- 《圓柱的體積》教案 推薦度:
- 《圓柱的體積》教案 推薦度:
- 圓柱的體積教案 推薦度:
- 相關(guān)推薦
《圓柱的體積》教案(通用23篇)
作為一位杰出的教職工,時常會需要準(zhǔn)備好教案,借助教案可以有效提升自己的教學(xué)能力。寫教案需要注意哪些格式呢?下面是小編為大家整理的《圓柱的體積》教案,歡迎閱讀與收藏。
《圓柱的體積》教案 1
教學(xué)內(nèi)容:
北師大版教學(xué)六年級《圓柱的體積》
教學(xué)目標(biāo):
1、結(jié)合具體的情境和實(shí)踐活動,理解圓柱體體積的含義。
2、經(jīng)歷探索圓柱體積計(jì)算方法的過程,掌握圓柱體積的計(jì)算方法,能正確計(jì)算圓柱的體積,并會解決一些簡單的實(shí)際問題。
3、培養(yǎng)學(xué)生初步的空間觀念和思維能力;
教學(xué)重點(diǎn):
理解和掌握圓柱的體積計(jì)算公式,會求圓柱的體積。
教學(xué)難點(diǎn):
理解圓柱體積計(jì)算公式的推導(dǎo)過程。
教具準(zhǔn)備:
圓柱體積演示教具。
教學(xué)過程:
一、舊知鋪墊
1、談話引入
最近我們認(rèn)識了圓柱和圓錐,還學(xué)會了計(jì)算圓柱的表面積,F(xiàn)在請看老師的這個圓柱形杯子和這個圓柱比較,誰大?這里所說的大小實(shí)際是指它們的什么?(生答)
2、提出問題:什么叫體積?我們學(xué)過那些圖形的體積?怎么算的?(生答師隨之板書)
這節(jié)課我們就來學(xué)習(xí)圓柱的體積。
二、自主探究,解決問題
。ㄒ唬┱J(rèn)識圓柱體積的意義。
圓柱的體積到底是指什么?誰能舉例說呢?
(二)圓柱體積的計(jì)算公式的推導(dǎo)。
1、我們學(xué)過長方體和正方體體積的計(jì)算,圓柱體的體積跟什么有關(guān)呢?你會有怎樣的猜想?(小組內(nèi)說說)
2、回憶圓面積的推導(dǎo)過程。
3、教具演示。
。1)取圓柱體模型。
(2)將圓柱體切成兩半。
。3)分別將兩半均分成若干小塊。
。4)動手拼成一個近似的`長方體。
。ㄈw納公式。
。ò鍟簣A柱的體積=底面積高)
用字母表示:(板書:V=Sh)
三、鞏固新知
1、這個杯子的底面半徑為6厘米,高為16厘米,它的體積是多少?
審題。提問:你能獨(dú)立完成這題嗎?指名一同學(xué)板演,其余學(xué)生做在練習(xí)本上。
現(xiàn)在這個杯子裝了2/3的水,裝了多少水呢?
2、完成試一試
3、跳一跳:統(tǒng)一直柱體的體積的計(jì)算方法。
四、課堂總結(jié)、拓展延伸
這節(jié)課學(xué)習(xí)了什么內(nèi)容?圓柱的體積怎樣計(jì)算,這個公式是怎樣得到的?這個公式適合哪些圖形?他們有什么共同特點(diǎn)?
五、布置作業(yè)
練一練1-5題。
《圓柱的體積》教案 2
一、教學(xué)內(nèi)容:
人教版教材六年級下冊19——20頁例5例6及相關(guān)的練習(xí)題。
二、教學(xué)目標(biāo):
1、結(jié)合具體情境和實(shí)踐活動,了解圓柱體積(包括容積)的含義,進(jìn)一步理解體積和容積的含義。
2、經(jīng)歷“類比猜想——驗(yàn)證說明”的探索圓柱體積計(jì)算方法的過程,掌握圓柱體積的計(jì)算方法,能正確計(jì)算圓柱的體積。并會解決一些簡單的實(shí)際問題。
3、注意滲透類比、轉(zhuǎn)化思想。
三、教學(xué)重點(diǎn):
理解、掌握圓柱體積計(jì)算的公式,能運(yùn)用公式正確地計(jì)算圓柱的體積。
四、教學(xué)難點(diǎn):
推導(dǎo)圓柱的體積計(jì)算公式。
五、教法要素:
1、已有的知識和經(jīng)驗(yàn):體積、體積單位,學(xué)習(xí)長方體正方體的體積公式的經(jīng)驗(yàn)。
2、原型:圓柱模型。
3、探究的問題:
(1)圓柱的體積和什么有關(guān)?圓柱能否轉(zhuǎn)化成已學(xué)過的立體圖形來計(jì)算體積?
。2)把圓柱拼成一個近似的長方體后,長方體的長、寬、高是圓柱的哪個部分?
。3)怎樣計(jì)算圓柱的體積?
六、教學(xué)過程:
。ㄒ唬﹩酒鹋c生成。
1、什么叫物體的`體積?我們學(xué)過哪些立體圖形的體積計(jì)算?
2、長方體和正方體的體積怎樣計(jì)算?它們可以用一個公式表示出來嗎?
切入教學(xué):怎樣計(jì)算圓柱的體積?圓柱的體積計(jì)算會和什么有關(guān)?
。ǘ┨骄颗c解決。
探究:圓柱的體積
1、提出問題,啟發(fā)思考:如何計(jì)算圓柱的體積?
2、類比猜測,提出假設(shè):結(jié)合長方體和正方體體積計(jì)算的知識,即長方
體和正方體的體積都等于底面積×高,據(jù)此分析并猜測圓柱的體積與誰有關(guān),有什么關(guān)系;提出假設(shè),圓柱的體積可能等于底面積×高。
3、轉(zhuǎn)化物體,分析推理:
怎樣來驗(yàn)證我們的猜想?我們在學(xué)圓的面積時是把圓平均分成若干份,然后拼成一個近似的長方形,推導(dǎo)出圓的面積計(jì)算公式。我們能不能也把圓柱轉(zhuǎn)化為我們學(xué)過的立體圖形呢?應(yīng)該怎樣轉(zhuǎn)化?結(jié)合圓的面積計(jì)算小組討論。學(xué)生匯報(bào)交流。
。贸銎骄趾玫膱A柱模型,圓柱的底面用一種顏色,圓柱的側(cè)面用另一種顏色,以便學(xué)生觀察。)現(xiàn)在利用這個圓柱模型小組合作把它轉(zhuǎn)化為我們學(xué)過的立體圖形。學(xué)生在小組合作后匯報(bào)交流。
4、全班交流,公式歸納:
交流時,要學(xué)生說明拼成的長方體與原來的圓柱有什么關(guān)系?圓柱的底面積和拼成的長方體的底面積有什么關(guān)系?拼成的長方體的高和圓柱的高有什么關(guān)系?引導(dǎo)學(xué)生推導(dǎo)出圓柱的體積計(jì)算方法。圓柱的體積=底面積×高。(在這一過程中,使學(xué)生認(rèn)識到:把圓柱平均分成若干份切開,可以拼成近似的長方體,這樣“化曲為直”,圓柱的體積就轉(zhuǎn)化為長方體的體積,分的份數(shù)越多,拼起來就越接近長方體,滲透“極限”思想。)教師板書計(jì)算公式,并用字母表示。
回想一下,剛才我們是怎樣推導(dǎo)出圓柱的體積計(jì)算公式的?
5、舉一反三,應(yīng)用規(guī)律:
。1)你能用這個公式解決實(shí)際問題嗎?20頁做一做,學(xué)生獨(dú)立完成,全班訂正。
如果我們只知道圓柱的半徑和高,你能不能求出圓柱的體積?引導(dǎo)學(xué)生推導(dǎo)出V=πr2h
。2)教學(xué)例6
學(xué)生審題之后,引導(dǎo)學(xué)生思考:解決這個問題就是要計(jì)算什么?然后指出求杯子的容積就是求這個圓柱形杯子可容納東西的體積,計(jì)算方法跟圓柱體積的計(jì)算方法一樣,再讓學(xué)生獨(dú)立解決。反饋時,要引導(dǎo)學(xué)生交流自己的解題步驟,著重說明杯子內(nèi)部的底面積沒有直接給出,因此先要求底面積,再求杯子的容積。
(三)訓(xùn)練與強(qiáng)化。
1、基本練習(xí)。
練習(xí)三第1題,學(xué)生獨(dú)立完成,這兩個都可以直接用V=sh來計(jì)算。全班訂正,注意培養(yǎng)學(xué)生良好的計(jì)算習(xí)慣。
2、變式練習(xí)。
第2題,這題中給的條件不同,不管是知道半徑還是直徑,我們都要先求出底面積,再求體積。學(xué)生獨(dú)立完成,在交流時,注意計(jì)算方法的指導(dǎo)。
第3題。求裝多少水,實(shí)際是求這個水桶的容積。學(xué)生獨(dú)立完成,全班交流。水是液體,單位應(yīng)用毫升或升。
3、綜合練習(xí)。
第5題。這題中知道了圓柱的體積和底面積求高,引導(dǎo)學(xué)生推出h=V÷s,如果有困難,也可列方程解答。學(xué)生獨(dú)立完成,有困難的小組交流。
4、提高性練習(xí)。22頁第10題,學(xué)生先小組討論,再全班交流。
。ㄋ模┛偨Y(jié)與提高。
這節(jié)課我們是怎樣推導(dǎo)出圓柱體積的計(jì)算方法的?圓柱和長方體、正方體在形體上有什么相同的地方?像這樣上下兩個底面一樣,粗細(xì)不變的立體圖形叫做直柱體,直柱體的體積都可以用底面積×高計(jì)算。出示幾個直柱體(例:三棱柱、鋼管等),讓學(xué)生計(jì)算出他們的體積。
《圓柱的體積》教案 3
教材簡析:
本節(jié)內(nèi)容包括圓柱的體積計(jì)算公式的推導(dǎo),利用公式直接計(jì)算圓柱的體積,利用公式求:圓柱形物體的容積。教材充分利用學(xué)生學(xué)過的知識作鋪墊,采用遷移法,引導(dǎo)學(xué)生將圓柱體化成已學(xué)過的立體圖形,再通過觀察、比較找兩個圖形之間的關(guān)系,可推導(dǎo)出圓柱的體積計(jì)算公式。例4是圓柱的體計(jì)算公式的直接運(yùn)用,是圓柱體積計(jì)算的基本,但這題又給學(xué)生設(shè)置了單位不統(tǒng)一的障礙,讓學(xué)生在直接應(yīng)用公式計(jì)算的同時注意計(jì)量單位的統(tǒng)一。例5是圓柱體積計(jì)算公式的擴(kuò)展練習(xí),意在讓學(xué)生加深理解容積的概念,使之明確求水桶的容積就是求水桶內(nèi)部的體積。例5除了在意義上擴(kuò)展外,公式的運(yùn)用中也有加深,水桶的底面積沒有直接給出,因此要先求出水桶的底面積,再求出水桶的體積。
教學(xué)目的:
1.運(yùn)用遷移規(guī)律,引導(dǎo)學(xué)生借助因面積計(jì)算公式的推導(dǎo)方法來推導(dǎo)圓柱的體積計(jì)算公式,并理解這個過程。
2.會用圓柱的體積計(jì)算圓柱形物體的體積和容積。
3.引導(dǎo)學(xué)生逐步學(xué)會轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)法,培養(yǎng)學(xué)生解決實(shí)際問題的能力
4.借助實(shí)物演示,培養(yǎng)學(xué)生抽象、概括的思維能力。
教具:
圓柱體、長方體彩圖各一張,圓柱的體積公式演示教具。
學(xué)具:
小刀,用土豆做成的一個圓柱體。
教學(xué)過程:
一、復(fù)習(xí)鋪墊
1.說說長方體的體積計(jì)算公式,正方體的體積計(jì)算公式,把這兩個體積公式統(tǒng)一成一個又是怎樣的?這個公式計(jì)算體積的物體有什么特征?
2.指出圓柱各部分的名稱。說一說圓柱有多少條高?有幾個底面?每個1自由的面積如何計(jì)算?這個計(jì)算公式是怎樣推導(dǎo)出來的?
二、設(shè)疑揭題
我們能把一個圓采用化曲為直、化圓為方的方法推導(dǎo)出了圓面積的計(jì)算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個學(xué)過的立體圖形來求它的體積呢?今天我們一起來探討這個問題。板書課題:圓柱的體積。
[評析:復(fù)習(xí)抓住教學(xué)重點(diǎn),瞄準(zhǔn)學(xué)習(xí)新知識所必須的舊知識,、舊方法進(jìn)行鋪墊,溝通了知識之間的內(nèi)在聯(lián)系,銜接自然。新課引入教師引出了學(xué)習(xí)新知識的思路,導(dǎo)出了解決問題的方法,從而調(diào)動了學(xué)生學(xué)習(xí)的積極性,激發(fā)了學(xué)生探求新知識的欲望。
三、新課教學(xué)
1.探究推導(dǎo)圓柱的體積計(jì)算公式。
(1)自學(xué)第43頁第二自然段,然后按照書中要求,兩人一組將于中的圓柱切開拼一拼,再說一說你拼成三個近似什么形狀的立方體?
(2)請學(xué)生演示教具,學(xué)生邊演示邊講解切割拼合過程。
(3)根據(jù)學(xué)生講解,出示圓柱和長方體的彩圖。
(4)學(xué)生觀察兩個立體圖,找出兩圖之間有哪些部分是相等的?
(5)依據(jù)長方體的體積計(jì)算公式推導(dǎo)出圓柱的'體積計(jì)算公式。板書:V=sh
(6)要用這個公式計(jì)算圓柱的體積必須知道什么條件?
[評析:在教學(xué)中充分讓學(xué)生動手、動腦、動口,讓學(xué)生在操作中感知,在觀察中理解,在比較中歸納。教師的導(dǎo)、放、扶層次分明,充分體現(xiàn)了教師的主導(dǎo)作用和學(xué)生的主體作用。這樣的教學(xué),不僅有利于學(xué)生理解算理,掌握算法,而且在公式的推導(dǎo)過程中,領(lǐng)悟了學(xué)習(xí)方法,培養(yǎng)了學(xué)生的學(xué)習(xí)能力、抽象概括能力和邏輯思維能力]
2.教學(xué)例4
(1)出示例4。
(2)默讀題目,看題目告訴了什么條件?要求什么?想一想你將如何計(jì)算?誰愿意試一試?
(3)請一名同學(xué)板演,其余同學(xué)在作業(yè)本上做。
(4)板演的同學(xué)講解自己的解題方法,說一說在做這道題的過程中遇到了什么問題,是怎樣解決的?
(5)教師歸納學(xué)生所用的解題方法。強(qiáng)調(diào)在解題的過程中要注意單位統(tǒng)一。
3.教學(xué)例5
(1)請同學(xué)們想一想,如果已知圓柱底面的半徑rt和高h(yuǎn),怎樣求圓柱的體積?請學(xué)生自學(xué)并填寫第44頁第一自然段的空白部分。
(2)出示例5,指名讀題。請同學(xué)們思考解題方法。
(3)請學(xué)生講解題思路討論、歸納統(tǒng)一的解題方法。
(4)讓學(xué)生按討論的方法做例5。
(5)教師評講、總結(jié)方法。
(6)學(xué)生討論。比較例4、例5有哪些相同和不同點(diǎn)。
[評析:引導(dǎo)學(xué)生通過實(shí)際操作,由觀察、分析、比較,再進(jìn)行計(jì)算,達(dá)到運(yùn)用新知、鞏固新知的目的。]
四、新知應(yīng)用
1.做第44頁下面做一做的題目。兩人板演,其余在自己作業(yè)本主做,做完后及時反饋練習(xí)中出現(xiàn)的錯誤,并加以評講。
2.剛才同學(xué)們在做例4時,還有下面幾種解法,請大家仔細(xì)思考,這些解法是對還是錯?試說明理由。
(1)V=sh=5O2.1=105
答:它的體積是105立方厘米
(2)2.1米=210厘米
V=sh=50210=10500
答:它的體積是10500立方厘米。
(3)50立方厘米=0.5立方米
V=sh=0.52.1=1.05(立方米)
答:它的體積是1.05立方米。
(4)50平方厘米=0.005平方米。
V=0。00521=0.01051
答:它的體積是0.01051(立方米)。
五、全課總結(jié)
問:這節(jié)課里我們學(xué)到了哪些知識?根據(jù)學(xué)生回答教師總結(jié)。
六、學(xué)生作業(yè)
練習(xí)十一的第1、2題。
[總結(jié)實(shí):本節(jié)課的教學(xué)體現(xiàn)了三個主要特點(diǎn):
一、利用遷移規(guī)律引入新課,為學(xué)生創(chuàng)設(shè)良好的學(xué)習(xí)情境;
二、遵循學(xué)生的認(rèn)知規(guī)律,引導(dǎo)學(xué)生操作、觀察、思考、說理,調(diào)動多種感觀參與學(xué)習(xí);
三、正確處理兩主關(guān)系,充分發(fā)揮學(xué)生的主體作用,注意學(xué)生學(xué)習(xí)的參與過程及知識的獲取過程,學(xué)生積極性高,學(xué)習(xí)效果好。總之,本節(jié)課教師引導(dǎo)得法,學(xué)生學(xué)得靈活,體現(xiàn)了重在思,貴在導(dǎo),導(dǎo)思結(jié)合的原則,體現(xiàn)了教是為了不教,學(xué)會是為了會學(xué)的素質(zhì)教育思想]
《圓柱的體積》教案 4
一、教學(xué)目標(biāo):
1.結(jié)合具體情境,讓學(xué)生探索并掌握圓柱體積的計(jì)算方法,并能運(yùn)用計(jì)算公式解決簡單的實(shí)際問題。
2.讓學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究的方法。
3.通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
二、教學(xué)重難點(diǎn):
掌握和運(yùn)用圓柱體積計(jì)算公式,圓柱體積公式的推導(dǎo)過程。
三、教學(xué)方法:
從生活情境入手,通過組織猜測、操作、交流等數(shù)學(xué)活動,使學(xué)生經(jīng)歷“做數(shù)學(xué)”的過程,鼓勵學(xué)生獨(dú)立思考,引導(dǎo)學(xué)生自主探索、合作交流,讓學(xué)生根據(jù)已有的知識經(jīng)驗(yàn)創(chuàng)造性地建構(gòu)圓柱體積計(jì)算公式,鼓勵解決問題策略的多樣化,讓學(xué)生的思維得到發(fā)展,創(chuàng)新精神、實(shí)踐能力得到提高。
四、教學(xué)步驟
。ㄒ唬﹦(chuàng)設(shè)情景提出問題情境引入:
某玩具廠廠長,他們廠新近開發(fā)了一種積木玩具,這三個積木的底面積和高都相等,他想比較一下這三個積木的體積的大小,同學(xué)們有什么方法?
。ǘ﹦邮謱(shí)驗(yàn),探索公式
1.觀察、比較,建立猜想引導(dǎo)生觀察例4中的三個幾何體,提問:
。1)長方體、正方體的`體積相等嗎?為什么?
。ò鍟洪L方體的體積=底面積×高)
(2)圓柱的體積與長方體、正方體的體積可能相等嗎?這三個幾何體的底面積和高都相等,它們的體積有什么關(guān)系?
2.實(shí)驗(yàn)操作,驗(yàn)證猜想讓學(xué)生自主探究(材料:圓柱體插拼教學(xué)具、師準(zhǔn)備課件),想辦法驗(yàn)證圓柱的體積與長方體、正方體的體積相等。
教師提示:你能想辦法把圓柱轉(zhuǎn)化成長方體嗎?圓是如何轉(zhuǎn)化成長方形的?可以模仿這樣的方法來轉(zhuǎn)化。
。1)小組合作研究怎樣將圓柱體轉(zhuǎn)化成一個長方體
。2)小組代表匯報(bào),全班交流
。▽W(xué)生按照自己的方式來轉(zhuǎn)化,會有多種轉(zhuǎn)化方法,教師適時加以鼓勵)
演示操作
a、請一名學(xué)生演示用切插拼的方法把圓柱體轉(zhuǎn)化成長方體。其他學(xué)生模仿操作。
b、思考:這是一個標(biāo)準(zhǔn)的長方體嗎?為什么?如果分割得份數(shù)越多,你會有什么發(fā)現(xiàn)?
c、電腦演示圓柱體轉(zhuǎn)化成長方體的過程(從16等份到32等份再到64等份)
3.觀察比較,推導(dǎo)公式
a、圓柱體轉(zhuǎn)化成長方體后,什么變了,什么沒有變?
b、根據(jù)學(xué)生的觀察、分析、推想,老師完成板書:
長方體的體積=底面積×高
圓柱的體積=底面積×高
d小結(jié):要想求出一個圓柱的體積,需要知道什么條件?e學(xué)生自學(xué)第8頁例4上面的一段話:用字母表示公式。
學(xué)生反饋?zhàn)詫W(xué)情況,師板書公式:v=sh
(三)鞏固練習(xí),拓展應(yīng)用
1.出示第26頁試一試,學(xué)生理解題意,獨(dú)立完成。集體訂正,說一說每一步列式的根據(jù)是什么?使學(xué)生明確應(yīng)用體積公式求圓柱的體積一般需要兩個條件,即底面積和高。
2.完成第26頁的“練一練”的第1題。
先看圖說說每個圓柱中的已知條件,再各自計(jì)算,計(jì)算后,說一說計(jì)算的過程,強(qiáng)調(diào):計(jì)算圓柱體的體積要先算出底面積。
3.完成第26頁的“練一練”的第2題。
讀題后強(qiáng)調(diào)說說為什么電飯煲要從里面量底面直徑和高,然后列式解答。
4、把直尺繞著它的一條邊旋轉(zhuǎn)一圈得到了一個什么圖形?它的體積你會計(jì)算嗎?
(四)總結(jié)回顧評價反思
這節(jié)課你學(xué)會了什么?你是怎樣學(xué)會的?
五、板書設(shè)計(jì):
圓柱的體積
切拼成的長方體的體積等于圓柱的體積,長方體的底面積就相當(dāng)于圓柱的底面積,長方體的高就相當(dāng)于圓柱的高。
長方體的體積=底面積×高
圓柱的體積=底面積×高
字母表示:V=Sh=πrh2
《圓柱的體積》教案 5
教學(xué)內(nèi)容:
P19-20頁例5、例6及補(bǔ)充例題,完成“做一做”及練習(xí)三第1~4題。
教學(xué)目標(biāo):
1、通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運(yùn)用公式正確地計(jì)算圓柱的體積和容積。
2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實(shí)際問題的能力
3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。
教學(xué)重點(diǎn):
掌握圓柱體積的計(jì)算公式。
教學(xué)難點(diǎn):
圓柱體積的計(jì)算公式的推導(dǎo)。
教學(xué)過程:
一、復(fù)習(xí)
1、復(fù)習(xí)圓面積計(jì)算公式的推導(dǎo)方法及過程。
2、什么叫物體的體積?長方體、正方體的體積公式是什么?(長方體的體積=長×寬×高,正方體的體積=棱長3,長方體和正方體體積的統(tǒng)一公式=底面積×高)
二、新課
1、圓柱體積計(jì)算公式的推導(dǎo)。
。1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形——課件演示)
。2)由于我們分的不夠細(xì),所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細(xì)分,拼成一個長方體)
。3)通過觀察,使學(xué)生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。(長方體的體積=底面積×高,所以圓柱的體積=底面積×高,V=Sh)
2、教學(xué)補(bǔ)充例題
。1)出示補(bǔ)充例題:一根圓柱形鋼材,底面積是50平方厘米,高是2.1米。它的體積是多少?
。2)指名學(xué)生分別回答下面的問題:
、龠@道題已知什么?求什么?
、谀懿荒芨鶕(jù)公式直接計(jì)算?
③計(jì)算之前要注意什么?(計(jì)算時既要分析已知條件和問題,還要注意要先統(tǒng)一計(jì)量單位)
。3)出示下面幾種解答方案,讓學(xué)生判斷哪個是正確的.
、賄=Sh
50×2.1=105(立方厘米)
答:它的體積是105立方厘米。
、2.1米=210厘米
V=Sh
50×210=10500(立方厘米)
答:它的體積是10500立方厘米。
③50平方厘米=0.5平方米
V=Sh
0.5×2.1=1.05(立方米)
答:它的體積是1.05立方米。
、50平方厘米=0.005平方米
V=Sh
0.005×2.1=0.0105(立方米)
答:它的體積是0.0105立方米。
先讓學(xué)生思考,然后指名學(xué)生回答哪個是正確的解答,并比較一下哪一種解答更簡單.對不正確的第①、③種解答要說說錯在什么地方.
。4)做第20頁的“做一做”。
學(xué)生獨(dú)立做在練習(xí)本上,做完后集體訂正.
3、引導(dǎo)思考:如果已知圓柱底面半徑r和高h(yuǎn),圓柱體積的計(jì)算公式是怎樣的.?(V=πr2h)
4、教學(xué)例6
(1)出示例5,并讓學(xué)生思考:要知道杯子能不能裝下這袋牛奶,得先知道什么?(應(yīng)先知道杯子的容積)
。2)學(xué)生嘗試完成例6。
、俦拥牡酌娣e:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
②杯子的容積:50.24×10=502.4(cm3)=502.4(m1)
5、比較一下補(bǔ)充例題、例6有哪些相同的地方和不同的地方?(相同的是都要用圓柱的體積計(jì)算公式進(jìn)行計(jì)算;不同的是補(bǔ)充例題已給出底面積,可直接應(yīng)用公式計(jì)算;例6只知道底面直徑,要先求底面積,再求體積.)
三、鞏固練習(xí)
1、做第21頁練習(xí)三的第1題.
2、練習(xí)三的第2題.
這兩道題分別是已知底面半徑(或直徑)和高,求圓柱體積的習(xí)題.要求學(xué)生審題后,知道要先求出底面積,再求圓柱的體積。
四、布置作業(yè)
練習(xí)三第3、4題。
通過批閱作業(yè),發(fā)現(xiàn)圓柱體的表面積正確率極低,主要有幾方面原因:
1、計(jì)算錯誤;
2審題不認(rèn)真,單位不統(tǒng)一;
3、靈活解決問題時,沒能正確判斷所求面積到底包含哪幾部分。
為提升正確率,所以今天補(bǔ)充了一節(jié)是練習(xí)課,主要是指導(dǎo)學(xué)生完成教材中的習(xí)題。在此,想談?wù)劸毩?xí)二的第11、19題。
第11題教材只要求學(xué)生根據(jù)切面形狀進(jìn)行連線,其實(shí)這題應(yīng)該充分利用挖掘,不僅培養(yǎng)學(xué)生的空間觀念,同時還可提升學(xué)生解決實(shí)際問題的能力。所以在教學(xué)中,我補(bǔ)充了如下練習(xí):
。1將一根高5分米的圓柱形木料沿底面直徑垂直切成兩部分,這時表面積比原來增加了40平方分米。這根圓柱形木料原來的表面積是多少平方分米?
。2一個圓柱的側(cè)面展開是一個正方形,正方形的邊長是12.56分米,求這個圓柱體的表積。
第19題解決決起來很繁瑣,雖然課堂上我給予了學(xué)生十分充足的獨(dú)立嘗試練習(xí)時間,但在未給予任何提示的情況下全班僅4人全對,另有4人結(jié)果計(jì)算正確,但卻未換算單位,正確率僅為7.4%。所以下次再教時,此題應(yīng)加大指導(dǎo)力度。建議:先在小組內(nèi)討論“求涂油漆的面積也就是求什么?”然后強(qiáng)調(diào)單位換算,并復(fù)習(xí)平方米與平方厘米之間的進(jìn)率(10000),最后再讓學(xué)生分步列式解答。第2問要求“一共需要多少元”結(jié)合生活實(shí)際,學(xué)生應(yīng)主動對計(jì)算結(jié)果取近似值。
第四課時教學(xué)反思
開放的設(shè)問結(jié)碩果
因?yàn)榕R時換課,所以今天是本學(xué)期開學(xué)以來第一次在學(xué)生未預(yù)習(xí)的情況下教學(xué)新課。沒有預(yù)習(xí),給學(xué)生的自主探索以更廣闊的空間。當(dāng)學(xué)生提出可以將圓柱的底面分成許多相等的扇形,把圓柱切開,拼成一個近似的長方體后,我請學(xué)生們觀察并思考“轉(zhuǎn)化后的長方體與圓柱體之間有什么聯(lián)系呢?”
他們除了發(fā)現(xiàn)教材中所提到的體積不變、底面積不變、高不變外,還有不少新發(fā)現(xiàn)。如“長方體的長是圓柱體底面周長的一半”,“長方體的寬是圓柱體底面半徑”,“圓柱體的側(cè)面積是長方體前后兩個面的面積總和”(魏勉)。當(dāng)學(xué)生的發(fā)現(xiàn)由底面積涉及到側(cè)面積時,我根據(jù)本班學(xué)情適時進(jìn)行了拓展性提問,“將圓柱體轉(zhuǎn)化為長方體,表面積有變化嗎?如果有,有怎樣的變化?”由此將圓柱體與長方體轉(zhuǎn)化的探究由體積的變化引向了新的層面——表面積。
我將根據(jù)學(xué)情在練習(xí)課中補(bǔ)充相關(guān)練習(xí):把一個高15厘米的圓柱體分割成若干份,再拼成一個近似的長方體,表面積增加了90平方厘米。那么這個圓柱的體積是多少?
今天的作業(yè)正確率明顯提升,但全班有4名學(xué)生將圓柱體側(cè)面積與體積公式混淆,列式全錯,因此要加強(qiáng)辨析指導(dǎo)。自從讓學(xué)生“創(chuàng)造”圓柱體表面積的另類推導(dǎo)方法及公式以來,孩子們探索并“創(chuàng)造”新公式的熱情不斷高漲。雖然,今天由于種種原因沒能給學(xué)生上課,但他們?nèi)耘f將自己的新發(fā)現(xiàn)用紙條記錄了下來送到我的手中。
創(chuàng)新(一)圓柱體側(cè)面積:圓柱體的體積=(2πrh):(πrrh)=2:r。
創(chuàng)新(二)圓柱的體積=圓柱的側(cè)面積÷2×r
根據(jù)這一發(fā)現(xiàn),能夠有效提高已知半徑和側(cè)面積求體積或已知體積求側(cè)面積的習(xí)題。如:一根圓柱形木頭的側(cè)面積是37.68平方分米,底面半徑是3分米,它的體積是多少平方分米?如果按常規(guī)做法為:首先求圓柱體的高37.68÷(3.14×2×3)=2(分米);然后再求圓柱體的體積3.14×32×2=56.52平方分米),共需要6步。如果根據(jù)上述發(fā)現(xiàn),解答此題就只需要將37.68÷2×3即可求了正確結(jié)果,大大提高速度。
《圓柱的體積》教案 6
教學(xué)目標(biāo):
1、使學(xué)生掌握圓柱體積公式,會用公式計(jì)算圓柱體積,能解決一些實(shí)際問題。
2、讓學(xué)生經(jīng)歷觀察、操作、討論等數(shù)學(xué)活動過程,理解圓柱體積公式的推導(dǎo)過程,引導(dǎo)學(xué)生探討問題,體驗(yàn)轉(zhuǎn)化和極限的思想。
3、在圖形的變換中,培養(yǎng)學(xué)生的遷移能力、邏輯思維能力,并進(jìn)一步發(fā)展其空間觀念,領(lǐng)悟?qū)W習(xí)數(shù)學(xué)的方法,激發(fā)學(xué)生興趣,滲透事物是普遍聯(lián)系的唯物辨證思想。
教學(xué)重點(diǎn):
圓柱體積計(jì)算公式的推導(dǎo)過程并能正確應(yīng)用。
教學(xué)難點(diǎn):
借助教具演示,弄清圓柱與長方體的關(guān)系。
教具準(zhǔn)備:
多媒體課件、長方體、圓柱形容器若干個;學(xué)生準(zhǔn)備推導(dǎo)圓柱體積計(jì)算公式用學(xué)具。
教學(xué)設(shè)想:
《圓柱的體積》是學(xué)生在有了圓柱、圓和長方體的相關(guān)的基礎(chǔ)上進(jìn)行教學(xué)的。在知識與技能上,通過對圓柱的具體研究,理解圓柱的體積公式的推導(dǎo)過程,會計(jì)算圓柱的體積,在方法的選擇上,抓住新舊知識的聯(lián)系,通過想象、課件演示、實(shí)踐操作,從經(jīng)歷和體驗(yàn)中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實(shí)際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識從生活中來到生活去的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對科學(xué)知識的求知欲,使學(xué)生樂于探索,善于探索。
教學(xué)過程:
一、創(chuàng)設(shè)情境,激疑引入
水是生命之源!節(jié)約用水是我們每個公民應(yīng)盡的義務(wù)。前兩天,老師家的水龍頭出了問題,擰上閥門之后,還是不停的滴水,你們看,一刻鐘就滴了這么多的水。
1、出示裝了水的圓柱容器。
(1)啟發(fā)思考:容器里面的水形成了什么形狀?(圓柱)你能知道這些水的體積?
。2)討論后匯報(bào)
生1:用量筒或量杯直接量出它的體積;
生2:用秤稱出水的重量,然后進(jìn)一步知道體積;
生3:把它倒入長方體容器中,從里面量出長、寬和水面的高后再計(jì)算。
師:現(xiàn)在老師只有這些工具(圓柱形容器,長方形容器,半圓形容器和其他不規(guī)則容器),你怎么辦?
生1:把水到入長方體容器中
生2:我們學(xué)過了長方體的體積計(jì)算,只要量出長、寬、高就行
[設(shè)計(jì)意圖:通過本環(huán)節(jié),給學(xué)生創(chuàng)設(shè)一個生活中的情境,提出問題,學(xué)習(xí)身邊的數(shù)學(xué),激起學(xué)生的學(xué)習(xí)興趣;根據(jù)需要滲透圓柱體(新問題)和長方體(已知)的知識聯(lián)系為所學(xué)內(nèi)容作了鋪墊的準(zhǔn)備]
2、創(chuàng)設(shè)問題情境。
師:(課件顯示)如果要求某些建筑中圓柱形柱子的體積,或是求壓路機(jī)圓柱形大前輪的體積,能用同學(xué)們想出來的辦法嗎?
[設(shè)計(jì)意圖:進(jìn)一步從實(shí)際需要提出問題,激發(fā)學(xué)生從問題中思考尋求一種更廣泛的方法來解決圓柱體積的問題的欲望]
師:今天,就讓我們來研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)
二、經(jīng)歷體驗(yàn),探究新知
1、回顧舊知,幫助遷移
(1)教師首先提出具體問題:圓柱體和我們以前學(xué)過的哪些幾何圖形有聯(lián)系?
生1:圓柱的上下兩個底面是圓形
生2:側(cè)面展開是長方形
生3:說明圓柱和我們學(xué)過的圓和長方形有聯(lián)系
師:請同學(xué)們想想圓柱的體積與什么有關(guān)?
生1:可能與它的大小有關(guān)
生2:不是吧,應(yīng)該與它的高有關(guān)
[設(shè)計(jì)意圖:溫故而知新,既復(fù)習(xí)了舊知識又引出了新知識,學(xué)生在不知不覺中就學(xué)到了新知。]
(2)請大家回憶一下:在學(xué)習(xí)圓的面積時,我們是怎樣將圓轉(zhuǎn)化成已學(xué)過的圖形,來推導(dǎo)出圓面積公式的。
配合學(xué)生回答演示課件。
[設(shè)計(jì)意圖:通過想象,進(jìn)一步發(fā)展學(xué)生的空間觀念,由形到體;同時使學(xué)生感悟圓柱的體積與它的底面積和高的聯(lián)系,通過圓面積推導(dǎo)過程的再現(xiàn),為實(shí)現(xiàn)經(jīng)驗(yàn)和方法的遷移作鋪墊]
2、小組合作,探究新知
。1)啟發(fā)猜想:我們要解決圓柱的體積的問題,可以怎么辦?(引導(dǎo)學(xué)生說出圓柱可能轉(zhuǎn)化成我們學(xué)過的長方體。并通過討論得出:反圓柱的底面積分成許多相等的扇形,然后反圓柱切開,再拼起來,就轉(zhuǎn)化近似的長方體了。)
。2)學(xué)生以小組為單位操作體驗(yàn)。
把圓柱的底面積分成許多相等的扇形,然后把圓柱切開,再把它拼起來,就轉(zhuǎn)化成近似的長方體了。使學(xué)生進(jìn)一步明確分的份數(shù)越多,形體中的越接近,也就越接近長方體。同時演示一組動畫(將圓柱底面等分成32份、64等份、128等份)
[設(shè)計(jì)意圖:教師提出問題,學(xué)生帶著問題大膽猜測、動手體驗(yàn)。這樣學(xué)生在自主探索、體驗(yàn)、領(lǐng)悟的過程中成為了發(fā)現(xiàn)者和創(chuàng)造者。]
。3)學(xué)生小組匯報(bào)交流
近似的長方體的體積等于圓柱的體積,近似的長方體的底面積等于圓柱的底面積,近似的長方體的高就是圓柱的高。根據(jù)長方體的體積等于底面積乘高,得出圓柱的體積也等于底面積乘高。
教師根據(jù)學(xué)生匯報(bào),用教具進(jìn)行演示。
。4)概括板書:根據(jù)圓柱與近似長方體的關(guān)系,推導(dǎo)公式
長方體的體積=底面積高
圓柱的體積=底面積高
用字母表示計(jì)算公式V=sh
[設(shè)計(jì)意圖:首先通過學(xué)生的聯(lián)想建立圓柱體和長方體的聯(lián)系,初步建立轉(zhuǎn)化的雛形,然后再通過實(shí)踐操作,動畫演示,驗(yàn)證了學(xué)生的發(fā)現(xiàn),從學(xué)生的認(rèn)識和發(fā)現(xiàn)中,圍繞著圓柱體和長方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個過程,學(xué)生從形象具體的知識形成過程(想象、操作、演示)中,認(rèn)識得以升華(較抽象的認(rèn)識公式)]
三、實(shí)踐應(yīng)用,鞏固新知。
1、火眼金睛判對錯。
(1)長方體、正方體、圓柱的體積都等于底面積乘高。()
。2)圓柱的高越大,圓柱的'體積就越大。()
(3)如果兩個圓柱的體積相等,則它們一定等底等高。()
[設(shè)計(jì)意圖:加深對剛學(xué)知識的分析和理解。]
2、計(jì)算下面各圓柱的體積。
(1)底面積是30平方厘米,高4厘米。
。2)底面周長是12.56米,高是2米。
(3)底面半徑是2厘米,高10厘米。
[設(shè)計(jì)意圖:讓學(xué)生靈活運(yùn)用公式進(jìn)行計(jì)算。]
3、實(shí)踐練習(xí)。
提供在創(chuàng)設(shè)情景中圓柱形接水容器的內(nèi)底面直徑和高。
這個圓柱形容器,內(nèi)底面直徑是10厘米,高12厘米,水面高度10厘米。
[設(shè)計(jì)意圖:讓學(xué)生領(lǐng)悟數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系。]
4、課堂作業(yè)。
為了美化環(huán)境,陽光小區(qū)在樓前的空地上建了四個同樣大小的圓柱形花壇;▔牡酌鎯(nèi)直徑為4米,高為0.6米,如果里面填土的高度是0、4米,這四個花壇共需要填土多少立方米?
[設(shè)計(jì)意圖:使學(xué)生進(jìn)一步感受到生活中處處有數(shù)學(xué),同時培養(yǎng)學(xué)生的環(huán)保意識。]
四、反思回顧
師:通過本節(jié)課的學(xué)習(xí),你有什么收獲嗎?
[設(shè)計(jì)意圖:讓不同層次的學(xué)生談學(xué)習(xí)收獲,可使每個學(xué)生都體驗(yàn)到成功的喜悅。這樣,學(xué)生的收獲不僅只有知識,還包括能力、方法、情感等,學(xué)生體驗(yàn)到學(xué)習(xí)的樂趣,增強(qiáng)了學(xué)好數(shù)學(xué)的信心。]
板書設(shè)計(jì):
圓柱的體積
根據(jù)圓柱與近似長方體的關(guān)系,推導(dǎo)公式
長方體的體積=底面積高
圓柱的體積=底面積高
用字母表示計(jì)算公式V=sh
教學(xué)反思:
本節(jié)的教學(xué)從生活的實(shí)際創(chuàng)設(shè)情境,提出問題,讓學(xué)生學(xué)習(xí)有用的數(shù)學(xué),提高了學(xué)生運(yùn)用數(shù)學(xué)知識解決身邊問題的能力,從學(xué)數(shù)學(xué)的角度,注意了數(shù)學(xué)知識的特點(diǎn)。運(yùn)用已有的知識(長方體體積的計(jì)算)經(jīng)驗(yàn)(圓面積公式的推導(dǎo))解決新的問題,在新舊知識的聯(lián)系上,巧妙的利用想象、課件演示將圓和圓柱有機(jī)的聯(lián)系到一起,使學(xué)生想象合理、聯(lián)系有方。在探究新知中,通過想象和操作,讓學(xué)生充分經(jīng)歷了知識的形成過程,為較抽象的理論概括提供了必要而有效的感性材料,加強(qiáng)了實(shí)踐與知識的聯(lián)系,并創(chuàng)造性的補(bǔ)充了一些與學(xué)生身邊實(shí)際生活相聯(lián)系的練習(xí)題,提高了學(xué)生的學(xué)習(xí)興趣。
《圓柱的體積》教案 7
教學(xué)目標(biāo)
1.使學(xué)生初步理解和掌握圓柱的體積計(jì)算公式。會用公式計(jì)算圓柱的體積,并能應(yīng)用分式解答一些實(shí)際問題。
2.在充分展示體積公式推導(dǎo)過程的基礎(chǔ)上,培養(yǎng)學(xué)生推理歸納能力和自學(xué)能力。
教學(xué)重點(diǎn)和難點(diǎn)
圓柱體積公式推導(dǎo)過程;正確理解圓柱體積公式推導(dǎo)過程。
教學(xué)過程設(shè)計(jì)
我們已經(jīng)認(rèn)識了圓柱體,學(xué)會了圓柱體側(cè)面積和表面積的計(jì)算,今天研究圓柱的體積。(板書:圓柱的體積)
(一)復(fù)習(xí)準(zhǔn)備
1.什么叫體積?(指名回答)
生:物體所占空間的大小叫做體積。
師:你學(xué)過哪些體積的計(jì)算公式?(指名回答)
根據(jù)學(xué)生的回答,板書:
長方體體積=底面積×高
2.圓面積公式是怎樣推導(dǎo)出來的?
生:把一個圓,平均分成數(shù)個扇形,拼成一個近似長方形,長方形的長相當(dāng)于圓周長的一半,寬相當(dāng)于圓的半徑,(根據(jù)學(xué)生的'敘述,邊用幻燈片演示。)得到圓面積公式S=πr2。
(二)學(xué)習(xí)新課
1.動腦筋想一想,圓柱的體積,能不能轉(zhuǎn)化成你學(xué)過的形體,推導(dǎo)出計(jì)算圓柱體積的公式?
2.看書自學(xué)。
(1)圓柱體是怎樣變成近似長方體的?
(2)切拼成的長方體與圓柱體有什么關(guān)系?
(3)怎樣計(jì)算切拼成的長方體體積?
3.推導(dǎo)圓柱體積公式。
(1)討論自學(xué)題(1)。圓柱體是怎樣變成長方體的?(指名敘述)再看看書和你敘述的一樣嗎?
把圓柱體底面分成許多相等的扇形(例如分成16份),然后把圓柱切開,拼成一個近似長方體。(教師加以說明,底面扇形平均分的份數(shù)越多,拼成的立體圖形越接近長方體。)
(2)動手操作切拼,將圓柱體轉(zhuǎn)化成長方體。
出示兩個等底等高圓柱體,讓學(xué)生比一比,底面積大小一樣,高相等,使學(xué)生確信,兩個圓柱體的體積相等。
請兩名同學(xué)按照你們的敘述,把圓柱體切拼成長方體。(如有條件,每四人一個學(xué)具,人人動手切拼,充分展示切拼過程和公式推導(dǎo)過程。)
現(xiàn)在討論自學(xué)題(2)。
師:這個長方體與圓柱體比較一下,什么變了?什么沒變?
生:形狀變了,體積大小沒變。
(3)推導(dǎo)圓柱體積公式。
討論:切拼成的長方體與圓柱體有什么關(guān)系?(引導(dǎo)學(xué)生有順序的進(jìn)行敘述,分小組討論,讓學(xué)生充分發(fā)言。)
小結(jié):切拼成的長方體的體積相當(dāng)于圓柱的體積,長方體的底面積相當(dāng)于圓柱體的底面積,長方體的高相當(dāng)于圓柱體的高。
師:圓柱的體積怎樣計(jì)算?用字母公式,怎樣表示?
板書:V=Sh
(4)利用公式進(jìn)行計(jì)算。
例1一根圓柱形鋼材,底面積是50平方厘米,高2.1米,它的體積是多少?
引導(dǎo)學(xué)生審題,說出題目中的已知條件和問題。做這道題還要注意什么?
生:已知圓柱體底面積和高,求圓柱的體積,注意統(tǒng)一單位名稱。
2。1米=210厘米(①用字母表示已知條件)
S=50h=210(②寫出字母公式)
V=Sh(③列式計(jì)算)
=50×210(④寫出答題)
=10500
答:它的體積是10500立方厘米。
引導(dǎo)學(xué)生總結(jié)出做題步驟。
小結(jié):要求圓柱體積,必須知道圓柱的底面積(如果給半徑、直徑、底面周長,會求出底面積)和高。注意統(tǒng)一單位名稱。
(三)鞏固反饋
1.圓柱體的底面積3.14平方分米,高40厘米。它的體積是多少?
2.求下面圓柱體的體積。(單位:厘米)
3.填表:
4.一個圓柱形容器,底面半徑是25厘米,高8分米。它的容積是多少立方分米?
5.一個圓柱形糧囤,從里面量,底面周長是6.28米,高20分米。它的容積是多少立方米?
(四)課堂總結(jié)
這節(jié)課,你學(xué)會了什么?還有什么問題?
生:學(xué)會了圓柱體的體積計(jì)算公式,并會用公式解答實(shí)際問題。
思考題:
一張長方形的紙長6.28分米,寬4分米。用它分別圍成兩個圓柱體,它們的體積大小一樣嗎?請你計(jì)算一下。
課堂教學(xué)設(shè)計(jì)說明
本節(jié)教案分三個層次。
第一層次是復(fù)習(xí)。
第二層次,推導(dǎo)圓柱體的計(jì)算公式。在學(xué)生自學(xué)的基礎(chǔ)上,親自動手切拼,把圓柱體轉(zhuǎn)化成近似的長方體,找出近似長方體與原圓柱體各部分相對應(yīng)部分,從而推出圓柱體積計(jì)算公式。用知識遷移法,把舊知識發(fā)展重新構(gòu)建轉(zhuǎn)化為新知識,使學(xué)生認(rèn)識到形變質(zhì)沒變的辯證關(guān)系,培養(yǎng)學(xué)生自學(xué)能力,動手能力,觀察分析和歸納能力。
第二層次,針對本節(jié)所學(xué)知識內(nèi)容,安排適度練習(xí),由易到難,由淺入深,使學(xué)生當(dāng)堂掌握所學(xué)的新知識,并通過練習(xí)達(dá)到一定技能。
本節(jié)教案特點(diǎn):充分體現(xiàn)以教師為主導(dǎo),學(xué)生為主體,讓學(xué)生動手、動腦、參與教學(xué)全過程,較好地處理教與學(xué),練與學(xué)的關(guān)系。寓教于玩中學(xué)會新知識,使學(xué)生愛學(xué)、會學(xué),培養(yǎng)了學(xué)生動手操作能力、口頭表達(dá)能力和邏輯思維能力,讓學(xué)生充分體驗(yàn)成功的喜悅。
《圓柱的體積》教案 8
教學(xué)目標(biāo):
1、通過教學(xué),使學(xué)生經(jīng)歷觀察、猜想、操作、驗(yàn)證、交流和歸納等數(shù)學(xué)活動過程,探索并掌握圓柱的體積公式,初步學(xué)會應(yīng)用公式計(jì)算圓柱的體積,并解決相關(guān)的簡單實(shí)際問題。
2、使學(xué)生在活動中進(jìn)一步體會“轉(zhuǎn)化”方法的價值,培養(yǎng)應(yīng)用已有知識解決新問題的能力。
3、培養(yǎng)學(xué)生初步的空間概念、動手能力、操作能力和邏輯思維推理能力。
教學(xué)重點(diǎn):
掌握和運(yùn)用圓柱體積計(jì)算公式進(jìn)行正確計(jì)算。
教學(xué)難點(diǎn):
理解圓柱體積計(jì)算公式的推導(dǎo)過程,體會“轉(zhuǎn)化”方法的價值。
教學(xué)準(zhǔn)備:
用于演示把圓柱體積轉(zhuǎn)化成長方體體積的教具、幻燈片。
教學(xué)過程:
一、遷移引入。
1、教師:前幾節(jié)課我們已經(jīng)認(rèn)識了圓柱體,學(xué)會了計(jì)算圓柱的側(cè)面積、底面積和表面積,今天這節(jié)課我們繼續(xù)來研究圓柱的體積。同學(xué)們回憶一下,什么叫體積?(指名回答,生:物體所占空間的大小叫做體積。)我們學(xué)會計(jì)算哪些立體圖形的體積呢?(指名學(xué)生回答,教師演示課件。根據(jù)學(xué)生的回答,板書:長方體的體積=底面積×高)
2、教師:如果這個長方體和正方體的底面積相等,高也相等,那么它們的體積也相等嗎?為什么?
3、教師:現(xiàn)在又有一個圓柱體,并且圓柱的底面積和長方體與正方體的底面積相等,高也與它們相等,大家猜猜看,圓柱的體積會與長方體和正方體的體積也相等嗎?(指名學(xué)生口答)用什么辦法來驗(yàn)證呢?
4、教師:在研究這個問題之前,我們先來復(fù)習(xí)一下,圓的面積是怎樣計(jì)算的呢?圓的面積計(jì)算公式是怎樣推導(dǎo)出來的?(學(xué)生:把一個圓,平均分成若干個扇形,拼成一個近似長方形,長方形的長相當(dāng)于圓周長的一半,寬相當(dāng)于圓的半徑。)根據(jù)學(xué)生的敘述,教師課件演示。
二、學(xué)習(xí)新課。
1、教師:那么今天我們要研究的圓柱的體積,能不能也像剛才圓的面積公式推導(dǎo)過程一樣,轉(zhuǎn)化成我們學(xué)過的立體圖形,推導(dǎo)出計(jì)算圓柱體積的公式呢?
2、學(xué)生小組討論、交流。
教師:同學(xué)們自己先在小組里討論一下。要求:
。1)你準(zhǔn)備把圓柱體轉(zhuǎn)化成什么立體圖形?
。2)你是怎樣轉(zhuǎn)化成這個立體圖形的?
(3)轉(zhuǎn)化以后的立體圖形和圓柱體之間有什么關(guān)系?
3、推導(dǎo)圓柱體積公式。
學(xué)生交流,教師動畫演示。
。1)把圓柱體轉(zhuǎn)化成長方體。
。2)怎樣轉(zhuǎn)化成長方體呢?(指名敘述:把圓柱體底面分成平均分成若干個扇形(例如分成16份),然后把圓柱切開,拼成一個近似長方體。)你會操作嗎?(學(xué)生演示教具)
。3)教師說明:底面扇形平均分的份數(shù)越多,拼成的立體圖形就越接近長方體。
。4)教師:這個長方體與圓柱體比較一下,什么變了?什么沒變?(生:形狀變了,體積大小沒變。)
。5)推導(dǎo)圓柱體積公式。
討論:切拼成的長方體與圓柱體有什么關(guān)系?(學(xué)生回答:切拼成的長方體的體積相當(dāng)于圓柱的體積,長方體的底面積相當(dāng)于圓柱體的底面積,長方體的高相當(dāng)于圓柱體的高。教師根據(jù)學(xué)生回答演示課件。)
教師:圓柱的體積怎樣計(jì)算?用字母公式,怎樣表示?板書:
圓柱的體積=底面積×高
V=Sh
三、利用公式進(jìn)行計(jì)算。
教師:根據(jù)圓柱體積的計(jì)算公式,如果要求圓柱的體積,你必須知道哪些條件就可以求?
、僦缊A柱的底面積和高,可以求圓柱的'體積。
練習(xí)七的第1題:填表。
、谥缊A柱的底面半徑和高,可以求圓柱的體積。
試一試。
、壑缊A柱的底面積直徑和高,可以求圓柱的體積。
練一練的第1題:計(jì)算下面各圓柱的體積。
④知道圓柱的底面周長和高,可以求圓柱的體積。
一根圓柱形零件,底面周長是12.56厘米,長是10厘米,它的體積是多少?
四、鞏固應(yīng)用。
1、判斷正誤,對的畫“√”,錯誤的畫“×”。
2、計(jì)算下面各圓柱的體積。
3、智慧屋:已知一個圓柱的側(cè)面積為37.68平方厘米,底面半徑為3厘米,求這個圓柱的體積。
五、小結(jié)。
教師:這節(jié)課我們一起學(xué)習(xí)了運(yùn)用轉(zhuǎn)化的方法推導(dǎo)出圓柱體積的計(jì)算公式,并且能夠運(yùn)用圓柱體積的計(jì)算公式解決一些實(shí)際問題。在今后的學(xué)習(xí)中,特別提醒大家一定正確計(jì)算出圓柱的體積,并且能靈活運(yùn)用圓柱的體積計(jì)算公式。
《圓柱的體積》教案 9
教學(xué)內(nèi)容
蘇教版六年級下冊第二單元圓柱和圓錐第三課時P17~18頁例4,P2頁練一練,練習(xí)一1~3。
教學(xué)目標(biāo):
知識技能:結(jié)合具體情境,讓學(xué)生探索并掌握圓柱體積的計(jì)算方法,并能運(yùn)用計(jì)算公式解決簡單的實(shí)際問題。培養(yǎng)應(yīng)用已有知識解決新問題的能力,發(fā)展空間觀念和初步的推理能力。
數(shù)學(xué)思考:讓學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究的方法。
解決問題:通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
情感態(tài)度:提高學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。
教學(xué)重點(diǎn):
掌握和運(yùn)用圓柱體積計(jì)算公式。
教學(xué)難點(diǎn):
利用“轉(zhuǎn)化”的方法推導(dǎo)圓柱體積公式的`過程。
課時安排
1課時
教學(xué)準(zhǔn)備
教師準(zhǔn)備:多媒體課件一套。把圓柱沿底面等分成16份的教具。學(xué)生準(zhǔn)備:預(yù)習(xí)教材,把圓柱沿底面等分成16份的教具。
教學(xué)過程
一、創(chuàng)設(shè)情境,提出問題
某玩具廠廠長,他們廠新開發(fā)了一種積木玩具,這三個積木的底面積和高都相等,他想比較一下這三個積木的體積的大小,同學(xué)們有什么方法?
二、動手實(shí)驗(yàn),探索公式
1.觀察、比較,建立猜想。引導(dǎo)生觀察例4中的三個幾何體,提問:
、砰L方體、正方體的體積相等嗎?為什么?
。ò鍟洪L方體的體積=底面積×高)
、茍A柱的體積與長方體、正方體的體積可能相等嗎?這三個幾何體的底面積和高都相等,它們的體積有什么關(guān)系?
2.實(shí)驗(yàn)操作,驗(yàn)證猜想
讓學(xué)生自主探究(材料:圓柱體積木、圓柱體插拼教學(xué)具、師準(zhǔn)備課件),想辦法驗(yàn)證圓柱的體積與長方體、正方體的體積相等。
教師提示:你能想辦法把圓柱轉(zhuǎn)化成長方體嗎?圓是如何轉(zhuǎn)化成長方形的,可以模仿這樣的方法來轉(zhuǎn)化。
、判〗M合作研究怎樣將圓柱體轉(zhuǎn)化成一個長方體。
、菩〗M代表匯報(bào),全班交流。
。▽W(xué)生按照自己的方式來轉(zhuǎn)化,會有多種轉(zhuǎn)化方法,教師適時加以鼓勵)⑶演示操作。
a.請一名學(xué)生演示用切、插、拼的方法把圓柱體轉(zhuǎn)化成長方體。其他學(xué)生模仿操作。
b.思考:這是一個標(biāo)準(zhǔn)的長方體嗎?為什么?如果分割的份數(shù)越多,你會有什么發(fā)現(xiàn)?
c.電腦演示圓柱體轉(zhuǎn)化成長方體的過程(從16等份到32等份再到64等份)。
3.觀察比較,推導(dǎo)公式。
a.小組討論:
圓柱體轉(zhuǎn)化成長方體后,什么變了,什么沒有變?
b.根據(jù)學(xué)生的觀察、分析、推想,老師完成板書:
長方體的體積=底面積×高
圓柱的體積=底面積×高
《圓柱的體積》教案 10
探究目標(biāo):
1、組織學(xué)生開展測量、計(jì)算、估測等數(shù)學(xué)實(shí)踐活動,使學(xué)生進(jìn)一步掌握圓柱體積計(jì)算公式,并能運(yùn)用公式正確地計(jì)算圓柱的體積。
2、在探索空間與圖形的過程中,培養(yǎng)學(xué)生初步的空間觀念及實(shí)踐能力,同時結(jié)合具體的情境培養(yǎng)其估測意識。
3、使學(xué)生學(xué)會與他人合作,并能比較清楚地表達(dá)和交流解決問題的過程和結(jié)果。
4、讓學(xué)生體驗(yàn)解決策略的多樣性,不斷激發(fā)其對數(shù)學(xué)的好奇心和求知欲,使其積極地參與數(shù)學(xué)學(xué)習(xí)活動。
教學(xué)重難點(diǎn):
學(xué)生會應(yīng)用圓柱體積公式解決實(shí)際問題。
探究過程:
一、遷移引入
提問:一個圓柱的底面積是80平方厘米,高是20厘米,求它的體積。
提問:如果已知的是底面半徑和高,該怎么求呢?
二、自主探究
1、出示長方體魚缸。
要計(jì)算這個長方體魚缸能裝多少水,就是求什么?
怎樣求這個長方體的容積呢?
2、出示圓柱形魚缸。
、殴罍y。這個圓柱形魚缸的容積大約是多少?
、撇僮、匯報(bào)。如果忽略容器的壁厚,這個圓柱形魚缸的容積到底是多少呢?學(xué)生分小組進(jìn)行操作計(jì)算,各小組派代表演示操作過程,并展示計(jì)算過程。
學(xué)生可能的回答有:
生1:這個圓柱的底面周長是94.5厘米,它的'高是12厘米,計(jì)算過程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)
生2:我們小組測量的是底面直徑和高。底面直徑長30厘米,高是12厘米,計(jì)算過程如下:3.14×(30÷2)2×12=8478(立方厘米)
生3:我們測量的是底面半徑和高。3.14×152×12=8478(立方厘米)
、仍u價。
組織學(xué)生間進(jìn)行評價。你最喜歡哪個小組的操作方案?為什么?每一步列式的意義是什么?使學(xué)生進(jìn)一步掌握圓柱體積的計(jì)算方法。
⑸反思。引導(dǎo)學(xué)生將實(shí)際計(jì)算結(jié)果與自己的估測結(jié)果進(jìn)行對比。自己矯正偏差。
、恃由。如果每立方分米水重1千克,這個魚缸大約能裝水多少千克?
3、自學(xué)例題。
組織學(xué)生自學(xué)課本例5。同桌的兩名同學(xué)結(jié)合例5的解答過程提出相關(guān)的數(shù)學(xué)問題,進(jìn)行互問互答。
三、鞏固練習(xí)
做教科書第80頁“做一做”中的第2題、練習(xí)二十一的第5題。
學(xué)生獨(dú)立完成,指名板演,集體評講。
四、創(chuàng)意作業(yè)
學(xué)生綜合運(yùn)用所學(xué)的知識,進(jìn)行計(jì)算、繪圖、裁剪、粘貼等多項(xiàng)操作活動。
在一張長30厘米,寬20厘米的長方形紙上進(jìn)行合理的裁剪,做一個無蓋的圓柱形筆筒。比一比,誰做的筆筒容積最大?
《圓柱的體積》教案 11
教學(xué)目標(biāo):
1、了解圓柱體體積(包括容積)的含義,進(jìn)一步理解體積和容積的含義。
2、經(jīng)歷探索圓柱體積計(jì)算方法的過程,掌握圓柱體積的計(jì)算方法,能正確計(jì)算圓柱的體積,并會解決一些簡單的實(shí)際問題。
3、培養(yǎng)初步的空間觀念和思維能力;進(jìn)一步認(rèn)識“轉(zhuǎn)化”的思考方法。
教學(xué)重點(diǎn):
理解和掌握圓柱的體積計(jì)算公式,會求圓柱的體積
教學(xué)難點(diǎn):
理解圓柱體積計(jì)算公式的推導(dǎo)過程。
教學(xué)用具:
圓柱體積演示教具。
教學(xué)過程:
一、復(fù)述回顧,導(dǎo)入新課
以2人小組回顧下列內(nèi)容:(要求1題組員給組長說,組長補(bǔ)充。2題同桌互說。說完后坐好。)
1、說一說:(1)什么叫體積?常用的體積單位有哪些?
(2)長方體、正方體的體積怎樣計(jì)算?如何用字母表示?
長方體、正方體的體積=()×()用字母表示()
2、求下面各圓的面積(只說出解題思路,不計(jì)算。)
(1)r=1厘米;
(2)d=4分米;
(3)C=6.28米。
(二)揭示課題
你想知道課本第8頁左上方“柱子的體積”嗎?你想知道“一個圓柱形杯子能裝多少水”嗎?今天就來學(xué)習(xí)“圓柱的體積”。(板書課題)
二、設(shè)問導(dǎo)讀
請仔細(xì)閱讀課本第8-9頁的內(nèi)容,完成下面問題
(一)以小組合作完成1、2題。
1、猜一猜,圓柱的體積可能等于()×()
2、我們在學(xué)習(xí)圓的`面積計(jì)算公式時,指出:把一個圓分成若干等份,可以拼成一個近似的長方形。這個長方形的面積就是圓的面積。圓柱的底面也可以像上面說的那樣轉(zhuǎn)化成一個近似的長方形,通過切、拼的方法,把圓柱轉(zhuǎn)化為一個近似的長方體(如課本第8頁右下圖所示)。(用自己手中的學(xué)具進(jìn)行切、拼)觀察拼成的長方體與原來的圓柱之間的關(guān)系
(1)圓柱的底面積變成了長方體的()。
(2)圓柱的高變成了長方體的()。
(3)圓柱轉(zhuǎn)化成長方體后,體積沒變。因?yàn)殚L方體的體積=()×(),所以圓柱的體積=()×()。如果用字母V代表圓柱的體積,S代表底面積,h代表高,那么圓柱的體積公式可用字母表示為()
[匯報(bào)交流,教師用教具演示講解2題]
(二)獨(dú)立完成3、4題。
3、如果已知課本第8頁左上方柱子的底面半徑為0.4米,高5米,怎樣計(jì)算柱子的體積?
先求底面積,列式計(jì)算()
再求體積,列式計(jì)算()
綜合算式()
4、要想知道“一個圓柱形杯子能裝多少水?”可以用杯子的“()×()”(杯子厚度忽略不計(jì))
【要求:完成之后以小組互查,有爭議之處四人大組討論!
教師根據(jù)學(xué)生做題情況挑選一些小組進(jìn)行匯報(bào)、交流,并對小組學(xué)習(xí)情況進(jìn)行評價。
三、自我檢測
1、課本9頁試一試
2、課本9頁練一練1題(只列式,不計(jì)算)
【要求:完成后小組互查,教師評價】
四、鞏固練習(xí)
課本練一練的2、3、4題
【要求:組長先給組員講解題思路,然后小組內(nèi)共同完成】
教師進(jìn)行錯例分析。
五、拓展練習(xí)
1、課本練一練的5題
2、有一條圍糧的席子,長6.28米,寬2.5米,把它圍成一個筒狀的糧食囤,怎樣圍盛的糧食多?最多能盛多少立方米的糧食?
【要求:先組內(nèi)討論確定解題思路,再完成】
六、課堂總結(jié),布置作業(yè)
1、總結(jié):這節(jié)我們利用轉(zhuǎn)化的方法,把圓柱轉(zhuǎn)化為長方體來推導(dǎo)其體積公式,切記用“底面積×高”來求圓柱的體積。
2、作業(yè):課本練一練6題
《圓柱的體積》教案 12
教學(xué)內(nèi)容:
人教版小學(xué)數(shù)學(xué)六年級下冊《圓柱的體積》P25-26。
教學(xué)目標(biāo):
1.經(jīng)歷探究和推導(dǎo)圓柱的體積公式的過程。
2.知道并能記住圓柱的體積公式,并能運(yùn)用公式進(jìn)行計(jì)算。
3.在自主探究圓柱的體積公式的過程中,體驗(yàn)、感悟數(shù)學(xué)規(guī)律的來龍去脈,知道長方體與圓柱體底面和高各部分間的對應(yīng)關(guān)系。發(fā)展學(xué)生的觀察能力和分析、綜合、歸納推理能力。
4.激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生體驗(yàn)成功的快樂。
5.培養(yǎng)學(xué)生的轉(zhuǎn)化思想,滲透辯證法和極限的思想。
教學(xué)重點(diǎn):
掌握和運(yùn)用圓柱體積計(jì)算公式
教學(xué)難點(diǎn):
圓柱體積公式的推導(dǎo)過程
教具學(xué)具準(zhǔn)備:
教學(xué)課件、圓柱體。
教學(xué)過程:
一、復(fù)習(xí)導(dǎo)入
1.同學(xué)們想一想,我們已經(jīng)學(xué)習(xí)了哪些立體圖形的體積?怎樣計(jì)算長方體和正方體的體積?長方體的體積和正方體的體積的通用公式是什么呢?用字母怎樣表示?
2.回憶一下圓面積的計(jì)算公式是如何推導(dǎo)出來的?
。ńY(jié)合課件演示)這是一個圓,我們把它平均分割,再拼合就變成了一個近似的平行四邊形。我們還可以往下繼續(xù)分割,無限分割就變成了一個長方形。長方形的長相當(dāng)于圓周長的一半,可以用πR表示,長方形的寬就當(dāng)于圓的半徑,用R表示。所以用周長的一半×半徑就可以求出圓的面積,所以推導(dǎo)出圓的面積公式是S=πR。
3.課件出示一個圓柱體
我們把圓轉(zhuǎn)化成了近似的長方形,同學(xué)們猜想一下圓柱可以轉(zhuǎn)化成什么圖形呢?
二、探索體驗(yàn)
1.學(xué)生猜想可以把圓柱轉(zhuǎn)化成什么圖形?
2.課件演示:把圓柱體轉(zhuǎn)化成長方體
①是怎樣拼成的?
、谟^察是不是標(biāo)準(zhǔn)的長方體?
③演示32等份、64等份拼成的長方體,比較一下發(fā)現(xiàn)了什么?引出課題并板書。
3.借鑒圓的面積公式的推導(dǎo)過程試著推導(dǎo)圓柱的體積公式。
課件出示要求:
、倨闯傻拈L方體與原來的圓柱體比較什么變了?什么沒變?
②推導(dǎo)出圓柱體的體積公式。
學(xué)生結(jié)合老師提出的問題自己試著推導(dǎo)。
4.交流展示
小組討論,交流匯報(bào)。
生匯報(bào)師結(jié)合講解板書。
圓柱體積=底面積×高
‖‖‖
長方體體積=底面積×高
用字母公式怎樣表示呢?v、s、h各表示什么?
5.知道哪些條件可以求出圓柱的體積?
6.計(jì)算下面圓柱的體積。
、俚酌娣e24平方厘米,高12厘米
、诘酌姘霃2厘米,高5厘米
③直徑10厘米,高4厘米
④周長18.84厘米,高12厘米
三、課堂檢測
1.判斷
、賵A柱體、長方體和正方體的體積都可以用底面積乘高的方法來計(jì)算。()
、趫A柱的底面積擴(kuò)大3倍,體積也擴(kuò)大3倍。()
、垡粋長方體與一個圓柱體底面積相等,高也相等,那么它們的體積也相等。()
、軋A柱體的底面直徑和高可以相等。()
⑤兩個圓柱體的底面積相等,體積也一定相等。()
、抟粋圓柱形的.水桶能裝水15升,我們就說水桶的體積是15立方分米。()
2.聯(lián)系生活實(shí)際解決實(shí)際問題。
下面的這個杯子能不能裝下這袋奶?
(杯子的數(shù)據(jù)從里面量得到直徑8cm,高10cm;牛奶498m1)
學(xué)生獨(dú)立思考回答后自己做在練習(xí)本上。
3.一個壓路機(jī)的前輪是圓柱形,輪寬2米,半徑1米,它的體積是多少立方米?
4.生活中的數(shù)學(xué)
一個用塑料薄膜蓋的蔬菜大棚,長15米,橫截面是一個半徑2米的半圓。
、俑采w在這個大棚上的塑料薄膜約有多少平方米?
、诖笈飪(nèi)的空間大約有多大?
獨(dú)立思考后小組討論,兩生板演。
四、全課總結(jié)
這節(jié)課你有什么收獲?
五、課后延伸
如果要測量圓柱形柱子的體積,測量哪些數(shù)據(jù)比較方便?試一試吧?
六、板書設(shè)計(jì)
圓柱體積=底面積×高
長方體體積=底面積×高
《圓柱的體積》教案 13
教學(xué)目標(biāo):
1.結(jié)合實(shí)際讓學(xué)生探索并掌握圓柱體積的計(jì)算方法,能正確運(yùn)用公式解決簡單的實(shí)際問題。
2.讓學(xué)生經(jīng)歷觀察、猜想、驗(yàn)證等數(shù)學(xué)活動過程,培養(yǎng)學(xué)生空間想象能力和探究推理能力,滲透“轉(zhuǎn)化”、“極限”等數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究的方法。
3.通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,獲得成功的喜悅。
教學(xué)重點(diǎn):
理解并掌握圓柱體積計(jì)算公式,并能應(yīng)用公式計(jì)算圓柱的體積。
教學(xué)準(zhǔn)點(diǎn):
掌握圓柱體積公式的推導(dǎo)過程。
教學(xué)準(zhǔn)備:
圓柱的體積演示教具、多媒體課件、圓柱實(shí)物2個(一個為橡皮泥)、水槽、水。
教學(xué)過程:
一、情境激趣導(dǎo)入新課
1、課始師首先出示一個長方體和一個正方體,說說怎樣求它們的體積,接著師往正方體容器中倒入一定量的水,然后拿出一個圓柱形物體準(zhǔn)備投入水中并讓學(xué)生觀察:有什么現(xiàn)象發(fā)生?由這個發(fā)現(xiàn)你想到了些什么?
2、提問:“能用一句話說說什么是圓柱的體積嗎?”(板書課題)
二、自主探究,學(xué)習(xí)新知
(一)設(shè)疑
1、從剛才的實(shí)驗(yàn)中你有辦法得到這個圓柱學(xué)具的體積嗎?
2、再出示一個用橡皮泥捏成的圓柱體模型,你又能用什么好辦法求出它的體積?
3、如果要求大廳內(nèi)圓柱的體積,或壓路機(jī)前輪的體積,還能用剛才的方法嗎?(生搖頭)
師:看來,我們剛才的方法有一定的局限性,要是能像求長方體或正方體那樣,有一個通用的公式
。ǘ┎孪
1、猜想一下圓柱的體積大小可能與什么有關(guān)?理由是什么?
2、大家再來大膽猜測一個,圓柱的體積公式可能是什么?說說你的理由?
(三)驗(yàn)證
1、為了證實(shí)剛才的猜想,我們可以通過實(shí)驗(yàn)來驗(yàn)證。怎樣進(jìn)行這個實(shí)驗(yàn)?zāi)兀拷Y(jié)合我們以往學(xué)習(xí)幾何圖形的經(jīng)驗(yàn),說說自己的想法。(用轉(zhuǎn)化的方法,根據(jù)學(xué)生敘述課件演示圓的面積公式推導(dǎo)過程)
2、圓柱能轉(zhuǎn)化成我們學(xué)過的什么圖形呢?它又是怎么轉(zhuǎn)化成這種圖形的?(小組討論后匯報(bào)交流)
3、指名兩位學(xué)生上臺用圓柱體積教具進(jìn)行操作,把圓柱體轉(zhuǎn)化為近似的長方體。
4、根據(jù)學(xué)生操作,師再次課件演示圓柱轉(zhuǎn)化成長方體的過程。并引導(dǎo)學(xué)生分析當(dāng)分的份數(shù)越多時,拼成的圖形越接近長方體。
5、通過上面的觀察小組討論:
(1)圓柱體通過切拼后,轉(zhuǎn)化為近似的長方體,什么變了?什么沒變?
(2)長方體的底面積與原來圓柱體的哪部分有關(guān)系?有什么關(guān)系?
(3)長方體的高與原來圓柱體的哪部分有關(guān)系?有什么關(guān)系?
(4)你認(rèn)為圓柱的體積可以怎樣計(jì)算?
(生匯報(bào)交流,師根據(jù)學(xué)生講述適時板書。)
小結(jié):把圓柱體轉(zhuǎn)化成長方體后,形狀變了,體積不變,長方體的底面積等于圓柱的底面積,高等于圓柱的高,因?yàn)殚L方體的體積等于底面積×高,所以圓柱體積也等于底面積×高,用字母表示是V=Sh。
6、同桌相互說說圓柱體積的推導(dǎo)過程。
7、完成“做一做”:一根圓形木料,底面積為75cm2,長是90cm。它的體積是多少?(生練習(xí)展示并評價)
8、求圓柱體積要具備什么條件?
9、思考:如果只知道圓柱的底面半徑和高,你有辦法求出圓柱的體積嗎?如果是底面直徑和高,或是底面周長和高呢?(學(xué)生討論交流)
小結(jié):可以根據(jù)已知條件先求出圓柱的底面積,再求圓柱的體積。
10、出示課前的圓柱,說一說現(xiàn)在你可以用什么辦法求出這個圓柱的體積?(測不同數(shù)據(jù)計(jì)算)
11、練一練:列式計(jì)算求下列各圓柱體的`體積。
。1)底面半徑2cm,高5cm。
。2)底面直徑6dm,高1m。
。3)底面周長6.28m,高4m。
三、練習(xí)鞏固拓展提升
1、判斷正誤:
。1)等底等高的圓柱體和長方體體積相等。()
。2)一個圓柱的底面積是10cm2,高是5m,它的體積是10×5=50cm3。()
。3)圓柱的底面積越大,它的體積就越大。()
。4)一個圓柱的體積是80cm3,底面積是20cm2,它的高是4cm。()
2、這是我們學(xué)校種榕樹的一個花壇,測得花壇內(nèi)直徑是4m,花壇內(nèi)填土高度是0.5m,算一算這個花壇內(nèi)一共填土多少立方米?
3、學(xué)習(xí)很愉快,我們來慶祝一下:在一個棱長為20厘米正方體紙盒中,放一個最大的圓柱體蛋糕,系上180厘米長的絲帶(打結(jié)部分忽略不計(jì)),那么這個蛋糕的體積到底是多少呢?
四、全課總結(jié)自我評價
通過這節(jié)課的學(xué)習(xí)你有什么感受和收獲?
教學(xué)反思:
圓柱的體積是幾何知識的綜合運(yùn)用,它是在學(xué)生了解了圓柱的特征、掌握了長方體和正方體體積以及圓的面積計(jì)算公式推導(dǎo)過程的基礎(chǔ)上進(jìn)行教學(xué)的。由于圓柱是一種含有曲面的幾何體,這給體積的認(rèn)識和計(jì)算增加了難度。為了降低學(xué)習(xí)難度,讓學(xué)生更好地理解和掌握圓柱體積的計(jì)算方法,為后面學(xué)習(xí)圓錐體積打下堅(jiān)實(shí)的基礎(chǔ),因此在本節(jié)課的教學(xué)設(shè)計(jì)上我十分注重從生活情境入手,讓學(xué)生經(jīng)歷圓柱體積的探究過程,通過一系列的數(shù)學(xué)活動,培養(yǎng)學(xué)生探究數(shù)學(xué)知識的能力和方法,同時在學(xué)習(xí)活動中體驗(yàn)學(xué)習(xí)的樂趣。
從本節(jié)課教學(xué)目標(biāo)的達(dá)成來看,較好地體現(xiàn)了以下幾方面:
一、創(chuàng)設(shè)生活情境,體現(xiàn)數(shù)學(xué)生活化。
《新課程標(biāo)準(zhǔn)》指出:要創(chuàng)設(shè)與學(xué)生生活環(huán)境、知識背景密切相關(guān)的,又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、操作、猜測、交流、反思等活動中逐步體會數(shù)學(xué)知識的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗(yàn),感受數(shù)學(xué)的力量,同時掌握必要的基礎(chǔ)知識與基本技能。在本節(jié)課中,我從生活情境入手,創(chuàng)設(shè)了一個裝水的學(xué)具槽放入圓柱學(xué)具使水面上升的情境,引導(dǎo)學(xué)生觀察思考,直觀感知圓柱體積的概念,同時意識到過去學(xué)的排水法可以用來求圓柱的體積,緊接著當(dāng)老師再出示橡皮泥捏成的圓柱體模型,并追問大廳內(nèi)圓柱的體積等問題時,學(xué)生意識到前面所說求體積計(jì)算方法的局限性,從而產(chǎn)生思維困惑,進(jìn)一步激發(fā)了探究圓柱體積計(jì)算方法的欲望。這樣的導(dǎo)入不僅為學(xué)生創(chuàng)造了一個十分寬松的生活化學(xué)習(xí)環(huán)境,還為學(xué)生后面構(gòu)建數(shù)學(xué)模型,發(fā)現(xiàn)圓柱體積公式奠定了基礎(chǔ)。在練習(xí)的設(shè)計(jì)上,為避免純數(shù)學(xué)的計(jì)算,我以學(xué)生熟悉的學(xué)校圓柱形花壇為背景,提出求花壇填土體積這樣的問題,讓學(xué)生學(xué)會靈活應(yīng)用知識解決簡單的實(shí)際問題,在鞏固體積計(jì)算方法的同時,進(jìn)一步感受到數(shù)學(xué)知識的使用價值。這樣的教學(xué)安排不僅體現(xiàn)了數(shù)學(xué)來源于生活,又應(yīng)用于生活的思想,也使數(shù)學(xué)的課堂教學(xué)充滿濃濃的生活味。
二、引導(dǎo)學(xué)生經(jīng)歷知識探究的全過程。
動手實(shí)踐、自主探究、合作交流是《新課程標(biāo)準(zhǔn)》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。在本課教學(xué)中,由于學(xué)具的欠缺,沒能給學(xué)生提供小組動手操作的機(jī)會,為了彌補(bǔ)這一不足,最大限度發(fā)揮學(xué)生自主學(xué)習(xí)的作用,教學(xué)中我努力為學(xué)生搭建探究平臺,通過觀察、設(shè)疑、猜想、驗(yàn)證,經(jīng)歷圓柱體積的轉(zhuǎn)化過程,發(fā)展學(xué)生的空間想象能力。在探究圓柱體積的過程中,我從本班學(xué)情出發(fā),大膽放手讓學(xué)生猜想“圓柱體積大小可能與什么有關(guān),可能怎樣計(jì)算,為什么?”,然后再結(jié)合以往學(xué)習(xí)幾何圖形的經(jīng)驗(yàn),回顧圓的面積推導(dǎo)過程,實(shí)現(xiàn)知識遷移,明確“轉(zhuǎn)化”思想在數(shù)學(xué)研究中的重要意義。為了讓學(xué)生直觀感受到圓柱體轉(zhuǎn)化為長方體的過程,我較好地借助實(shí)物模型和多媒體課件演示,把二者有機(jī)結(jié)合,先讓兩個學(xué)生上臺操作演示,然后再課件動態(tài)模擬,在學(xué)生充分觀察的基礎(chǔ)上,小組討論交流:當(dāng)圓柱體轉(zhuǎn)化成近似的長方體后什么變了,什么沒變?長方體的底面積與圓柱的底面積有什么關(guān)系?長方體的高與圓柱的高有什么關(guān)系?從而得出結(jié)論:圓柱的體積等于底面積乘以高。整個探究過程以學(xué)生自主學(xué)習(xí)為主,知識的形成給學(xué)生留下深刻的印象。伴隨著問題的圓滿解決,學(xué)生體驗(yàn)到了成功的喜悅與滿足。
三、注重學(xué)法指導(dǎo)和數(shù)學(xué)思想方法的滲透。
“學(xué)會學(xué)習(xí)”是對學(xué)生“學(xué)”的最高要求,因此在教學(xué)中不但要教給學(xué)生知識,更要教給學(xué)生學(xué)習(xí)的方法,讓學(xué)生終身受用。在本節(jié)課的教學(xué)中,我把“觀察、猜想、驗(yàn)證”的學(xué)法指導(dǎo),貫穿于整個學(xué)習(xí)過程,使學(xué)生學(xué)得主動有效。在探究方法的引導(dǎo)上從回憶圓的面積公式推導(dǎo)入手,確定轉(zhuǎn)化的方法,體驗(yàn)轉(zhuǎn)化的過程,驗(yàn)證轉(zhuǎn)化的結(jié)果,使“轉(zhuǎn)化”、“極限”等數(shù)學(xué)思想在課中得到良好滲透,學(xué)生進(jìn)一步體會到科學(xué)、條理的數(shù)學(xué)思維方式,從而發(fā)展了學(xué)生的數(shù)學(xué)能力。
《圓柱的體積》教案 14
教學(xué)目標(biāo):
1、知識與技能:通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,使學(xué)生理解圓柱的體積公式的推導(dǎo)過程能夠運(yùn)用公式正確地計(jì)算圓柱的體積。
2、過程與方法:讓學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究法。
3、情感態(tài)度與價值觀:通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
教學(xué)重點(diǎn):
掌握和運(yùn)用圓柱體積計(jì)算公式進(jìn)行正確計(jì)算。
教學(xué)難點(diǎn):
理解圓柱體積計(jì)算公式的推導(dǎo)過程,體會“轉(zhuǎn)化”方法的價值。
教學(xué)過程:
一、情景導(dǎo)入:
教師:(出示)多么溫馨的場面,今天是亮亮和爺爺?shù)纳,幸福的一家人圍坐在飯桌前享用著美酒佳肴,你能觀察到今天的飯菜比平時多了什么嗎?
學(xué)生:
1、比平日多了兩個蛋糕。
2、兩個蛋糕一個大一個小。
3、蛋糕都是圓柱形的。
教師:同學(xué)們觀察的很仔細(xì),那你能根據(jù)剛學(xué)過的知識說一說爺爺?shù)案廨^大意味著什么嗎?
學(xué)生:蛋糕大,意味著圓柱的體積大。
教師:那你還知道什么是圓柱的體積嗎?
學(xué)生:圓柱的體積就是圓柱體占空間的大小。
教師:兩個蛋糕的體積相差較多,我們?nèi)菀妆容^出那個體積大,如果體積相差較小我們怎么比較呢?
學(xué)生:拿出準(zhǔn)備的圓柱體進(jìn)行比較,討論,各小組分別說明比較的方法并展示。
教師:板書:圓柱的體積
二、課上探究
1、教師:同學(xué)們回憶一下我們還學(xué)過那些立體圖形?
學(xué)生:還學(xué)過正方體和長方體。
教師:它們的體積怎樣計(jì)算?(多媒體出示長方體)有什么共同點(diǎn)?
學(xué)生:長方體的體積=長×寬×高,長×寬=底面積,V=sh;正方體的體積=棱長×棱長×棱長,棱長×棱長=底面積,V=sh;共同點(diǎn)都是底面積乘高。
2、猜測圓柱的體積與什么有關(guān)
師:拿出圓柱體,讓學(xué)生猜想圓柱體積與什么有關(guān)。
生1、圓柱的體積與圓柱的高有關(guān)。
生2、圓柱的體積與圓柱的底面積有關(guān)。
生3、圓柱的`體積與圓柱的底面周長有關(guān)。
生4、圓柱的體積與圓柱的底面半徑有關(guān)。
3、推導(dǎo)圓柱體積公式
、賻:同學(xué)們觀察圓柱的底面是一個圓,學(xué)習(xí)圓面積時,我們是把圓轉(zhuǎn)化成哪種圖形來求面積的?
生:把圓轉(zhuǎn)化成近似長方形來求面積的。
、趲煟何覀円黄饋砘貞洶褕A轉(zhuǎn)化成近似長方形的過程,()
師:你發(fā)現(xiàn)了什么?
生:我發(fā)現(xiàn)把圓平均分成的份數(shù)越多,拼成的圖形越接近長方形。
、蹘煟簣A柱可以看成多個圓片摞在一起,把圓剪拼成的每個近似長方形也摞在一起。我們就把圓柱轉(zhuǎn)化成我們以前學(xué)過的哪種立體圖形呢?
生:把圓柱轉(zhuǎn)化成近似的長方體。
、軒熡脠A柱體演示轉(zhuǎn)換過程,讓學(xué)生說怎樣轉(zhuǎn)換的。
生:把圓柱平均分成16份拼成一個近似的長方體。
⑤師:為了讓大家看的更清楚,我們再演示一下這個轉(zhuǎn)化過程。
再次演示把圓柱等分16等份,拼成近似的長方體。
再出示32等份的圓柱體拼成的近似的長方體,讓學(xué)生觀察,發(fā)現(xiàn)了什么?
生:分成的份數(shù)越多,拼成的圖形越接近長方體。
、迬煟撼鍪緢A柱體和拼成的長方體,讓學(xué)生觀察,拼好的長方體與原來的圓柱比較,發(fā)現(xiàn)了什么?
學(xué)生分組討論,匯報(bào):
生:長方體的高和圓柱的高相等。
生:長方體的底面積和圓柱的底面積相等。
⑦師:你是怎么想的?
生:剛才我們復(fù)習(xí)了把圓轉(zhuǎn)化成長方形,所以圓柱的底面積和長方體的底面積相等。
、鄮煟涸俅斡脠A柱拼成近似長方體的過程,讓學(xué)生仔細(xì)觀察圓轉(zhuǎn)化成長方形后,面積相等。
生:長方體的長是圓柱底面周長的一半,寬是圓柱底面半徑
師:演示長方體的體積=底面積×高
⑨師:那么圓柱的體積等于什么呢?
生:圓柱的體積=底面積×高
、庀旅嫖覀冊僖黄鸹貞浺幌罗D(zhuǎn)化的過程,()
讓學(xué)生獨(dú)立填答案,匯報(bào):
三、我們知道了圓柱的體積公式,下面我們就來解決一些實(shí)際問題。
《圓柱的體積》教案 15
一、教學(xué)目標(biāo)
【知識與技能】
掌握圓柱的體積計(jì)算公式,能夠正確計(jì)算圓柱的體積。
【過程與方法】
通過觀察、類比、分析的過程,提高分析問題、解決問題的能力,發(fā)展空間觀念。
【情感態(tài)度價值觀】
感受數(shù)學(xué)與生活的聯(lián)系,激發(fā)學(xué)習(xí)興趣,提高學(xué)習(xí)數(shù)學(xué)的自信心。
二、教學(xué)重難點(diǎn)
【教學(xué)重點(diǎn)】
圓柱的體積公式。
【教學(xué)難點(diǎn)】
圓柱體積公式的推導(dǎo)過程。
三、教學(xué)過程
(一)引入新課
提問:長方體和正方體的體積公式是什么?
預(yù)設(shè):長方體的體積=長×寬×高,正方體體積=棱長×棱長×棱長,兩者共有的體積公式:長方體
(正方體)體積=底面積×高。今天我們再來研究另一個熟悉的幾何圖形,圓柱的體積公式。從而引出本節(jié)課題《圓柱的體積》。
(二)探索新知
1.圓柱體積公式的.猜想
在大屏幕出示底面積和高都相等的長方體、正方體和圓柱。
提問:長方體和正方體的體積相等嗎?
預(yù)設(shè):根據(jù)長方體(正方體)體積=底面積×高,所以長方體和正方體體積相等。
追問:類比之前學(xué)過的體積公式,圓柱的體積可能和哪些因素有關(guān)?圓柱的體積公式可能是什么?
預(yù)設(shè):圓柱的體積和底面積、高有關(guān),圓柱的體積公式=底面積×高。
2.圓柱體積公式的推導(dǎo)
回憶圓的面積是通過轉(zhuǎn)化為長方形,從而推導(dǎo)出圓的面積公式。提問:圓柱可以轉(zhuǎn)化成已知體積公式的哪個圖形呢?
預(yù)設(shè):可以把圓柱轉(zhuǎn)換成長方體。
讓學(xué)生根據(jù)提前下發(fā)的能自動等份分割的圓柱體學(xué)具,同桌之間相互交流:如何把圓柱轉(zhuǎn)化為長方體呢?
預(yù)設(shè):學(xué)生分一分,拼一拼,組合成近似長方體的圖形。此時教師應(yīng)借助多媒體設(shè)備展示把圓柱等份分成32份,64份甚至更多份的情境,隨著等份分割的份數(shù)越多,拼成的圖形就越接近長方體。
組織學(xué)生進(jìn)行小組討論:觀察拼成的長方體和原來的圓柱具有怎樣的關(guān)系?5分鐘后請小組代表進(jìn)行回答。
預(yù)設(shè):長方體的底面積、高和體積分別等于原來圓柱的底面積、高和體積。
3.圓柱體積公式的推出
提問:圓柱的體積公式是什么?
預(yù)設(shè):圓柱的體積=底面積×高
用大寫字母V表示圓柱的體積,S表示底面積,h表示圓柱的高,用字母表示圓柱的體積公式。
預(yù)設(shè):V=Sh
教師強(qiáng)調(diào)字母V、S是大寫,h是小寫。
追問:回顧探究圓柱體積公式的過程,有哪些心得體會?
預(yù)設(shè)1:可以用長方體體積公式推導(dǎo)出圓柱體體積公式;
預(yù)設(shè)2:把圓柱轉(zhuǎn)化成長方體,與探索圓面積的方法類似;
預(yù)設(shè)3:計(jì)算長方體、正方體、圓柱的體積都可以用底面積乘高。
(三)課堂練習(xí)
試一試
一個圓柱形零件,底面半徑是5厘米,高是8厘米。這個零件的體積是多少立方厘米?
(四)小結(jié)作業(yè)
提問:通過本節(jié)課的學(xué)習(xí)有什么收獲?
課后作業(yè):找找生活當(dāng)中的圓柱物體,量一量底面積和高,算一算物體體積。
《圓柱的體積》教案 16
教學(xué)目標(biāo)
1.經(jīng)歷同桌合作,測量、計(jì)算圓柱形物體體積的過程。
2.會測量圓柱形物體的有關(guān)數(shù)據(jù),能根據(jù)圓柱的高及底面直徑或周長計(jì)算圓柱的體積。
3.能與同伴合作尋找解決問題的有效方法,能表達(dá)解決問題的大致過程和結(jié)果。
教學(xué)重點(diǎn)
能根據(jù)學(xué)生自己測量的數(shù)據(jù)進(jìn)行圓柱體積的計(jì)算。
教學(xué)難點(diǎn)
給出圓柱底面周長如何計(jì)算圓柱的體積。
教具準(zhǔn)備
學(xué)生自備的茶葉筒或露露瓶。
教學(xué)過程
一、測量茶葉筒的'體積
1.師:同學(xué)們,我們要想計(jì)算這個茶葉筒的體積,應(yīng)該首先知道哪些數(shù)據(jù)?
生:茶葉筒的高,底面直徑或半徑。
師:很好,那么我們就來親手量一量你們手里的圓柱體的各個數(shù)據(jù),并計(jì)算出它們的體積。
學(xué)生同桌合作測量并計(jì)算。
2.交流測量數(shù)據(jù)的方法和計(jì)算的結(jié)果。
3.剛才同學(xué)大部分都測量的是茶葉筒的高和直徑或半徑,有沒有測量茶葉筒的底面周長的?如果有,就說說是怎么測量和計(jì)算的。如果沒有,就提示大家,如果給出了圓柱底面周長,怎樣計(jì)算圓柱的體積呢?
生:利用周長先求出半徑,再進(jìn)行計(jì)算。
師:你們會不會測量茶葉筒的底面周長呢?如果已經(jīng)忘記,就進(jìn)行一下提示:在圓柱的底面上做一標(biāo)記,然后把圓柱體在直尺上進(jìn)行滾動;蛴闷こ邷y量。請大家實(shí)際測量一下底面周長,并進(jìn)行計(jì)算,看看和剛才計(jì)算的結(jié)果是否一致。
二、鞏固練習(xí)
1.一根圓柱形水泥柱子,它的底面周長是6.28分米,高200分米,求它的體積?
2.獨(dú)立完成練一練的1-3題。
三、家庭作業(yè)
練一練的第4小題。
、僖粋圓柱的的體積是141.3立方厘米,底面半徑3厘米,它的高是多少厘米?
、谝桓鶊A柱形鋼材,截下2米,量得它的橫截面的直徑是4厘米,如果每立方厘米鋼重7.8克,截下的這段鋼材重多少克?
《圓柱的體積》教案 17
教學(xué)目標(biāo):
1、理解圓柱體積公式的推導(dǎo)過程。
2、能夠初步地學(xué)會運(yùn)用體積公式解決簡單的實(shí)際問題。
3、進(jìn)一步提高學(xué)生解決問題的能力。
教學(xué)重、難點(diǎn):
1、理解圓柱體積公式的推導(dǎo)過程。
2、能夠初步地學(xué)會運(yùn)用體積公式解決簡單的實(shí)際問題。
3、理解圓柱體積公式的推導(dǎo)過程。
教學(xué)準(zhǔn)備:
圓柱切割組合模具、小黑板。
教學(xué)過程:
一、創(chuàng)設(shè)情境,生成問題
1、什么是體積?(物體所占空間的大小叫做物體的體積。)
2、長方體的體積該怎樣計(jì)算?歸納到底面積乘高上來。
3、圓的面積怎樣計(jì)算?
二、探索交流,解決問題
1、計(jì)算圓的面積時,是把圓面積轉(zhuǎn)化成我們學(xué)過的長方形進(jìn)行計(jì)算的,能不能把圓柱轉(zhuǎn)化成我們學(xué)過的立體圖形來計(jì)算它的體積?
(啟發(fā)學(xué)生思考。)
2、把圓柱的底面分成許多相等的扇形(16等分),然后把圓柱沿高切開,可能會拼成怎樣的圖形?教師演示,引導(dǎo)學(xué)生進(jìn)行觀察。
3、思考:
。1)圓柱切開后可以拼成一個什么形體?(長方體)
(2)通過實(shí)驗(yàn)?zāi)惆l(fā)現(xiàn)了什么?
小組討論:實(shí)驗(yàn)前后,什么變了?什么沒變?
討論后,整理出來,再進(jìn)行匯報(bào)。
。ㄆ闯傻慕崎L方體體積大小沒變,形狀變了,拼成的近似長方
體和圓柱相比,底面形狀變了,由圓變成了近似長方形,而底面的面積大小沒有發(fā)生變化。近似長方形的高就是圓柱的高,沒有變化。)
4、推導(dǎo)圓柱體積公式
小組討論:怎樣計(jì)算圓柱的體積?
學(xué)生匯報(bào)討論結(jié)果。
長方體的體積可以用底面積乘高來計(jì)算,而在推導(dǎo)過程中,長方體的底面積就是圓柱的底面積,高就是圓柱的高,所以圓柱的體積也可以用底面積乘高來計(jì)算。
師:圓柱的`體積怎樣計(jì)算?用字母公式,怎樣表示?
板書:V=Sh
5、算一算:已知一根柱子的底面半徑為0.4米,高為5米。你能算出它的體積嗎?
三、鞏固應(yīng)用練習(xí)。
1、一個圓柱形水桶,從桶內(nèi)量得底面直徑是3分米,高是4分米,
這個水桶的容積是多少升?
說明:求水桶的容積,就是求水桶的體積。想一想先求什么?
2、一根圓柱形鐵棒,底面周長是12.56厘米,長是100厘米,它的體積是多少?
先求底面半徑再求底面積,最后求體積。
已知底面周長對解決問題有什么幫助嗎?必須先求出什么?四:課堂小結(jié):
通過這節(jié)課你學(xué)會了哪些知識,有什么收獲?五:課后作業(yè):
教材第9頁,練一練第1、3、4、題
《圓柱的體積》教案 18
教學(xué)目標(biāo):
1.知識與技能:運(yùn)用遷移規(guī)律,引導(dǎo)學(xué)生借助圓面積計(jì)算公式的推導(dǎo)方法來推導(dǎo)圓柱的體積計(jì)算公式,會用圓柱的體積公式計(jì)算圓柱形物體的體積。
2.方法與過程:經(jīng)歷猜測、驗(yàn)證、合作、動手操作等過程,體驗(yàn)和理解圓柱體體積公式的推導(dǎo)過程。
3.情感、態(tài)度、價值觀:創(chuàng)設(shè)情境,激發(fā)學(xué)生學(xué)習(xí)的積極性。讓學(xué)生在主動學(xué)習(xí)的基礎(chǔ)上,逐步學(xué)會轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)法,培養(yǎng)學(xué)生解決實(shí)際問題的能力和培養(yǎng)學(xué)生抽象、概括的思維能力。
教學(xué)重點(diǎn)和難點(diǎn):
圓柱體積公式推導(dǎo)過程;正確理解圓柱體積公式推導(dǎo)過程。
教具:
圓柱的體積公式演示教具,圓柱的體積公式演示課件
教學(xué)過程:
一、教學(xué)回顧
1、交代任務(wù):這節(jié)課我們來學(xué)習(xí)《圓柱的體積》。
2、回憶導(dǎo)入
(1)、請大家想一想,我們在學(xué)習(xí)圓的面積時,是怎樣把圓變成已學(xué)過的圖形再計(jì)算面積的?
。2)、我們都學(xué)過那些立體圖形的體積公式。
二、積極參與,探究感受
1、猜測圓柱的體積和那些條件有關(guān)。(電腦演示)
2、探究推導(dǎo)圓柱的體積計(jì)算公式。
小組合作討論:
(1)將圓柱體切割拼成我們學(xué)過的什么立體圖形?
(2)切拼前后的兩個物體什么變了?什么沒變?
(3)切拼前后的兩個物體有什么聯(lián)系?
課件演示拼、組的過程,同時演示一組動畫(將圓柱底面等分成32份、64份??),讓學(xué)生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。
①把圓柱拼成長方體后,形狀變了,體積不變。(板書:長方體的體積=圓柱的體積)
②拼成的長方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應(yīng)的.部位,并板書相應(yīng)的內(nèi)容。)
、蹐A柱的體積=底面積×高字母公式是V=Sh(板書公式)
2、練一練:一根圓柱形木料,底面積為75平方厘米,長90厘米,它的體積是多少?
3、要用這個公式計(jì)算圓柱的體積必須知道什么條件?
三、練習(xí)
1、填空
(1)、圓柱體通過切拼轉(zhuǎn)化成近似的()體。這個長方體的底面積等于圓柱體的(),這個長方體的高等于圓柱體()。因?yàn)殚L方體的體積等于(),所以,圓柱體的體積等于()用字母表示()。
。2)、底面積是10平方米,高是2米,體積是()。
。3)、底面半徑是2分米,高是5分米,體積是()。2討論:
(1)已知圓柱底面的半徑和高,怎樣求圓柱的體積
V=兀r2×h
(2)已知圓柱底面的直徑和高,怎樣求圓柱的體積
V=兀(d÷2)2×h
(3)已知圓柱底面的周長和高,怎樣求圓柱的體積
V=兀(C÷兀÷2)×h
3、練習(xí):已知半徑和高求體積,已知直徑和高求體積。
四、小結(jié)或質(zhì)疑
五、作業(yè)。
《圓柱的體積》教案 19
教學(xué)目標(biāo):
1、知識技能
運(yùn)用遷移規(guī)律,讓學(xué)生探索并掌握圓柱體積的計(jì)算方法,并能運(yùn)用計(jì)算公式解決簡單的實(shí)際問題。
2、過程方法
讓學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究的方法。
3、情感態(tài)度價值觀
通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
教學(xué)重點(diǎn):
圓柱體體積的計(jì)算公式的推導(dǎo)過程及其應(yīng)用。
教學(xué)難點(diǎn):
理解圓柱體體積公式的推導(dǎo)過程。
教學(xué)準(zhǔn)備:
圓柱體積公式推導(dǎo)演示學(xué)具、多媒體課件。
教學(xué)過程:
一、復(fù)習(xí)導(dǎo)入
同學(xué)們,我們的圖形世界十分豐富,回憶一下,什么叫做物體的體積?我們已經(jīng)學(xué)習(xí)了哪些立體圖形的體積?怎樣計(jì)算長方體和正方體的體積?長方體的體積和正方體的體積的通用公式是什么呢?用字母怎樣表示?
二、圖柱轉(zhuǎn)化,自主探究,驗(yàn)證猜想。
(一)猜想。
1、大家看圓柱的底面是一個圓形,在學(xué)習(xí)圓面積計(jì)算時,我們是把圓轉(zhuǎn)化成哪種圖形來計(jì)算的?(演示課件:圓轉(zhuǎn)化成長方形,推導(dǎo)圓面積公式的過程。)
[數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識經(jīng)驗(yàn)基礎(chǔ)之上。教師由復(fù)習(xí)圓面積公式的推導(dǎo)過程入手,實(shí)現(xiàn)知識的遷移。]
2、引發(fā)思考:我們能否把圓柱體也轉(zhuǎn)化成學(xué)過的立體圖形來計(jì)算它的體積呢?如果能,猜一猜能轉(zhuǎn)化成哪種立體圖形?揭示課題:圓柱的體積。
。ǘ┎僮黩(yàn)證。
1、請學(xué)生拿出圓柱體的演示學(xué)具,以小組為單位,聯(lián)想圓形面積的轉(zhuǎn)化方式,合作探究將圓柱轉(zhuǎn)化為長方體的方法。
在操作時,學(xué)生分組邊操作邊討論以下問題:
、倨闯傻慕崎L方體的體積與原來的圓柱體積有什么關(guān)系?
、谄闯傻慕崎L方體的底面積與原來圓柱的底面積有什么關(guān)系?
拼成的近似長方體的.高與原來的圓柱的高有什么關(guān)系?
2、小組代表匯報(bào)
。▽W(xué)生按照自己的方式來轉(zhuǎn)化,會有多種轉(zhuǎn)化方法,教師適時加以鼓勵)
3、電腦演示操作
(1)電腦演示圓柱體轉(zhuǎn)化成長方體的過程:
仔細(xì)觀察:圓柱體轉(zhuǎn)化成一個長方體后,長方體的長相當(dāng)于圓柱的什么?長方體的寬和高又相當(dāng)于圓柱的什么?
動畫演示:把圓柱的底面平均分成32份、64份,切開后拼成的物體會有什么變化?
。ǚ值姆?jǐn)?shù)越多,拼成的圖形就越接近長方體)
(2)根據(jù)學(xué)生的觀察、分析、推想,老師完成板書:
長方體的體積=底面積×高
圓柱的體積=底面積×高
V=Sh
(3)你的猜想正確嗎?學(xué)生齊讀圓柱的體積計(jì)算公式。
三、練習(xí)鞏固,靈活應(yīng)用
闖關(guān)1.一根圓柱形鋼材,底面積是75平方厘米,長是90厘米。它的體積是多少?
讓學(xué)生試做,集體反饋。
闖關(guān)2.想一想:如果已知圓柱底面的半徑(r)和高(h),圓柱的體積的計(jì)算公式是什么?如果已知圓柱底面的直徑(d)和高(h)呢?如果已知圓柱的底面周長(C)和高(h)呢?
學(xué)生討論、交流、匯報(bào)。
小結(jié):解決以上問題的關(guān)鍵是先求出什么?(生:底面積)
闖關(guān)3.下面這個杯子能不能裝下這袋奶?(杯子的數(shù)據(jù)是從里面測量得到的。)學(xué)生在練習(xí)本上獨(dú)立完成,集體反饋。
四、課堂小結(jié)
學(xué)習(xí)本節(jié)課你有哪些收獲?還有哪些疑惑?(生匯報(bào)收獲)
五、布置作業(yè)
教科書第21頁練習(xí)三第1-4題。
《圓柱的體積》教案 20
目標(biāo):
1、理解圓柱體積公式的推導(dǎo)過程,掌握計(jì)算公式。
2、會運(yùn)用公式計(jì)算圓柱的體積,提高學(xué)生知識遷移的能力。
3、在公式推導(dǎo)中滲透轉(zhuǎn)化的思想。
重點(diǎn):
理解圓柱的體積公式的推導(dǎo)過程。
難點(diǎn):
圓柱體積的計(jì)算。
用具:
課件、圓柱模型。
過程:
1、教師提問。
(1)什么叫物體的體積?怎樣求長方體的體積?
。2)圓的面積公式是什么?
。3)圓的面積公式是怎樣推導(dǎo)的?
2、教師:同學(xué)們,我們在研究圓的面積公式的推導(dǎo)時,是把它轉(zhuǎn)化成我們學(xué)過的長方形來解決的,那么,圓柱的體積怎樣計(jì)算呢?能不能也把它轉(zhuǎn)化成我們學(xué)過的立體圖形來計(jì)算呢?這節(jié)課,我們就來研究這個問題。(板書:圓柱的體積)
1、教學(xué)例5。
講授圓柱體積公式的推導(dǎo)。(演示動畫“圓柱的體積”)
。1)教師演示。
把圓柱的底面分成16個相等的扇形,再按照這些扇形的形狀,沿著圓柱的高把圓柱切開,這樣就得到了16塊體積相等,底面是扇形的立體圖形。
。2)學(xué)生利用學(xué)具操作。
。3)啟發(fā)學(xué)生思考、討論:
、賵A柱切開后可以拼成一個什么立體圖形?(近似的`長方體)
②通過剛才的實(shí)驗(yàn)?zāi)惆l(fā)現(xiàn)了什么?
A、拼成的這個近似長方體的立體圖形和圓柱相比,體積大小沒變,但形狀變了。
B、拼成的這個近似長方體的立體圖形和圓柱相比,底面的形狀變了,由圓變成了近似長方形的立體圖形,而底面的面積大小沒有發(fā)生變化。
C、這個近似長方體的立體圖形的高就是圓柱的高,高的長度沒有變化。
。4)學(xué)生根據(jù)圓的面積公式的推導(dǎo)過程,進(jìn)行猜想。
①如果把圓柱的底面平均分成32份,拼成的形狀是怎樣的?
、谌绻褕A柱的底面平均分成64份,拼成的形狀是怎樣的?
、廴绻褕A柱的底面平均分成128份,拼成的形狀是怎樣的?
。5)通過以上的觀察,啟發(fā)學(xué)生說出發(fā)現(xiàn)了什么。
、倨骄值姆輸(shù)越多,拼起來的形狀越接近長方體。
、谄骄值姆輸(shù)越多,每份扇形的面積就越小,弧就越短,拼起來的長方體的長就越接近一條線段,這樣整個立體圖形的形狀就越接近長方體。
。6)推導(dǎo)圓柱的體積公式。
、賹W(xué)生分組討論:圓柱的體積怎樣計(jì)算?
、趯W(xué)生匯報(bào)討論結(jié)果,并說明理由。
教師:因?yàn)殚L方體的體積等于底面積乘高,(板書:長方體的體積=底面積×高)近似長方體的體積等于圓柱的體積,(板書:圓柱的體積)近似長方體的底面積等于圓柱的底面積,(板書:底面積)近似長方體的高等于圓柱的高,(板書:高)所以圓柱的體積等于底面積乘高。(板書:圓柱的體積=底面積×高)
③用字母表示圓柱的體積公式。(板書:V=Sh)
2、教學(xué)例6。
出示教材第26頁例6。
。1)學(xué)生讀題,理解題意。
(2)教師:要知道能否裝下這袋奶,首先要計(jì)算出什么?
學(xué)生:杯子的容積。
(3)指明要計(jì)算杯子的容積,學(xué)生在練習(xí)本上完成。
杯子的底面積:3.14×(8÷2)2=50、24(cm2)
杯子的容積:50、24×10=502、4(mL)
答:因?yàn)?02、4大于498,所以杯子能裝下這袋牛奶。
3、結(jié)束。
《圓柱的體積》教案 21
教學(xué)目標(biāo):
1、使學(xué)生能夠運(yùn)用公式正確地計(jì)算圓柱的體積和容積。
2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實(shí)際問題的能力
3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。
教學(xué)重點(diǎn):
掌握圓柱體積的計(jì)算公式。
教學(xué)難點(diǎn):
靈活應(yīng)用圓柱的體積公式解決實(shí)際問題。
教學(xué)過程:
一、復(fù)習(xí)
1、復(fù)習(xí)圓柱體積的推導(dǎo)過程
長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。
長方體的體積=底面積×高,所以圓柱的體積=底面積×高,即V=Sh。
2、復(fù)習(xí)長方體、正方體的體積公式后,讓學(xué)生獨(dú)立完成練習(xí)三第6題求體積部分,并指名板演。
二、解決實(shí)際問題
1、練習(xí)三第4題。
學(xué)生獨(dú)立練習(xí),強(qiáng)調(diào)選取有用信息,培養(yǎng)認(rèn)真審題習(xí)慣。
2、練習(xí)三第5題。
。1)指導(dǎo)學(xué)生變換公式:因?yàn)閂=Sh,所以h=V÷S。也可以列方程解答。
(2)學(xué)生選擇喜愛的方法解答這道題目。
3、練習(xí)三第10題。
指名說說解答第10題的思路:根據(jù)兩個圓柱的底面積相等這一條件,先求出其中一個圓柱的底面積。利用這個底面積再求出另一個圓柱的體積。
4、練習(xí)三第8題。
。1)學(xué)生讀題后,指名說說對題意的理解:求減少的土方石就是求月亮門所占的空間,而月亮門所占的空間是一個底面直徑為2米,高為0.25米的圓柱。
。2)在充分理解題意后學(xué)生獨(dú)立完成,集體訂正。
4、練習(xí)三第9題
。1)學(xué)生獨(dú)立審題后完成。
評講:要怎樣才能判斷出800ml的果汁夠倒三杯嗎?必須先求出什么?怎么求?(需先求出圓柱形玻璃杯的`容積,用公式V=Sh)
5、練習(xí)三第11題。
此題既可以用外圓柱體積減內(nèi)圓柱的體積,也可以用圓環(huán)的面積乘高。
。3)三、布置作業(yè)
完成練習(xí)中未做完的習(xí)題
教學(xué)反思
第五課時特別關(guān)注
練習(xí)三第4題,在教學(xué)中必須應(yīng)該特別關(guān)注。
關(guān)注理由:
1、有多余條件,是培養(yǎng)學(xué)生收集有用信息的契機(jī)。
這道題中出現(xiàn)兩個圓柱體的高,分別是花壇的高0.8米和花壇里面填土的高0.5米。學(xué)生該如何合理做出選擇呢,關(guān)鍵要通過問題來思考。因?yàn)閱栴}是求“花壇中共需要填土多少方”,所以應(yīng)該選用“填土的高度是0.5米”這條數(shù)學(xué)信息。
在課堂中,我還要求學(xué)生思考,如果要用上“0.8米”這個條件下,可以怎么改變問題。有的學(xué)生說“可以問花壇的體積是多少立方米”,還有的同學(xué)說“可以求花壇中空間的體積是多少立方米”。通過這樣的訓(xùn)練,能夠有效培養(yǎng)學(xué)生收集、處理信息的能力,同時提升他們綜合分析問題的能力。
2、有容易忽視的條件,是培養(yǎng)學(xué)生認(rèn)真審題的契機(jī)。
一般習(xí)題中的數(shù)據(jù)是用阿拉伯?dāng)?shù)字呈現(xiàn),可這道題的問題是求“兩個花壇中共需要填土多少方”,這里隱含著一個極易被學(xué)生忽視的數(shù)據(jù)“兩個”。其實(shí),配套的插圖中也明顯繪制出了2個花壇,但在做題中許多學(xué)生仍舊會出錯。所以,應(yīng)抓住此題,培養(yǎng)學(xué)生良好審題的習(xí)慣。如在做這類習(xí)題時,建議首先將單位圈出來,以確保列式時單位統(tǒng)一。還可以將問題劃橫線,以提醒自己將生活問題轉(zhuǎn)化為數(shù)學(xué)問題等。
學(xué)生巧解
——巧求削去部分的體積
今天,全班同學(xué)做這樣一題:一塊長方體木塊體積是20立方分米,它的底面為正方形,邊長為2分米。現(xiàn)在,將它削成一個的圓柱體,求削去的部分是多少立方分米?
我因?yàn)樽龅眉葘τ挚欤罱K獲得全班第一名的成績。通過對比,我發(fā)現(xiàn)自己的方法比同學(xué)們巧妙。
同學(xué)們的解法是先求長方體的高(即圓柱體的高),用20÷(2×2)=5分米,然后求圓柱體的體積,列式為3.14×(2÷2)2×5=15.7立方分米,最后求削去部分的體積是20—15.7=4.3平方分米。
而我在做這一題時,想起上學(xué)期在正方形中畫的圓,圓的面積占正方形面積的157/200的結(jié)論。因?yàn)橹敝w的體積都可以寫成底面直徑乘高,而長方體和削成的圓柱體高相等,所以削成的圓柱體體積也應(yīng)該是長方體體積的157/200。所以直接用20×(1—157/200)也等于4.3立方分米。
《圓柱的體積》教案 22
教學(xué)目標(biāo):
1、理解圓柱體體積公式的推導(dǎo)過程,并會正確地計(jì)算出圓柱的體積。
2、培養(yǎng)學(xué)生的遷移能力、邏輯思維能力,并進(jìn)一步發(fā)展空間觀念。
3、引導(dǎo)學(xué)生探索和解決問題,體驗(yàn)轉(zhuǎn)化及極限的思想方法。
教學(xué)重點(diǎn):
圓柱體體積的計(jì)算
教學(xué)難點(diǎn):
理解圓柱體體積公式的推導(dǎo)過程
教具:
多媒體課件、圓柱形容器、水、橡皮泥。
教學(xué)過程:
一、激凝導(dǎo)入
師:大家都知道,水是生命之源!我們要養(yǎng)成節(jié)約用水的好習(xí)慣?汕皟商,老師家的水龍頭出了問題,你們看,一刻鐘就滴了這么多水。(出示裝有水的圓柱容器。)
(1)啟發(fā)思考:容器里面的水形成了什么形狀?(圓柱)你能知道這些水的體積嗎?你能想什么辦法知道它的體積?
。2)生回答。
2、出示橡皮泥捏成的圓柱體。
那你有辦法求出這個圓柱體橡皮泥的體積嗎?
生(熱情的):老師將它捏成長方體或正方體就可以了!
3、創(chuàng)設(shè)問題情境。
師小結(jié):這么說同學(xué)們都有辦法將一些圓柱形的物體轉(zhuǎn)化為長方形或正方體來求它們的體積,大家真了不起!那如果我們要求某些建筑如(出示課件:人民大會堂東門前的門柱和壓路機(jī)大前輪)雄偉的人民大會堂東門前的.一個圓柱形門柱的體積,或者求壓路機(jī)圓柱形大前輪的體積,還能用剛才同學(xué)們想出來的辦法嗎?(不能)
那怎么辦?
學(xué)生試說出自己的辦法。
師:看起來前面這些方法雖然可行,但有一定的局限性,我們必須找到一個解決任意圓柱體積的方法才行,是不是?今天,就讓我們來共同研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)
二、經(jīng)歷體驗(yàn)、探究新知
1、推導(dǎo)圓柱的體積公式。
師:你們打算怎么去研究圓柱的體積?
小組同學(xué)討論研究的方法。
2、學(xué)生動手操作感知
(1)學(xué)生以小組為單位操作體驗(yàn)。(操作學(xué)具,進(jìn)行拼組)。
。2)學(xué)生小組匯報(bào)交流:
近似長方體的體積等于圓柱的體積;近似長方體的底面積等于圓柱的底面積;近似長方體的高就是圓柱的高。根據(jù)長方體的體積等于底面積乘高,得出圓柱體的體積也等于底面積乘高。
(3)想像:如果把圓柱像這樣等分成32份、64、128份后再拼起來,會怎么樣?有怎樣的變化趨勢?分成無數(shù)份呢?(平均分的份數(shù)越多,拼起來的近似長方體的長越近似于直線,這樣整個圖形越近似于長方體。如果照這樣分成無限多份,拼出的圖形就是長方體)
3、教師課件演示圓柱轉(zhuǎn)化成長方體的過程。
4、師生共同推導(dǎo)出圓柱的體積公式:
長方體的體積=底面積高
圓柱的體積=底圓柱面積高
V=Sh
5、鞏固公式
①V、S、h各表示什么?
、谥滥男l件就可以求圓柱的體積?
а、知道底面積和高可以直接用公式計(jì)算圓柱的體積;
b、知道底面半徑和高,可以先計(jì)算出底面積,再計(jì)算體積;
c、知道底面直徑和高,要先算出半徑,再算出底面積,最后才能計(jì)算出圓柱的體積。
學(xué)生回答后師板書。
6、教學(xué)例4、例5。
課件分別出示例4、例5,讓學(xué)生找出題中的條件和問題,然后獨(dú)立完成,集體訂正。
三、實(shí)踐練習(xí)
1、出示課件:人民大會堂東門前的門柱和壓路機(jī)大前輪的有關(guān)數(shù)據(jù)求出它的體積。
2、拓展延伸:同學(xué)們到工廠參加社會實(shí)踐。工人師傅拿出一塊長、寬、高分別是6厘米、5厘米、4厘米的長方體,問:同學(xué)們,現(xiàn)在我們要把這塊木料加工成一個體積最大的圓柱體,你們想一想,圓柱的底面直徑和高應(yīng)是多少?小林想了想說:我知道了。
同學(xué)們,你們知道小林是怎樣想的嗎?
四、課堂總結(jié);
通過本節(jié)課的學(xué)習(xí),你有什么收獲?
《圓柱的體積》教案 23
教學(xué)目標(biāo):
1.結(jié)合具體情境和實(shí)踐活動,了解圓柱體積(包括容積)的含義,進(jìn)一步理解體積和容積的含義。
2.經(jīng)歷類比猜想驗(yàn)證說明的探索圓柱體積的計(jì)算方法的進(jìn)程,掌握圓柱體的計(jì)算方法,能正確計(jì)算圓柱的體積,并會解決一些簡單的實(shí)際問題。
3.引導(dǎo)學(xué)生探索和解決問題,滲透、體驗(yàn)知識間相互轉(zhuǎn)化的思想方法。
重點(diǎn)難點(diǎn):
掌握圓柱體積公式的推導(dǎo)過程。
教學(xué)資源:
PPT課件圓柱等分模型
教學(xué)過程:
一、聯(lián)系舊知,設(shè)疑激趣,導(dǎo)入新課。
1.呈現(xiàn)例4中長方體、正方體和圓柱的直觀圖。
2.提問:這幾種立體的體積你都會求嗎?你會求其中哪些立體的體積?
啟發(fā):大家想不想知道圓柱的體積怎樣計(jì)算?猜想一下:圓柱體積的大小與什么有關(guān)?怎么算?
3.引入:我們的猜想對不對呢?今天我們就一起來探索一下圓柱的體積計(jì)算公式。
二、動手操作,探索新知,教學(xué)例4
1.觀察比較
引導(dǎo)學(xué)生觀察例4的三個立體,提問
⑴這三個立體的底面積和高都相等,它們的體積有什么關(guān)系?
、崎L方體和正方體的體積一定相等嗎?為什么?
⑶圓柱的體積與長方體和正方體的體積可能相等嗎?為什么?
2.實(shí)驗(yàn)操作
、耪勗挘捍蠹叶颊J(rèn)為圓柱的體積與長方體、正方體的體積可能是相等的,而且都等于底面積乘高。那用什么辦法驗(yàn)證呢?讓學(xué)生在小組中說說自己的想法。
提醒:圓的面積公式是怎么推導(dǎo)出來的?我們能不能將圓柱轉(zhuǎn)化成長方體呢?
、铺岢鲆螅耗隳芟朕k法把圓柱轉(zhuǎn)化成長方體嗎?各小組說出自己的想法,有條件的拿出課前準(zhǔn)備好的.圓柱,操作一下。
⑶討論交流:如果把圓柱的底面平均分成16份,切開后能否拼成一個近似的長方體?
操作教具,讓學(xué)生觀察。
引導(dǎo)想像:如果把底面平均分的份數(shù)越來越多,結(jié)果會怎么樣?
演示一組動畫(將圓柱底面等分成32份、64等份、128等份)課件演示使學(xué)生清楚地認(rèn)識到:拼成的立體會越來越接近長方體。
3.推出公式
、盘釂枺浩闯傻拈L方體與原來的圓柱有什么關(guān)系?
指出:長方體的體積與圓柱的體積相等;長方體的底面積等于圓的底面積;長方體的高等于圓柱的高。
⑵想一想:怎樣求圓柱的體積?為什么?
根據(jù)學(xué)生的回答小結(jié)并板書圓柱的體積公式
圓柱的體積=底面積高
、且龑(dǎo)用字母公式表示圓柱的體積公式:V=sh
長方體的體積=底面積高
圓柱的體積=底面積高
用字母表示計(jì)算公式V=sh
三、分層練習(xí),發(fā)散思維,教學(xué)試一試
、抛寣W(xué)生列式解答后交流算法。
、朴懻摚褐朗裁礂l件就一定能算出圓柱的體積了?分別怎么算?
。╯和h,r和h,d和h,c和h)
四、鞏固拓展練習(xí)
1.做練一練第1題。
、耪f一說:這兩個圓柱中都是已知什么?能算出圓柱的體積嗎?
、聘髯跃毩(xí),并指名板演。
、菍φ瞻逖,說說計(jì)算過程。
2.做練一練第2題。
已知底面周長和高,該怎么求它的體積呢?引導(dǎo)學(xué)生根據(jù)底面周長求出底面積。
五、小結(jié)
這節(jié)課我們學(xué)習(xí)了什么?有哪些收獲?還有什么疑問?
六、作業(yè)
練習(xí)三第1~3題。
【《圓柱的體積》教案】相關(guān)文章:
圓柱的體積教案11-18
《圓柱的體積》教案01-02
圓柱的體積教案15篇03-19
《圓柱的體積》教案15篇03-13
圓柱的體積教案(15篇)03-29
《圓柱的體積》教案 15篇04-01
圓柱的體積教案(精選15篇)04-01
《圓柱的體積》教案八篇02-22
《圓柱的體積》教案(合集15篇)04-01