出問題,讓學(xué)生學(xué)習(xí)有用的數(shù)學(xué),提高了學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決身邊問題的能力,從學(xué)數(shù)學(xué)的角度,注意了數(shù)學(xué)知識(shí)的特點(diǎn)。運(yùn)用已有的知識(shí)(長(zhǎng)方體體積的計(jì)算)經(jīng)驗(yàn)(圓面積公式的推導(dǎo))解決新的問題,在新舊知識(shí)的聯(lián)系上,巧妙的利用想象、課件演示將圓和圓柱有機(jī)的聯(lián)系到一起,使學(xué)生想象合理、聯(lián)系有方。在探究新知中,通過想象和操作,讓學(xué)生充分經(jīng)歷了知識(shí)的形成過程,為較抽象的理論概括提供了必要而有效的感性材料,加強(qiáng)了實(shí)踐與知識(shí)的聯(lián)系,并創(chuàng)造性的補(bǔ)充了一些與學(xué)生身邊實(shí)際生活相聯(lián)系的練習(xí)題,提高了學(xué)生的學(xué)習(xí)興趣。
圓柱的體積教案10
教學(xué)目標(biāo):
1、使學(xué)生能夠運(yùn)用公式正確地計(jì)算圓柱的體積和容積。
2、初步學(xué)會(huì)用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實(shí)際問題的能力
3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識(shí)。
教學(xué)重點(diǎn):
掌握?qǐng)A柱體積的計(jì)算公式。
教學(xué)難點(diǎn):
靈活應(yīng)用圓柱的體積公式解決實(shí)際問題。
教學(xué)過程:
一、復(fù)習(xí)
1、復(fù)習(xí)圓柱體積的推導(dǎo)過程
長(zhǎng)方體的底面積等于圓柱的底面積,長(zhǎng)方體的高就是圓柱的高。
長(zhǎng)方體的體積=底面積×高,所以圓柱的體積=底面積×高,即V=Sh。
2、復(fù)習(xí)長(zhǎng)方體、正方體的體積公式后,讓學(xué)生獨(dú)立完成練習(xí)三第6題求體積部分,并指名板演。
二、解決實(shí)際問題
1、練習(xí)三第4題。
學(xué)生獨(dú)立練習(xí),強(qiáng)調(diào)選取有用信息,培養(yǎng)認(rèn)真審題習(xí)慣。
2、練習(xí)三第5題。
。1)指導(dǎo)學(xué)生變換公式:因?yàn)閂=Sh,所以h=V÷S。也可以列方程解答。
。2)學(xué)生選擇喜愛的方法解答這道題目。
3、練習(xí)三第10題。
指名說說解答第10題的思路:根據(jù)兩個(gè)圓柱的底面積相等這一條件,先求出其中一個(gè)圓柱的底面積。利用這個(gè)底面積再求出另一個(gè)圓柱的體積。
4、練習(xí)三第8題。
。1)學(xué)生讀題后,指名說說對(duì)題意的理解:求減少的土方石就是求月亮門所占的空間,而月亮門所占的空間是一個(gè)底面直徑為2米,高為0.25米的圓柱。
。2)在充分理解題意后學(xué)生獨(dú)立完成,集體訂正。
4、練習(xí)三第9題
。1)學(xué)生獨(dú)立審題后完成。
評(píng)講:要怎樣才能判斷出800ml的果汁夠倒三杯嗎?必須先求出什么?怎么求?(需先求出圓柱形玻璃杯的容積,用公式V=Sh)
5、練習(xí)三第11題。
此題既可以用外圓柱體積減內(nèi)圓柱的體積,也可以用圓環(huán)的面積乘高。
。3)三、布置作業(yè)
完成練習(xí)中未做完的習(xí)題
教學(xué)反思
第五課時(shí)特別關(guān)注
練習(xí)三第4題,在教學(xué)中必須應(yīng)該特別關(guān)注。
關(guān)注理由:
1、有多余條件,是培養(yǎng)學(xué)生收集有用信息的契機(jī)。
這道題中出現(xiàn)兩個(gè)圓柱體的高,分別是花壇的高0.8米和花壇里面填土的高0 .5米。學(xué)生該如何合理做出選擇呢,關(guān)鍵要通過問題來思考。因?yàn)閱栴}是求“花壇中共需要填土多少方”,所以應(yīng)該選用“填土的高度是0.5米”這條數(shù)學(xué)信息。
在課堂中,我還要求學(xué)生思考,如果要用上“0.8米”這個(gè)條件下,可以怎么改變問題。有的學(xué)生說“可以問花壇的體積是多少立方米”,還有的同學(xué)說“可以求花壇中空間的體積是多少立方米”。通過這樣的訓(xùn)練,能夠有效培養(yǎng)學(xué)生收集、處理信息的能力,同時(shí)提升他們綜合分析問題的能力。
2、有容易忽視的條件,是培養(yǎng)學(xué)生認(rèn)真審題的契機(jī)。
一般習(xí)題中的數(shù)據(jù)是用阿拉伯?dāng)?shù)字呈現(xiàn),可這道題的問題是求“兩個(gè)花壇中共需要填土多少方”,這里隱含著一個(gè)極易被學(xué)生忽視的數(shù)據(jù)“兩個(gè)”。其實(shí),配套的插圖中也明顯繪制出了2個(gè)花壇,但在做題中許多學(xué)生仍舊會(huì)出錯(cuò)。所以,應(yīng)抓住此題,培養(yǎng)學(xué)生良好審題的習(xí)慣。如在做這類習(xí)題時(shí),建議首先將單位圈出來,以確保列式時(shí)單位統(tǒng)一。還可以將問題劃?rùn)M線,以提醒自己將生活問題轉(zhuǎn)化為數(shù)學(xué)問題等。
學(xué)生巧解
——巧求削去部分的`體積
今天,全班同學(xué)做這樣一題:一塊長(zhǎng)方體木塊體積是20立方分米,它的底面為正方形,邊長(zhǎng)為2分米,F(xiàn)在,將它削成一個(gè)的圓柱體,求削去的部分是多少立方分米?
我因?yàn)樽龅眉葘?duì)又快,最終獲得全班第一名的成績(jī)。通過對(duì)比,我發(fā)現(xiàn)自己的方法比同學(xué)們巧妙。
同學(xué)們的解法是先求長(zhǎng)方體的高(即圓柱體的高),用20÷(2×2)=5分米,然后求圓柱體的體積,列式為3.14×(2÷2)2×5=15.7立方分米,最后求削去部分的體積是20—15.7=4.3平方分米。
而我在做這一題時(shí),想起上學(xué)期在正方形中畫的圓,圓的面積占正方形面積的157/200的結(jié)論。因?yàn)橹敝w的體積都可以寫成底面直徑乘高,而長(zhǎng)方體和削成的圓柱體高相等,所以削成的圓柱體體積也應(yīng)該是長(zhǎng)方體體積的157/200。所以直接用20×(1—157/200)也等于4.3立方分米。
圓柱的體積教案11
教學(xué)目標(biāo):
1、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識(shí)。
2、初步學(xué)會(huì)用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實(shí)際問題的能力
3、通過用切割拼合的方法借助長(zhǎng)方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運(yùn)用公式正確地計(jì)算圓柱的體積和容積。
教學(xué)重點(diǎn):
掌握?qǐng)A柱體積的計(jì)算公式。
教學(xué)難點(diǎn):
圓柱體積的計(jì)算公式的推導(dǎo)。
教學(xué)準(zhǔn)備:主題圖、圓柱形物體
教學(xué)過程:
一、復(fù)習(xí):
1、長(zhǎng)方體的體積公式是什么?
。ㄩL(zhǎng)方體的體積=長(zhǎng)×寬×高,長(zhǎng)方體和正方體體積的統(tǒng)一公式“底面積×高”,即長(zhǎng)方體的體積=底面積×高)
2、拿出一個(gè)圓柱形物體,指名學(xué)生指出圓柱的.底面、高、側(cè)面、表面各是什么,怎么求。
3、復(fù)習(xí)圓面積計(jì)算公式的推導(dǎo)過程:把圓等分切割,拼成一個(gè)近似的長(zhǎng)方形,找出圓和所拼成的長(zhǎng)方形之間的關(guān)系,再利用求長(zhǎng)方形面積的計(jì)算公式導(dǎo)出求圓面積的計(jì)算公式。
二、新課:
1、圓柱體積計(jì)算公式的推導(dǎo):
(1)用將圓轉(zhuǎn)化成長(zhǎng)方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個(gè)近似長(zhǎng)方體的立體圖形——課件演示)
。2)由于我們分的不夠細(xì),所以看起來還不太像長(zhǎng)方體;如果分成的扇形越多,拼成的立體圖形就越接近于長(zhǎng)方體了。
。ㄕn件演示將圓柱細(xì)分,拼成一個(gè)長(zhǎng)方體)
。3)通過觀察,使學(xué)生明確:長(zhǎng)方體的底面積等于圓柱的底面積,長(zhǎng)方體的高就是圓柱的高。
。ㄩL(zhǎng)方體的體積=底面積×高,所以圓柱的體積=底面積×高,V=Sh)
2、教學(xué)補(bǔ)充例題:
。1)出示補(bǔ)充例題:一根圓柱形鋼材,底面積是50平方厘米,高是2.1米。它的體積是多少?
(2)指名學(xué)生分別回答下面的問題:
、 這道題已知什么?求什么?
② 能不能根據(jù)公式直接計(jì)算?
、 計(jì)算之前要注意什么?
。ㄓ(jì)算時(shí)既要分析已知條件和問題,還要注意要先統(tǒng)一計(jì)量單位)
。3)出示下面幾種解答方案,讓學(xué)生判斷哪個(gè)是正確的.
、賄=Sh
50×2.1=105(立方厘米)
答:它的體積是105立方厘米。
、2.1米=210厘米
V=Sh
50×210=10500(立方厘米)
答:它的體積是10500立方厘米。
③50平方厘米=0.5平方米
V=Sh
0.5×2.1=1.05(立方米)
答:它的體積是1.05立方米。
④50平方厘米=0.005平方米
V=Sh
0.005×2.1=0.0105(立方米)
答:它的體積是0.0105立方米。
先讓學(xué)生思考,然后指名學(xué)生回答哪個(gè)是正確的解答,并比較一下哪一種解答更簡(jiǎn)單.對(duì)不正確的第①、③種解答要說說錯(cuò)在什么地方.
(4)做第20頁的“做一做”。
學(xué)生獨(dú)立做在練習(xí)本上,做完后集體訂正。
3、引導(dǎo)思考:如果已知圓柱底面半徑r和高h(yuǎn),圓柱體積的計(jì)算公式是怎樣的?(V=πr2h)
4、教學(xué)例6:
。1)出示例6,并讓學(xué)生思考:要知道杯子能不能裝下這袋牛奶,得先知道什么?(應(yīng)先知道杯子的容積)
。2)學(xué)生嘗試完成例6。
、 杯子的底面積:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
② 杯子的容積:50.24×10=502.4(cm3)=502.4(ml)
5、比較一下補(bǔ)充例題、例6有哪些相同的地方和不同的地方?
。ㄏ嗤氖嵌家脠A柱的體積計(jì)算公式進(jìn)行計(jì)算;不同的是補(bǔ)充例題已給出底面積,可直接應(yīng)用公式計(jì)算;例6只知道底面直徑,要先求底面積,再求體積。)
三、鞏固練習(xí):
1、做第26頁的第1題:
2、練習(xí)五的第2題:
這兩道題分別是已知底面半徑(或直徑)和高,求圓柱體積的習(xí)題.要求學(xué)生審題后,知道要先求出底面積,再求圓柱的體積。
四、全課總結(jié):
圓柱的體積教案12
教學(xué)目標(biāo):
1.知識(shí)與技能:運(yùn)用遷移規(guī)律,引導(dǎo)學(xué)生借助圓面積計(jì)算公式的推導(dǎo)方法來推導(dǎo)圓柱的體積計(jì)算公式,會(huì)用圓柱的體積公式計(jì)算圓柱形物體的體積。
2.方法與過程:經(jīng)歷猜測(cè)、驗(yàn)證、合作、動(dòng)手操作等過程,體驗(yàn)和理解圓柱體體積公式的推導(dǎo)過程。
3情感、態(tài)度、價(jià)值觀:創(chuàng)設(shè)情境,激發(fā)學(xué)生學(xué)習(xí)的積極性。讓學(xué)生在主動(dòng)學(xué)習(xí)的基礎(chǔ)上,逐步學(xué)會(huì)轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)法,培養(yǎng)學(xué)生解決實(shí)際問題的能力和培養(yǎng)學(xué)生抽象、概括的思維能力。
教學(xué)重點(diǎn)和難點(diǎn):
圓柱體積公式推導(dǎo)過程;正確理解圓柱體積公式推導(dǎo)過程。
教 具:
圓柱的體積公式演示教具,圓柱的體積公式演示課件
教學(xué)過程:
一、教學(xué)回顧
1、交代任務(wù):這節(jié)課我們來學(xué)習(xí)《圓柱的體積》。
2、回憶導(dǎo)入
。1)、請(qǐng)大家想一想,我們?cè)趯W(xué)習(xí)圓的面積時(shí),是怎樣把圓變成已學(xué)過的`圖形再計(jì)算面積的?
。2)、我們都學(xué)過那些立體圖形的體積公式。
二、積極參與 探究感受
1、猜測(cè)圓柱的體積和那些條件有關(guān)。(電腦演示)
2、.探究推導(dǎo)圓柱的體積計(jì)算公式。
小組合作討論:
(1)將圓柱體切割拼成我們學(xué)過的什么立體圖形?
(2)切拼前后的兩個(gè)物體什么變了?什么沒變?
(3)切拼前后的兩個(gè)物體有什么聯(lián)系?
課件演示拼、組的過程,同時(shí)演示一組動(dòng)畫(將圓柱底面等分成32份、64份??),讓學(xué)生明確:分成的扇形越多,拼成的立體圖形就越接近于長(zhǎng)方體。
、侔褕A柱拼成長(zhǎng)方體后,形狀變了,體積不變。(板書:長(zhǎng)方體的體積=圓柱的體積)
、谄闯傻拈L(zhǎng)方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應(yīng)的部位,并板書相應(yīng)的內(nèi)容。)
、蹐A柱的體積=底面積×高 字母公式是V=Sh(板書公式)
2、練一練:一根圓柱形木料,底面積為75平方厘米,長(zhǎng)90厘米,它的體積是多少?
3、要用這個(gè)公式計(jì)算圓柱的體積必須知道什么條件?
三、練習(xí)
1、填空
(1)、圓柱體通過切拼轉(zhuǎn)化成近似的 ( ) 體。這個(gè)長(zhǎng)方體的底面積等于圓柱體的( ),這個(gè)長(zhǎng)方體的高等于圓柱體() 。因?yàn)殚L(zhǎng)方體的體積等于( ),所以,圓柱體的體積等于( )用字母表示() 。
。2)、底面積是 10平方米,高是2米,體積是( )。
。3)、底面半徑是2分米,高是5分米,體積是( )。 2討論:
(1)已知圓柱底面的半徑和高,怎樣求圓柱的體積
V= 兀r2× h
(2)已知圓柱底面的直徑和高,怎樣求圓柱的體積
V=兀(d÷2)2×h
(3)已知圓柱底面的周長(zhǎng)和高,怎樣求圓柱的體積
V=兀(C÷!2) ×h
3、練習(xí):已知半徑和高求體積,已知直徑和高求體積。
四、小結(jié)或質(zhì)疑
五、作業(yè)
板書設(shè)計(jì):
圓柱的體積
長(zhǎng)方體的體積=底面積x高
圓柱的體積=底面積x高
V=Sh
圓柱的體積教案13
本節(jié)課的設(shè)計(jì)思考:
一、讓學(xué)生在現(xiàn)實(shí)情境中體驗(yàn)和理解數(shù)學(xué)
《課程標(biāo)準(zhǔn)》指出:要?jiǎng)?chuàng)設(shè)與學(xué)生生活環(huán)境、知識(shí)背景密切相關(guān)的、又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、操作、猜測(cè)、交流、反思等活動(dòng)中體會(huì)數(shù)學(xué)知識(shí)的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗(yàn),感受數(shù)學(xué)的力量,同時(shí)掌握必要的基礎(chǔ)知識(shí)與基本技能。在本節(jié)課中,我給學(xué)生創(chuàng)設(shè)了生活情景(裝在杯子中的水的體積你會(huì)求嗎?)學(xué)生聽到教師提的問題訓(xùn)在身邊的生活中,頗感興趣。學(xué)生經(jīng)過思考、討論、交流,找到了解決的方法。而且此環(huán)節(jié)還自然滲透了圓柱體(新問題)和長(zhǎng)方體(已知)的知識(shí)聯(lián)系。在此基礎(chǔ)上教師又進(jìn)一步從實(shí)際需要提出問題:如果要求某些建筑物中圓柱形柱子的體積,能用剛才同學(xué)們想出來的辦法嗎?這一問題情境的創(chuàng)設(shè),激發(fā)學(xué)生從問題中思考尋求一種更廣泛的方法來解決圓柱體體積的欲望。
二、鼓勵(lì)學(xué)生獨(dú)立思考,引導(dǎo)學(xué)生自主探索、合作交流
數(shù)學(xué)學(xué)習(xí)過程充滿著觀察、實(shí)驗(yàn)、模擬、推斷等探索性與挑戰(zhàn)性活動(dòng),因此,動(dòng)手實(shí)踐、自主探究、合作交流是《課程標(biāo)準(zhǔn)》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。在本節(jié)課提示課題后,我先引導(dǎo)學(xué)生獨(dú)立思考要解決圓柱的體積問題,可以怎么
辦?學(xué)生通過思考很快確定打算把圓柱轉(zhuǎn)化成長(zhǎng)方體。那么怎樣來切割呢?此時(shí)采用小組討論交流的形式。同學(xué)們有了圓面積計(jì)算公式推導(dǎo)的經(jīng)驗(yàn),經(jīng)過討論得出:把圓柱的底面沿直徑分成若干等份。在此基礎(chǔ)上,小組拿出學(xué)具進(jìn)行了動(dòng)手操作,拼成了一個(gè)近似的`長(zhǎng)方體。同學(xué)們?cè)诓僮、比較中,圍繞圓柱體和長(zhǎng)方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個(gè)過程,學(xué)生從形象具體的知識(shí)形成過程(想象、操作、演示)中,認(rèn)識(shí)得以升華(較抽象的認(rèn)識(shí)——公式)。 不足之處:
在學(xué)生們動(dòng)手操作時(shí),我處理的有點(diǎn)急,沒有給學(xué)生充分的思考和探究的時(shí)間。在今后的教學(xué)中我要特別關(guān)注學(xué)生的學(xué)習(xí)過程,優(yōu)化課堂教學(xué),對(duì)教材進(jìn)行適當(dāng)?shù)募庸ぬ幚。?shù)學(xué)知識(shí)的教學(xué),必須抓住各部分內(nèi)容之間的內(nèi)在聯(lián)系,遵循教材特點(diǎn)和學(xué)生的認(rèn)知規(guī)律。圓柱體積的教學(xué),要借助于學(xué)生已經(jīng)學(xué)過的長(zhǎng)方體體積的計(jì)算方法,通過分析、推導(dǎo)、演示,發(fā)現(xiàn)新知識(shí)。推導(dǎo)出圓柱體積的計(jì)算公式,實(shí)現(xiàn)教學(xué)目的。圓柱的體積這部分知識(shí)是學(xué)生在有了圓柱、圓和長(zhǎng)方體的相關(guān)知識(shí)基礎(chǔ)上進(jìn)行教學(xué)的。在知識(shí)和技能上,通過對(duì)圓柱體積的具體研究,理解圓柱體的體積公式的推導(dǎo)過程,會(huì)計(jì)算圓柱的體積;在方法的選擇上,抓信新舊知識(shí)的聯(lián)系,通過想象、實(shí)際操作,從經(jīng)歷和體驗(yàn)中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實(shí)際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識(shí)“從生活中來到生活中去”的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對(duì)科學(xué)知識(shí)的求知欲,使學(xué)生樂于探索,善于探究。在新的課改形勢(shì)下,死記硬背這種膚淺的、教條的、機(jī)械的學(xué)習(xí)方式已經(jīng)完全不適應(yīng)教學(xué)改革的需要,不利于學(xué)生健康的成長(zhǎng)發(fā)展的需要,教師要重視引導(dǎo)學(xué)生去探索,思考,發(fā)現(xiàn)規(guī)律,培養(yǎng)學(xué)生分析問題和解決問題的能力。反思本節(jié)課的教學(xué),覺得在練習(xí)設(shè)計(jì)上還可以下一番功夫。比如可以設(shè)計(jì)開放性習(xí)題:給一個(gè)圓柱形積木,讓學(xué)生先測(cè)量相關(guān)數(shù)據(jù)再計(jì)算體積等等。
二、教師的語言非常貧乏
在課堂教學(xué)中,評(píng)價(jià)語言是非常重要,它總是伴隨在教學(xué)的始終,貫穿于整個(gè)課堂,缺乏激勵(lì)的課堂就會(huì)像一潭死水,毫無生機(jī)。而精妙的評(píng)價(jià)語言就像是催化劑,能使課堂掀起層層波瀾,讓學(xué)生思維的火花時(shí)刻被點(diǎn)燃。教師準(zhǔn)確,生動(dòng),親切的評(píng)價(jià)語言大大調(diào)動(dòng)了學(xué)生學(xué)習(xí)的主動(dòng)性和積極性,讓學(xué)生在激勵(lì)中學(xué)、自信中學(xué)、快樂中學(xué),讓教師與學(xué)生零距離地接觸,我想學(xué)生的心理更能感覺到更大的鼓舞。
蘇霍姆林斯基指出:“教育的藝術(shù)首先包括談話的藝術(shù)!苯處煹慕虒W(xué)效果,很大程度上取決于他的語言表達(dá)能力。數(shù)學(xué)課堂教學(xué)過程就是數(shù)學(xué)知識(shí)的傳遞過程。在整個(gè)課堂教學(xué)過程中,數(shù)學(xué)知識(shí)的傳遞、學(xué)生接受知識(shí)情況的反饋,師生間的情感交流等,都必須依靠數(shù)學(xué)語言。教師的語言表達(dá)方式和質(zhì)量直接影響著學(xué)生對(duì)知識(shí)的接受,教師語言的情感引發(fā)著學(xué)生的情感,所以說教師的語言藝術(shù)是課堂教學(xué)藝術(shù)的核心。我這節(jié)課最大的失誤是語言沒有發(fā)揮出調(diào)控課堂駕馭課堂的作用。
圓柱的體積教案14
●教學(xué)內(nèi)容
蘇教版六年級(jí)下冊(cè)第二單元圓柱和圓錐第三課時(shí)P17~18頁例4,P2頁練一練,練習(xí)一1~3。
●設(shè)計(jì)說明
教學(xué)目標(biāo):
知識(shí)技能:結(jié)合具體情境,讓學(xué)生探索并掌握?qǐng)A柱體積的計(jì)算方法,并能運(yùn)用計(jì)算公式解決簡(jiǎn)單的實(shí)際問題。培養(yǎng)應(yīng)用已有知識(shí)解決新問題的能力,發(fā)展空間觀念和初步的推理能力。
數(shù)學(xué)思考:讓學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動(dòng)過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究的方法。
解決問題:通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
情感態(tài)度:提高學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。
教學(xué)重點(diǎn):
掌握和運(yùn)用圓柱體積計(jì)算公式。
教學(xué)難點(diǎn):
利用“轉(zhuǎn)化”的方法推導(dǎo)圓柱體積公式的過程。
●課時(shí)安排
1課時(shí)
●教學(xué)準(zhǔn)備
教師準(zhǔn)備:多媒體課件一套。把圓柱沿底面等分成16份的教具。 學(xué)生準(zhǔn)備:預(yù)習(xí)教材,把圓柱沿底面等分成16份的教具。
●教學(xué)過程
一、創(chuàng)設(shè)情境,提出問題
某玩具廠廠長(zhǎng),他們廠新開發(fā)了一種積木玩具,這三個(gè)積木的底面積和高都相等,他想比較一下這三個(gè)積木的體積的大小,同學(xué)們有什么方法?
二、動(dòng)手實(shí)驗(yàn),探索公式
1.觀察、比較,建立猜想。引導(dǎo)生觀察例4中的三個(gè)幾何體,提問:
、砰L(zhǎng)方體、正方體的體積相等嗎?為什么?
。ò鍟洪L(zhǎng)方體的體積=底面積×高)
⑵圓柱的`體積與長(zhǎng)方體、正方體的體積可能相等嗎?這三個(gè)幾何體的底面積和高都相等,它們的體積有什么關(guān)系?
2.實(shí)驗(yàn)操作,驗(yàn)證猜想
讓學(xué)生自主探究(材料:圓柱體積木、圓柱體插拼教學(xué)具、師準(zhǔn)備課件),想辦法驗(yàn)證圓柱的體積與長(zhǎng)方體、正方體的體積相等。
教師提示:你能想辦法把圓柱轉(zhuǎn)化成長(zhǎng)方體嗎?圓是如何轉(zhuǎn)化成長(zhǎng)方形的,可以模仿這樣的方法來轉(zhuǎn)化。
、判〗M合作研究怎樣將圓柱體轉(zhuǎn)化成一個(gè)長(zhǎng)方體。
、菩〗M代表匯報(bào),全班交流。
。▽W(xué)生按照自己的方式來轉(zhuǎn)化,會(huì)有多種轉(zhuǎn)化方法,教師適時(shí)加以鼓勵(lì)) ⑶演示操作。
a.請(qǐng)一名學(xué)生演示用切、插、拼的方法把圓柱體轉(zhuǎn)化成長(zhǎng)方體。其他學(xué)生模仿操作。
b.思考:這是一個(gè)標(biāo)準(zhǔn)的長(zhǎng)方體嗎?為什么?如果分割的份數(shù)越多,你會(huì)有什么發(fā)現(xiàn)?
c.電腦演示圓柱體轉(zhuǎn)化成長(zhǎng)方體的過程(從16等份到32等份再到64等份)。
3.觀察比較,推導(dǎo)公式。
a.小組討論:
圓柱體轉(zhuǎn)化成長(zhǎng)方體后,什么變了,什么沒有變?
b.根據(jù)學(xué)生的觀察、分析、推想,老師完成板書:
長(zhǎng)方體的體積=底面積× 高
圓柱的體積 = 底面積× 高
圓柱的體積教案15
教學(xué)目標(biāo)
1.使學(xué)生初步理解和掌握?qǐng)A柱的體積計(jì)算公式。會(huì)用公式計(jì)算圓柱的體積,并能應(yīng)用分式解答一些實(shí)際問題。
2.在充分展示體積公式推導(dǎo)過程的基礎(chǔ)上,培養(yǎng)學(xué)生推理歸納能力和自學(xué)能力。
教學(xué)重點(diǎn)和難點(diǎn)
圓柱體積公式推導(dǎo)過程;正確理解圓柱體積公式推導(dǎo)過程。
教學(xué)過程設(shè)計(jì)
我們已經(jīng)認(rèn)識(shí)了圓柱體,學(xué)會(huì)了圓柱體側(cè)面積和表面積的計(jì)算,今天研究圓柱的體積。(板書:圓柱的體積)
(一)復(fù)習(xí)準(zhǔn)備
1.什么叫體積?(指名回答)
生:物體所占空間的大小叫做體積。
師:你學(xué)過哪些體積的計(jì)算公式?(指名回答)
根據(jù)學(xué)生的回答,板書:
長(zhǎng)方體體積=底面積×高
2.圓面積公式是怎樣推導(dǎo)出來的?
生:把一個(gè)圓,平均分成數(shù)個(gè)扇形,拼成一個(gè)近似長(zhǎng)方形,長(zhǎng)方形的長(zhǎng)相當(dāng)于圓周長(zhǎng)的一半,寬相當(dāng)于圓的半徑,(根據(jù)學(xué)生的敘述,邊用幻燈片演示。)得到圓面積公式S=πr2。
(二)學(xué)習(xí)新課
1.動(dòng)腦筋想一想,圓柱的體積,能不能轉(zhuǎn)化成你學(xué)過的形體,推導(dǎo)出計(jì)算圓柱體積的公式?
2.看書自學(xué)。
(1)圓柱體是怎樣變成近似長(zhǎng)方體的?
(2)切拼成的長(zhǎng)方體與圓柱體有什么關(guān)系?
(3)怎樣計(jì)算切拼成的'長(zhǎng)方體體積?
3.推導(dǎo)圓柱體積公式。
(1)討論自學(xué)題(1)。圓柱體是怎樣變成長(zhǎng)方體的?(指名敘述)再看看書和你敘述的一樣嗎?
把圓柱體底面分成許多相等的扇形(例如分成16份),然后把圓柱切開,拼成一個(gè)近似長(zhǎng)方體。(教師加以說明,底面扇形平均分的份數(shù)越多,拼成的立體圖形越接近長(zhǎng)方體。)
(2)動(dòng)手操作切拼,將圓柱體轉(zhuǎn)化成長(zhǎng)方體。
出示兩個(gè)等底等高圓柱體,讓學(xué)生比一比,底面積大小一樣,高相等,使學(xué)生確信,兩個(gè)圓柱體的體積相等。
請(qǐng)兩名同學(xué)按照你們的敘述,把圓柱體切拼成長(zhǎng)方體。(如有條件,每四人一個(gè)學(xué)具,人人動(dòng)手切拼,充分展示切拼過程和公式推導(dǎo)過程。)
現(xiàn)在討論自學(xué)題(2)。
師:這個(gè)長(zhǎng)方體與圓柱體比較一下,什么變了?什么沒變?
生:形狀變了,體積大小沒變。
(3)推導(dǎo)圓柱體積公式。
討論:切拼成的長(zhǎng)方體與圓柱體有什么關(guān)系?(引導(dǎo)學(xué)生有順序的進(jìn)行敘述,分小組討論,讓學(xué)生充分發(fā)言。)
小結(jié):切拼成的長(zhǎng)方體的體積相當(dāng)于圓柱的體積,長(zhǎng)方體的底面積相當(dāng)于圓柱體的底面積,長(zhǎng)方體的高相當(dāng)于圓柱體的高。
師:圓柱的體積怎樣計(jì)算?用字母公式,怎樣表示?
板書: V=Sh
(4)利用公式進(jìn)行計(jì)算。
例1 一根圓柱形鋼材,底面積是50平方厘米,高2。1米,它的體積是多少?
引導(dǎo)學(xué)生審題,說出題目中的已知條件和問題。做這道題還要注意什么?
生:已知圓柱體底面積和高,求圓柱的體積,注意統(tǒng)一單位名稱。
2。1米=210厘米 (①用字母表示已知條件)
S=50 h=210 (②寫出字母公式)
V=Sh (③列式計(jì)算)
=50×210 (④寫出答題)
=10500
答:它的體積是10500立方厘米。
引導(dǎo)學(xué)生總結(jié)出做題步驟。
小結(jié):要求圓柱體積,必須知道圓柱的底面積(如果給半徑、直徑、底面周長(zhǎng),會(huì)求出底面積)和高。注意統(tǒng)一單位名稱。
(三)鞏固反饋
1.圓柱體的底面積3。14平方分米,高40厘米。它的體積是多少?
2.求下面圓柱體的體積。(單位:厘米)
3.填表:
4.一個(gè)圓柱形容器,底面半徑是25厘米,高8分米。它的容積是多少立方分米?
5.一個(gè)圓柱形糧囤,從里面量,底面周長(zhǎng)是6。28米,高20分米。它的容積是多少立方米?
(四)課堂總結(jié)
這節(jié)課,你學(xué)會(huì)了什么?還有什么問題?
生:學(xué)會(huì)了圓柱體的體積計(jì)算公式,并會(huì)用公式解答實(shí)際問題。
思考題:
一張長(zhǎng)方形的紙長(zhǎng)6。28分米,寬4分米。用它分別圍成兩個(gè)圓柱體,它們的體積大小一樣嗎?請(qǐng)你計(jì)算一下。
課堂教學(xué)設(shè)計(jì)說明
本節(jié)教案分三個(gè)層次。
第一層次是復(fù)習(xí)。
第二層次,推導(dǎo)圓柱體的計(jì)算公式。在學(xué)生自學(xué)的基礎(chǔ)上,親自動(dòng)手切拼,把圓柱體轉(zhuǎn)化成近似的長(zhǎng)方體,找出近似長(zhǎng)方體與原圓柱體各部分相對(duì)應(yīng)部分,從而推出圓柱體積計(jì)算公式。用知識(shí)遷移法,把舊知識(shí)發(fā)展重新構(gòu)建轉(zhuǎn)化為新知識(shí),使學(xué)生認(rèn)識(shí)到形變質(zhì)沒變的辯證關(guān)系,培養(yǎng)學(xué)生自學(xué)能力,動(dòng)手能力,觀察分析和歸納能力。
第二層次,針對(duì)本節(jié)所學(xué)知識(shí)內(nèi)容,安排適度練習(xí),由易到難,由淺入深,使學(xué)生當(dāng)堂掌握所學(xué)的新知識(shí),并通過練習(xí)達(dá)到一定技能。
本節(jié)教案特點(diǎn):充分體現(xiàn)以教師為主導(dǎo),學(xué)生為主體,讓學(xué)生動(dòng)手、動(dòng)腦、參與教學(xué)全過程,較好地處理教與學(xué),練與學(xué)的關(guān)系。寓教于玩中學(xué)會(huì)新知識(shí),使學(xué)生愛學(xué)、會(huì)學(xué),培養(yǎng)了學(xué)生動(dòng)手操作能力、口頭表達(dá)能力和邏輯思維能力,讓學(xué)生充分體驗(yàn)成功的喜悅。
【圓柱的體積教案】相關(guān)文章:
《圓柱的體積》教案01-02
《圓柱的體積》教案八篇07-07
《圓柱的體積》教案15篇03-13
圓柱的體積教案15篇03-19
圓柱的體積教案(15篇)03-29
《圓柱的體積》教案 15篇04-01
圓柱的體積教案(精選15篇)04-01
《圓柱的體積》教案(15篇)04-01
《圓柱的體積》教案(合集15篇)04-01