亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

范文資料網>書稿范文>總結>《高二數學知識點歸納總結

高二數學知識點歸納總結

時間:2022-12-13 16:27:50 總結 我要投稿
  • 相關推薦

高二數學知識點歸納總結

  總結是事后對某一階段的學習、工作或其完成情況加以回顧和分析的一種書面材料,它可以使我們更有效率,不妨坐下來好好寫寫總結吧。我們該怎么去寫總結呢?以下是小編收集整理的高二數學知識點歸納總結,歡迎閱讀與收藏。

高二數學知識點歸納總結

高二數學知識點歸納總結1

  直線、平面、簡單幾何體:

  1、學會三視圖的分析:

  2、斜二測畫法應注意的地方:

  (1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o'x'、o'y'、使∠x'o'y'=45°(或135°);

  (2)平行于x軸的線段長不變,平行于y軸的線段長減半.

  (3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

  3、表(側)面積與體積公式:

  ⑴柱體:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h

 、棋F體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:

  ⑶臺體①表面積:S=S側+S上底S下底②側面積:S側=

 、惹蝮w:①表面積:S=;②體積:V=

  4、位置關系的.證明(主要方法):注意立體幾何證明的書寫

  (1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

  (2)平面與平面平行:①線面平行面面平行。

  (3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內的兩條相交直線

  5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

  ⑴異面直線所成角的求法:平移法:平移直線,構造三角形;

 、浦本與平面所成的角:直線與射影所成的角

高二數學知識點歸納總結2

  (1)總體和樣本

  ①在統計學中,把研究對象的全體叫做總體.

 、诎衙總研究對象叫做個體.

  ③把總體中個體的總數叫做總體容量.

 、転榱搜芯靠傮w的有關性質,一般從總體中隨機抽取一部分:x1,x2,....,_研究,我們稱它為樣本.其中個體的個數稱為樣本容量.

  (2)簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨

  機地抽取調查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數目較少時,才采用這種方法。

  (3)簡單隨機抽樣常用的方法:

  ①抽簽法

 、陔S機數表法

  ③計算機模擬法

  在簡單隨機抽樣的樣本容量設計中,主要考慮:

  ①總體變異情況;

  ②允許誤差范圍;

 、鄹怕时WC程度。

  (4)抽簽法:

 、俳o調查對象群體中的'每一個對象編號;

 、跍蕚涑楹灥墓ぞ撸瑢嵤┏楹;

 、蹖颖局械拿恳粋個體進行測量或調查

高二數學知識點歸納總結3

  1、幾何概型的定義:如果每個事件發(fā)生的概率只與構成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱幾何概型。

  2、幾何概型的概率公式:P(A)=構成事件A的區(qū)域長度(面積或體積);

  試驗的全部結果所構成的區(qū)域長度(面積或體積)

  3、幾何概型的特點:

  1)試驗中所有可能出現的結果(基本事件)有無限多個;

  2)每個基本事件出現的可能性相等、

  4、幾何概型與古典概型的比較:一方面,古典概型具有有限性,即試驗結果是可數的;而幾何概型則是在試驗中出現無限多個結果,且與事件的區(qū)域長度(或面積、體積等)有關,即試驗結果具有無限性,是不可數的。這是二者的不同之處;另一方面,古典概型與幾何概型的試驗結果都具有等可能性,這是二者的共性。

  通過以上對于幾何概型的基本知識點的'梳理,我們不難看出其要核是:要抓住幾何概型具有無限性和等可能性兩個特點,無限性是指在一次試驗中,基本事件的個數可以是無限的,這是區(qū)分幾何概型與古典概型的關鍵所在;等可能性是指每一個基本事件發(fā)生的可能性是均等的,這是解題的基本前提。因此,用幾何概型求解的概率問題和古典概型的基本思路是相同的,同屬于“比例法”,即隨機事件A的概率可以用“事件A包含的基本事件所占的圖形的長度、面積(體積)和角度等”與“試驗的基本事件所占總長度、面積(體積)和角度等”之比來表示。下面就幾何概型常見類型題作一歸納梳理。

高二數學知識點歸納總結4

  (1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;

  (2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;

  (3)確定事件:必然事件和不可能事件統稱為相對于條件S的確定事件;

  (4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的.事件,叫相對于條件S的隨機事件;

  (5)頻數與頻率:在相同的條件S下重復n次試驗,觀察某一事件A是否出現,稱n次試驗中事件A出現的次數nA為事件A出現的頻數;稱事件A出現的比例fn(A)=nnA為事件A出現的概率:對于給定的隨機事件A,如果隨著試驗次數的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數上,把這個常數記作P(A),稱為事件A的概率。

  (6)頻率與概率的區(qū)別與聯系:隨機事件的頻率,指此事件發(fā)生的次數nA與試驗總次數n的比值nnA,它具有一定的穩(wěn)定性,總在某個常數附近擺動,且隨著試驗次數的不斷增多,這種擺動幅度越來越小。我們把這個常數叫做隨機事件的概率,概率從數量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個事件的概率。

  然說難度比較大,我建議考生,采取分部得分整個試

高二數學知識點歸納總結5

  (1)順序結構:順序結構是最簡單的算法結構,語句與語句之間,框與框之間是按從上到下的順序進行的,它是由若干個依次執(zhí)行的`處理步驟組成的,它是任何一個算法都離不開的一種基本算法結構。

  順序結構在程序框圖中的體現就是用流程線將程序框自上而下地連接起來,按順序執(zhí)行算法步驟。如在示意圖中,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)行B框所

  指定的操作。

  (2)條件結構:條件結構是指在算法中通過對條件的判斷根據條件是否成立而選擇不同流向的

  算法結構。

  條件P是否成立而選擇執(zhí)行A框或B框。無論P條件是否成立,只能執(zhí)行A框或B框之一,不可能同時執(zhí)行

  A框和B框,也不可能A框、B框都不執(zhí)行。一個判斷結構可以有多個判斷框。

  (3)循環(huán)結構:在一些算法中,經常會出現從某處開始,按照一定條件,反復執(zhí)行某一處理步驟的情況,這就是循環(huán)結構,反復執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結構中一定包含條件結構。循環(huán)結構又稱重復結構,循環(huán)結構可細分為兩類:

 、僖活愂钱斝脱h(huán)結構,如下左圖所示,它的功能是當給定的條件P成立時,執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再執(zhí)行A框,如此反復執(zhí)行A框,直到某一次條件P不成立為止,此時不再執(zhí)行A框,離開循環(huán)結構。

 、诹硪活愂侵钡叫脱h(huán)結構,如下右圖所示,它的功能是先執(zhí)行,然后判斷給定的條件P是否成立,如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件P成立為止,此時不再執(zhí)行A框,離開循環(huán)結構。

  注意:

  1循環(huán)結構要在某個條件下終止循環(huán),這就需要條件結構來判斷。因此,循環(huán)結構中一定包含條件結構,但不允許“死循環(huán)”。

  2在循環(huán)結構中都有一個計數變量和累

  加變量。計數變量用于記錄循環(huán)次數,累加變量用于輸出結果。計數變量和累加變量一般是同步執(zhí)行的,累加一次,計數一次

高二數學知識點歸納總結6

  反正弦函數的.導數:正弦函數y=sin_在[-π/2,π/2]上的反函數,叫做反正弦函數。記作arcsin_,表示一個正弦值為_的角,該角的范圍在[-π/2,π/2]區(qū)間內。定義域[-1,1],值域[-π/2,π/2]。

  反函數求導方法

  若F(_),G(_)互為反函數,

  則:F'(_)_G'(_)=1

  E.G.:y=arcsin__=siny

  y'__'=1(arcsin_)'_(siny)'=1

  y'=1/(siny)'=1/(cosy)=1/根號(1-sin^2y)=1/根號(1-_^2)

  其余依此類推

高二數學知識點歸納總結7

  第一章:三角函數?荚嚤乜碱}。誘導公式和基本三角函數圖像的一些性質只要記住會畫圖就行,難度在于三角函數形函數的振幅、頻率、周期、相位、初相,及根據最值計算A、B的值和周期,及等變化時圖像及性質的變化,這一知識點內容較多,需要多花時間,首先要記憶,其次要多做題強化練習,只要能踏踏實實去做,也不難掌握,畢竟不存在理解上的難度。

  第二章:平面向量。個人覺得這一章難度較大,這也是我掌握最差的一章。向量的運算性質及三角形法則平行四邊形法則難度都不大,只要在計算的時候記住要同起點的向量。向量共線和垂直的`數學表達,這是計算當中經常要用的公式。向量的共線定理、基本定理、數量積公式。難點在于分點坐標公式,首先要準確記憶。向量在考試過程一般不會單獨出現,常常是作為解題要用的工具出現,用向量時要首先找出合適的向量,個人認為這個比較難,常常找不對。有同樣情況的同學建議多看有關題的圖形。

  第三章:三角恒等變換。這一章公式特別多。和差倍半角公式都是會用到的公式,所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫之后貼在桌子上,天天都要看。而且的三角函數變換都有一定的規(guī)律,記憶的時候可以結合起來去記。除此之外,就是多練習。要從多練習中找到變換的規(guī)律,比如一般都要化等等。這一章也是考試必考,所以一定要重點掌握。

高二數學知識點歸納總結8

  一、直線與圓:

  1、直線的傾斜角的范圍是在平面直角坐標系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉到和直線重合時所轉的最小正角記為,就叫做直線的傾斜角。當直線與軸重合或平行時,規(guī)定傾斜角為0;

  2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導的方法。

  3、直線方程:

 。1)點斜式:直線過點斜率為,則直線方程為

  (2)斜截式:直線在軸上的截距為和斜率,則直線方程為

  4、直線與直線的位置關系:

  (1)平行A1/A2=B1/B2注意檢驗

 。2)垂直A1A2+B1B2=0

  5、點到直線的距離公式;

  兩條平行線與的距離是

  6、圓的標準方程:圓的一般方程:注意能將標準方程化為一般方程

  7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.

  8、直線與圓的位置關系,通常轉化為圓心距與半徑的關系,或者利用垂徑定理,構造直角三角形解決弦長問題.①相離②相切③相交

  9、解決直線與圓的關系問題時,要充分發(fā)揮圓的平面幾何性質的作用(如半徑、半弦長、弦心距構成直角三角形)直線與圓相交所得弦長

  二、圓錐曲線方程:

  1、橢圓:①方程(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

  2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a<2c;③e=;④實軸長為2a,虛軸長為2b,焦距為2c;漸進線或c2=a2+b2

  3、拋物線:①方程y2=2px注意還有三個,能區(qū)別開口方向;②定義:|PF|=d焦點F(,0),準線x=-;③焦半徑;焦點弦=x1+x2+p;

  4、直線被圓錐曲線截得的弦長公式:

  三、直線、平面、簡單幾何體:

  1、學會三視圖的分析:

  2、斜二測畫法應注意的地方:

 。1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o'x'、o'y'、使∠x'o'y'=45°(或135°);

  (2)平行于x軸的線段長不變,平行于y軸的線段長減半.

 。3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

  3、表(側)面積與體積公式:

 。1)柱體:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h

  (2)錐體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:

 。3)臺體①表面積:S=S側+S上底S下底②側面積:S側=

 。4)球體:①表面積:S=;②體積:V=

  4、位置關系的證明(主要方法):注意立體幾何證明的書寫

 。1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

 。2)平面與平面平行:①線面平行面面平行。

 。3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內的兩條相交直線

  5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

 。1)異面直線所成角的求法:平移法:平移直線,構造三角形;

 。2)直線與平面所成的角:直線與射影所成的角

  四、導數:導數的意義-導數公式-導數應用(極值最值問題、曲線切線問題)

  1、導數的定義:在點處的導數記作.

  2、導數的幾何物理意義:曲線在點處切線的'斜率

 、賙=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。

  3.常見函數的導數公式:①;②;③;

 、;⑥;⑦;⑧。

  4.、導數的四則運算法則:

  5、導數的應用:

 。1)利用導數判斷函數的單調性:設函數在某個區(qū)間內可導,如果,那么為增函數;如果,那么為減函數;

  注意:如果已知為減函數求字母取值范圍,那么不等式恒成立。

 。2)求極值的步驟:

 、偾髮担

  ②求方程的根;

  ③列表:檢驗在方程根的左右的符號,如果左正右負,那么函數在這個根處取得極大值;如果左負右正,那么函數在這個根處取得極小值;

 。3)求可導函數值與最小值的步驟:

 、∏蟮母虎迅c區(qū)間端點函數值比較,的為值,最小的是最小值。

  五、常用邏輯用語:

  1、四種命題:

  ⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p

  注:1、原命題與逆否命題等價;逆命題與否命題等價。判斷命題真假時注意轉化。

  2、注意命題的否定與否命題的區(qū)別:命題否定形式是;否命題是.命題“或”的否定是“且”;“且”的否定是“或”.

  3、邏輯聯結詞:

 。1)且(and):命題形式pq;pqpqpqp

 。2)或(or):命題形式pq;真真真真假

 。3)非(not):命題形式p.真假假真假

  假真假真真

  假假假假真

  “或命題”的真假特點是“一真即真,要假全假”;

  “且命題”的真假特點是“一假即假,要真全真”;

  “非命題”的真假特點是“一真一假”

  4、充要條件

  由條件可推出結論,條件是結論成立的充分條件;由結論可推出條件,則條件是結論成立的必要條件。

  5、全稱命題與特稱命題:

  短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號表示。含有全體量詞的命題,叫做全稱命題。

  短語“有一個”或“有些”或“至少有一個”在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,并用符號表示,含有存在量詞的命題,叫做存在性命題。

高二數學知識點歸納總結9

  一、 導數的應用

  1.用導數研究函數的最值

  確定函數在其確定的定義域內可導(通常為開區(qū)間),求出導函數在定義域內的零點,研究在零點左、右的函數的單調性,若左增,右減,則在該零點處,函數去極大值;若左邊減少,右邊增加,則該零點處函數取極小值。學習了如何用導數研究函數的最值之后,可以做一個有關導數和函數的綜合題來檢驗下學習成果。

  2.生活中常見的函數優(yōu)化問題

  1)費用、成本最省問題

  2)利潤、收益最大問題

  3)面積、體積最(大)問題

  二、推理與證明

  1.歸納推理:歸納推理是高二數學的一個重點內容,其難點就是有部分結論得到一般結論,破解的方法是充分考慮部分結論提供的'信息,從中發(fā)現一般規(guī)律;類比推理的難點是發(fā)現兩類對象的相似特征,由其中一類對象的特征得出另一類對象的特征,破解的方法是利用已經掌握的數學知識,分析兩類對象之間的關系,通過兩類對象已知的相似特征得出所需要的相似特征。

  2.類比推理:由兩類對象具有某些類似特征和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理稱為類比推理,簡而言之,類比推理是由特殊到特殊的推理。

  三、不等式

  對于含有參數的一元二次不等式解的討論

  1)二次項系數:如果二次項系數含有字母,要分二次項系數是正數、零和負數三種情況進行討論。

  2)不等式對應方程的根:如果一元二次不等式對應的方程的根能夠通過因式分解的方法求出來,則根據這兩個根的大小進行分類討論,這時,兩個根的大小關系就是分類標準,如果一元二次不等式對應的方程根不能通過因式分解的方法求出來,則根據方程的判別式進行分類討論。通過不等式練習題能夠幫助你更加熟練的運用不等式的知識點,例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過程中總結出來。

高二數學知識點歸納總結10

  第一章:集合和函數的基本概念,錯誤基本都集中在空集這一概念上,而每次考試基本都會在選填題上涉及這一概念,一個不小心就是五分沒了。次一級的知識點就是集合的韋恩圖,會畫圖,集合的“并、補、交、非”也就解決了,還有函數的定義域和函數的單調性、增減性的概念,這些都是函數的基礎而且不難理解。在第一輪復習中一定要反復去記這些概念,的方法是寫在筆記本上,每天至少看上一遍。

  第二章:基本初等函數:指數、對數、冪函數三大函數的運算性質及圖像。函數的幾大要素和相關考點基本都在函數圖像上有所體現,單調性、增減性、極值、零點等等。關于這三大函數的運算公式,多記多用,多做一點練習基本就沒多大問題。函數圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數圖像,定義域、值域、零點等等。對于冪函數還要搞清楚當指數冪大于一和小于一時圖像的不同及函數值的大小關系,這也是?汲ee點。另外指數函數和對數函數的對立關系及其相互之間要怎樣轉化問題也要了解清楚。

  第三章:函數的應用。主要就是函數與方程的結合。其實就是的實根,即函數的零點,也就是函數圖像與X軸的交點。這三者之間的轉化關系是這一章的`重點,要學會在這三者之間的靈活轉化,以求能最簡單的解決問題。關于證明零點的方法,直接計算加得必有零點,連續(xù)函數在x軸上方下方有定義則有零點等等,這是這一章的難點,這幾種證明方法都要記得,多練習強化。這二次函數的零點的Δ判別法,這個倒不算難。

高二數學知識點歸納總結11

  分層抽樣

  先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或層次,然后再在各個類型或層次中采用簡單隨機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構成總體的樣本。

  兩種方法

  1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

  2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統抽樣的方法抽取樣本。

  2.分層抽樣是把異質性較強的總體分成一個個同質性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。

  分層標準

  (1)以調查所要分析和研究的主要變量或相關的變量作為分層的標準。

  (2)以保證各層內部同質性強、各層之間異質性強、突出總體內在結構的變量作為分層變量。

  (3)以那些有明顯分層區(qū)分的變量作為分層變量。

  分層的比例問題

  (1)按比例分層抽樣:根據各種類型或層次中的單位數目占總體單位數目的比重來抽取子樣本的方法。

  (2)不按比例分層抽樣:有的'層次在總體中的比重太小,其樣本量就會非常少,此時采用該方法,主要是便于對不同層次的子總體進行專門研究或進行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數據資料進行加權處理,調整樣本中各層的比例,使數據恢復到總體中各層實際的比例結構。

高二數學知識點歸納總結12

  第一:高考數學中有函數、數列、三角函數、平面向量、不等式、立體幾何等九大章節(jié)。

  主要是考函數和導數,這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數的性質,包括函數的單調性、奇偶性;第二是函數的解答題,重點考察的是二次函數和高次函數,分函數和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。

  第二:平面向量和三角函數。

  重點考察三個方面:

  一個是劃減與求值。

  第一,重點掌握公式,重點掌握五組基本公式。

  第二,是三角函數的圖像和性質,這里重點掌握正弦函數和余弦函數的性質。

  第三,正弦定理和余弦定理來解三角形。難度比較小。

  第三:數列。

  數列這個板塊,重點考兩個方面:一個通項;一個是求和。

  第四:空間向量和立體幾何。

  在里面重點考察兩個方面:一個是證明;一個是計算。

  第五:概率和統計。

  這一板塊主要是屬于數學應用問題的范疇,當然應該掌握下面幾個方面:

  第一……等可能的概率。

  第二………事件。

  第三是獨立事件,還有獨立重復事件發(fā)生的概率。

  第六:解析幾何。

  這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量的題,當然這一類題,我總結下面五類?嫉念}型,包括第一類所講的直線和曲線的位置關系,這是考試最多的內容。考生應該掌握它的通法,第二類我們所講的動點問題,第三類是弦長問題,第四類是對稱問題,這也是20xx年高考已經考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當然這里我相等的.是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當,因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準確度,這是我們所講的第六大板塊。

  第七:押軸題。

  考生在備考復習時,應該重點不等式計算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。

高二數學知識點歸納總結13

  已知函數有零點(方程有根)求參數取值常用的.方法

  1、直接法:

  直接根據題設條件構建關于參數的不等式,再通過解不等式確定參數范圍。

  2、分離參數法:

  先將參數分離,轉化成求函數值域問題加以解決。

  3、數形結合法:

  先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然后數形結合求解。

高二數學知識點歸納總結14

  一、集合、簡易邏輯(14課時,8個)

  1、集合;

  2、子集;

  3、補集;

  4、交集;

  5、并集;

  6、邏輯連結詞;

  7、四種命題;

  8、充要條件。

  二、函數(30課時,12個)

  1、映射;

  2、函數;

  3、函數的單調性;

  4、反函數;

  5、互為反函數的函數圖象間的關系;

  6、指數概念的擴充;

  7、有理指數冪的運算;

  8、指數函數;

  9、對數;

  10、對數的運算性質;

  11、對數函數。

  12、函數的應用舉例。

  三、數列(12課時,5個)

  1、數列;

  2、等差數列及其通項公式;

  3、等差數列前n項和公式;

  4、等比數列及其通頂公式;

  5、等比數列前n項和公式。

  四、三角函數(46課時,17個)

  1、角的概念的推廣;

  2、弧度制;

  3、任意角的三角函數;

  4、單位圓中的三角函數線;

  5、同角三角函數的基本關系式;

  6、正弦、余弦的誘導公式;

  7、兩角和與差的正弦、余弦、正切;

  8、二倍角的正弦、余弦、正切;

  9、正弦函數、余弦函數的圖象和性質;

  10、周期函數;

  11、函數的奇偶性;

  12、函數的圖象;

  13、正切函數的圖象和性質;

  14、已知三角函數值求角;

  15、正弦定理;

  16、余弦定理;

  17、斜三角形解法舉例。

  五、平面向量(12課時,8個)

  1、向量;

  2、向量的加法與減法;

  3、實數與向量的積;

  4、平面向量的`坐標表示;

  5、線段的定比分點;

  6、平面向量的數量積;

  7、平面兩點間的距離;

  8、平移。

  六、不等式(22課時,5個)

  1、不等式;

  2、不等式的基本性質;

  3、不等式的證明;

  4、不等式的解法;

  5、含絕對值的不等式。

  七、直線和圓的方程(22課時,12個)

  1、直線的傾斜角和斜率;

  2、直線方程的點斜式和兩點式;

  3、直線方程的一般式;

  4、兩條直線平行與垂直的條件;

  5、兩條直線的交角;

  6、點到直線的距離;

  7、用二元一次不等式表示平面區(qū)域;

  8、簡單線性規(guī)劃問題;

  9、曲線與方程的概念;

  10、由已知條件列出曲線方程;

  11、圓的標準方程和一般方程;

  12、圓的參數方程。

【高二數學知識點歸納總結】相關文章:

高二化學知識點總結歸納08-07

高二數學的知識點總結05-01

高二數學知識點總結10-19

高二數學知識點總結15篇12-29

高二化學知識點總結06-22

人教版三年級數學上冊知識點歸納總結10-23

高一生物知識點總結歸納09-13

高二政治會考知識點總結11-06

高二數學教學總結12-23