亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

范文資料網(wǎng)>反思報告>教案大全>《初中數(shù)學(xué)教案

初中數(shù)學(xué)教案

時間:2023-01-10 10:43:10 教案大全 我要投稿

初中數(shù)學(xué)教案(匯編15篇)

  作為一名教師,很有必要精心設(shè)計一份教案,教案是實施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。優(yōu)秀的教案都具備一些什么特點呢?下面是小編收集整理的初中數(shù)學(xué)教案,希望對大家有所幫助。

初中數(shù)學(xué)教案(匯編15篇)

初中數(shù)學(xué)教案1

  第一課時

  素質(zhì)教育目標(biāo)

 。ㄒ唬┲R教學(xué)點

  1.使學(xué)生初步了解統(tǒng)計知識是應(yīng)用廣泛的數(shù)學(xué)內(nèi)容 .

  2.了解平均數(shù)的意義,會計算一組數(shù)據(jù)的平均數(shù) .

  3.當(dāng)一組數(shù)據(jù)的數(shù)值較大時,會用簡算公式計算一組數(shù)據(jù)的平均數(shù) .

 。ǘ┠芰τ(xùn)練點

  培養(yǎng)學(xué)生的觀察能力、計算能力 .

 。ㄈ┑掠凉B透點

  1.培養(yǎng)學(xué)生認(rèn)真、耐心、細(xì)致的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣 .

  2.滲透數(shù)學(xué)來源于實踐,反地來又作用于實踐的觀點 .

 。ㄋ模┟烙凉B透點

  通過本課的學(xué)習(xí),滲透數(shù)學(xué)公式的簡單美和結(jié)構(gòu)的嚴(yán)謹(jǐn)美,展示了寓深奧于淺顯,寓紛繁于嚴(yán)謹(jǐn)?shù)霓q證統(tǒng)一的數(shù)學(xué)美 .

  重點·難點·疑點及解決辦法

  1.教學(xué)重點:平均數(shù)的概念及其計算 .

  2.教學(xué)難點:平均數(shù)的簡化計算 .

  3.教學(xué)疑點:平均數(shù)簡化公式的應(yīng)用,a如何選擇 .

  4.解決辦法:分清兩個公式,公式②的運用要選擇一個適當(dāng)?shù)腶 .

  教學(xué)步驟

 。ㄒ唬┟鞔_目標(biāo)

  在日常生活中,我們常與數(shù)據(jù)打交道,例如,電視臺每天晚上都要預(yù)報第二天當(dāng)?shù)氐淖畹蜌鉁嘏c最高氣溫,商店每天都要結(jié)算一下當(dāng)天的營業(yè)額,每個班次的飛機都要統(tǒng)計一下乘客的人數(shù)等.這些都涉及數(shù)據(jù)的計算問題.請同學(xué)們思考下面問題.(教師出示幻燈片)

  為了從甲乙兩名學(xué)生中選拔一人參加射擊比賽,對他們的射擊水平進行了測驗.兩人在相同條件下各射靶10次,命中的環(huán)數(shù)如下:

  甲 7 8 6 8 6 5 9 10 7 4

  乙 9 5 7 8 7 6 8 6 7 7

  1.怎樣比較兩個人的成績?2.應(yīng)選哪一個人參加射擊比賽?

  教師要引導(dǎo)學(xué)生觀察,給學(xué)生充分的時間去思考,并可以分成小組討論解決辦法.

  對于這個問題,部分學(xué)生可能感到無從下手,部分學(xué)生可能想到去比較兩組數(shù)據(jù)的平均,讓學(xué)生動手具體算一下兩組數(shù)據(jù)的平均數(shù)結(jié)果它們相等在學(xué)生無法解決此問題的情況下,教師說明,這正是本章要解決的問題之一(寫出課題).這樣做的目的是教師有意創(chuàng)設(shè)問題情境、制造懸念,這不僅能激發(fā)學(xué)生學(xué)習(xí)的積極性和自覺性,引起學(xué)生對所學(xué)課程的注意,還能誘發(fā)學(xué)生探求新知識的濃厚興趣.

 。ǘ┱w感知

  解決類似上述的.問題要用到統(tǒng)計學(xué)的知識,統(tǒng)計學(xué)是一門研究如何收集、整理、分析數(shù)據(jù)并據(jù)之做出推斷的科學(xué),它以概率論為基礎(chǔ),著重研究如何根據(jù)樣本的性質(zhì)去推測總體的性質(zhì).在當(dāng)今的信息時代,統(tǒng)計學(xué)的應(yīng)用非常廣泛,以至于它已滲透到整個社會生活的各個方面.本章我們將學(xué)習(xí)統(tǒng)計學(xué)的一些初步知識.

  (三)教學(xué)過程

  這節(jié)課我們首先來學(xué)習(xí)平均數(shù).

  1.(出示幻燈片)請同學(xué)看下面問題:

  某班第一小組一次數(shù)學(xué)測驗的成績?nèi)缦拢?/p>

  86 91 100 72 93 89 90 85 75 95

  這個小組的平均成績是多少?

  教師引導(dǎo)學(xué)生動筆計算,并找一名學(xué)生到黑板板演,講完引例后,引導(dǎo)學(xué)生歸納出求平均數(shù)方法,這樣做使學(xué)生對平均數(shù)的計算公式能有深刻的認(rèn)識 .

  2.平均數(shù)的概念及計算公式

  一般地,如果有n個數(shù) .

  那么 ①

  叫做這n個數(shù)的平均數(shù), 讀作“x撥” .

  這是在初中數(shù)學(xué)課本中第一次出現(xiàn)帶有省略號的用字母表示的n個數(shù)相加的一般寫法 .學(xué)生對此可能會感到比較抽象,不太習(xí)慣,要向?qū)W生強調(diào),采用這種寫法是簡化表示,是為了使問題的討論具有一般性 .教師應(yīng)通過對公式的剖析,使學(xué)生正確理解公式,并掌握公式中各元素的意義 .

  3.平均數(shù)計算公式①的應(yīng)用

  例1 一個地區(qū)某年1月上旬各天的最低氣溫依次是(單位:℃):

 。6,-5,-7,-6,-4,-5,-7,-8,-7

  求它們的平均氣溫 .

  讓學(xué)生動手計算,以鞏固平均數(shù)計算公式(一名學(xué)生板演)

  教師應(yīng)強調(diào):①解題格式 .②在統(tǒng)計學(xué)里處理的數(shù)據(jù)包括負(fù)數(shù) .③在本章中,如無特殊說明,平均數(shù)計算結(jié)果保留的位數(shù)與原數(shù)據(jù)相同 .

  例2 從一批機器零件毛坯中取出20件,稱得它們的質(zhì)量如下(單位:千克):

  210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215

  計算它們的平均質(zhì)量 .(用投影儀打出)

  引導(dǎo)學(xué)生兩人一組完成計算,然后一起對答案 .由于數(shù)據(jù)較大,計算較繁,可能會出現(xiàn)不同的答案 .正好為下面提出簡化計算公式作好鋪墊 .

  教師提出問題:像例2這樣,數(shù)據(jù)較大,計算較繁,因而容易出錯,有沒有較為簡便的算法呢?引導(dǎo)學(xué)生觀察數(shù)據(jù)有什么特點?都接近于哪一個數(shù)?啟發(fā)學(xué)生討論,尋找簡便算法 .

  學(xué)生回答:數(shù)據(jù)都在200左右波動,可將各數(shù)據(jù)同時減去200,轉(zhuǎn)而計算一組數(shù)值較小的新數(shù)據(jù)的平均數(shù),至此讓學(xué)生再一次兩人一組用簡便方法計算例2,并與前面計算的結(jié)果相比較是否一樣 .

  講完例2后,教師指出幾點:常數(shù)a的取法不是惟一的; 讀作“x——撇——撥”;;簡化計算的結(jié)果與前面毛算的結(jié)果相同 .

  通過學(xué)生的動手計算,若產(chǎn)生困難或錯誤,教師及時點撥,引導(dǎo)學(xué)生尋找解決問題的方法,這不僅可以激發(fā)學(xué)生學(xué)習(xí)的興趣,更培養(yǎng)了學(xué)生的發(fā)散思維能力,同時也使學(xué)生對公式②的推導(dǎo)更容易接受 .

  3.推導(dǎo)公式②

  一般地,當(dāng)一組數(shù)據(jù) 的各個數(shù)值較大時,可將各數(shù)據(jù)同時減去一個適當(dāng)?shù)某?shù)a,得到,

  那么 ,

  因此,

  即 ②

  為了加深學(xué)生對公式②的認(rèn)識,再讓學(xué)生指出例2的 、 、 各是什么?(學(xué)生回答)

  課堂練習(xí):

  教材P148中~P149中1,2,3

 。ㄋ模┛偨Y(jié)、擴展

  知識小結(jié):1.統(tǒng)計學(xué)是一門與數(shù)據(jù)打交道的學(xué)問,應(yīng)用十分廣泛 .本章將要學(xué)習(xí)的是統(tǒng)計學(xué)的初步知識 .

  2.求n個數(shù)據(jù)的平均數(shù)的公式① .

  3.平均數(shù)的簡化計算公式② .這個公式很重要,要學(xué)會運用 .

  方法小結(jié):通過本節(jié)課我們學(xué)到了示一組數(shù)據(jù)平均數(shù)的方法 .當(dāng)數(shù)據(jù)比較小時,可用公式①直接計算 .當(dāng)數(shù)據(jù)比較大,而且都在某一個數(shù)左右波動時,可選用公式②進行計算 .

  八、布置作業(yè)

  教材P153中1、2、3、4 .

初中數(shù)學(xué)教案2

  教學(xué)目標(biāo)

 。1)認(rèn)知目標(biāo)

  理解并掌握分式的乘除法法則,能進行簡單的分式乘除法運算,能解決一些與分式乘除有關(guān)的實際問題。

 。2)技能目標(biāo)

  經(jīng)歷從分?jǐn)?shù)的乘除法運算到分式的乘除法運算的過程,培養(yǎng)學(xué)生類比的探究能力,加深對從特殊到一般數(shù)學(xué)的思想認(rèn)識。

 。3)情感態(tài)度與價值觀

  教學(xué)中讓學(xué)生在主動探究,合作交流中滲透類比轉(zhuǎn)化的思想,使學(xué)生在學(xué)知識的同時感受探索的樂趣和成功的體驗。

  教學(xué)重難點

  重點:運用分式的乘除法法則進行運算。

  難點:分子、分母為多項式的分式乘除運算。

  教學(xué)過程

 。ㄒ唬┨岢鰡栴},引入課題

  俗話說:“好的開端是成功的一半”同樣,好的引入能激發(fā)學(xué)生興趣和求知欲。因此我用實際出發(fā)提出現(xiàn)實生活中的問題:

  問題1:求容積的.高是,(引出分式乘法的學(xué)習(xí)需要)。

  問題2:求大拖拉機的工作效率是小拖拉機的工作效率的倍,(引出分式除法的學(xué)習(xí)需要)。

  從實際出發(fā),引出分式的乘除的實在存在意義,讓學(xué)生感知學(xué)習(xí)分式的乘法和除法的實際需要,從而激發(fā)學(xué)生興趣和求知欲。

 。ǘ╊惐嚷(lián)想,探究新知

  從學(xué)生熟悉的分?jǐn)?shù)的乘除法出發(fā),引發(fā)學(xué)生的學(xué)習(xí)興趣。

  解后總結(jié)概括:

 。1)式是什么運算?依據(jù)是什么?

 。2)式又是什么運算?依據(jù)是什么?能說出具體內(nèi)容嗎?(如果有困難教師應(yīng)給于引導(dǎo),學(xué)生應(yīng)該能說出依據(jù)的是:分?jǐn)?shù)的乘法和除法法則)教師加以肯定,并指出與分?jǐn)?shù)的乘除法法則類似,引導(dǎo)學(xué)生類比分?jǐn)?shù)的乘除法則,猜想出分式的乘除法則。

 。ǚ质降某顺ǚ▌t)

  乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母。

  除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。

 。ㄈ├}分析,應(yīng)用新知

  師生活動:教師參與并指導(dǎo),學(xué)生獨立思考,并嘗試完成例題。

  P11的例1,在例題分析過程中,為了突出重點,應(yīng)多次回顧分式的乘除法法則,使學(xué)生耳熟能詳。P11例2是分子、分母為多單項式的分式乘除法則的運用,為了突破本節(jié)課的難點我采取板演的形式,和學(xué)生一起詳細(xì)分析,提醒學(xué)生關(guān)注易錯易漏的環(huán)節(jié),學(xué)會解題的方法。

  (四)練習(xí)鞏固,培養(yǎng)能力

  P13練習(xí)第2題的(1)、(3)、(4)與第3題的(2)。

  師生活動:教師出示問題,學(xué)生獨立思考解答,并讓學(xué)生板演或投影展示學(xué)生的解題過程。

  通過這一環(huán)節(jié),主要是為了通過課堂跟蹤反饋,達到鞏固提高的目的,進一步熟練解題的思路,也遵循了鞏固與發(fā)展相結(jié)合的原則。讓學(xué)生板演,一是為了暴露問題,二是為了規(guī)范解題格式和結(jié)果。

 。ㄎ澹┱n堂小結(jié),回扣目標(biāo)

  引導(dǎo)學(xué)生自主進行課堂小結(jié):

  1、本節(jié)課我們學(xué)習(xí)了哪些知識?

  2、在知識應(yīng)用過程中需要注意什么?

  3、你有什么收獲呢?

  師生活動:學(xué)生反思,提出疑問,集體交流。

  (六)布置作業(yè)

  教科書習(xí)題6.2第1、2(必做)練習(xí)冊P(選做),我設(shè)計了必做題和選做題,必做題是對本節(jié)課內(nèi)容的一個反饋,選做題是對本節(jié)課知識的一個延伸。

  板書設(shè)計

  在本節(jié)課中我將采用提綱式的板書設(shè)計,因為提綱式—條理清楚、從屬關(guān)系分明,給人以清晰完整的印象,便于學(xué)生對教材內(nèi)容和知識體系的理解和記憶。

初中數(shù)學(xué)教案3

  學(xué)習(xí)目標(biāo):

  1、通過具體動手操作得出矩形的概念,知道矩形與平行四邊形的區(qū)別與聯(lián)系

  2、通過類比平行四邊形的性質(zhì)定理,推導(dǎo)并掌握矩形的性質(zhì)定理,會用定理進行一些簡單的計算證明、

  3、通過矩形的對角線相等這一性質(zhì)能推導(dǎo)出直角三角形斜邊上的中線等于斜邊的一半,感受直角三角形與矩形之間的內(nèi)在聯(lián)系,發(fā)展學(xué)生的合理推理的能力

  學(xué)習(xí)重難點:

  重點:矩形的性質(zhì)定理

  難點:靈活應(yīng)用矩形的性質(zhì)進行有關(guān)的計算與證明

  課前準(zhǔn)備

  教具準(zhǔn)備:活動平行四邊形框架、教師準(zhǔn)備PPT課件

  教學(xué)過程:

  知識回顧

  1、什么叫平行四邊形?

  2、平行四邊形有哪些性質(zhì)?

  【設(shè)計意圖】:

  通過對舊知的復(fù)習(xí),一方面鞏固就知,另一方面為學(xué)習(xí)新知做好鋪墊

  合作探究一:矩形的定義

  閱讀課本第17-18頁,“實驗與探究”,思考:什么叫做矩形?

  用四根木條制作一個平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示下圖,當(dāng)平行四邊形的一個內(nèi)角由銳角變?yōu)殁g角的過程中,會發(fā)生怎樣的特殊情況,這時的圖形是什么圖形、從上面的演示過程可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?

  【設(shè)計意圖】:

  通過小組合作觀察,討論平行四邊形具備什么條件時,就成了矩形,自己歸納出矩形的定義、給學(xué)生更多的思考空間,促進學(xué)生積極思考,發(fā)展學(xué)生的思維

  歸納:有一個角是直角的平行四邊形叫做矩形、

  合作探究二:矩形的性質(zhì)定理

  1、自主完成18頁的觀察與思考,通過實際操作回答提出的問題

  2、小組合作:完成對性質(zhì)的證明過程

  【設(shè)計意圖】:

  通過利用手中的矩形紙片動手操作使學(xué)生對矩形的性質(zhì)獲得豐富的直觀體驗,為總結(jié)矩形的性質(zhì)定理打下堅實基礎(chǔ)

  矩形的性質(zhì)定理1:矩形的四個角都是直角

  矩形的性質(zhì)定理2:矩形的兩條對角線相等

  合作探究三:直角三角形的性質(zhì)定理3

  設(shè)矩形的對角線AC與BD交于點O,那么,BE是Rt△AB中一條怎樣的特殊線段

 。˙O是Rt△ABC中斜邊AC上的中線)它與AC有什么大小關(guān)系,為什么?

  【設(shè)計意圖】:

  根據(jù)圖形學(xué)生很容易猜想結(jié)果,關(guān)鍵是從數(shù)學(xué)的角度證明留足充分的時間讓學(xué)生交流,教師適時引導(dǎo),明確論證方法、學(xué)生獨立完成證明,以培養(yǎng)學(xué)生的推理能力、讓學(xué)生感受數(shù)學(xué)結(jié)論的確定性和證明的必要性

  結(jié)論:直角三角形斜邊上的中線等于斜邊的.一半

  例題講解:

  例1、如圖,矩形ABCD的兩條對角線相交于點O,∠AOB=60°,AB=6㎝,求矩形對角線AC的長?

  當(dāng)堂檢測:

  1、矩形具有而平行四邊形不具有的性質(zhì)()

  (A)對角相等(B)對邊相等(C)對角線相等(D)對角線互相平分

  2、已知Rt△ ABC中,∠ABC=900,BD是斜邊AC上的中線

 。1)若BD=3㎝,則AC=㎝

 。2)若∠C=30°,AB=5㎝,則AC=㎝,BD=㎝

  3、在矩形ABCD中,若已知∠DOC=120°,AC=8㎝,求AD的長

  4、工人師傅做鋁合金窗框分下面三個步驟進行:

 。1)先截出兩對符合規(guī)格的鋁合金窗料(如圖1),使AB=CD,EF=GH;

 。2)擺放成如圖(2)的四邊形,則這時窗框的形狀是_____,根據(jù)的數(shù)學(xué)道理是__________;

  (3)將直角尺靠緊窗框的一個角(如圖3)調(diào)整窗框的邊框,當(dāng)直角尺的兩條直角邊與窗框無縫隙時(如圖4),說明窗框合格,這時窗框是____,根據(jù)的數(shù)學(xué)道理是________________。

  課堂小結(jié):

  請說出你本節(jié)課的收獲,與大家一塊分享!

  作業(yè):

  課本P、20第2題

  板書設(shè)計:

  xxx

初中數(shù)學(xué)教案4

  一、主題分析與設(shè)計

  本節(jié)課是蘇科版義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書七年級數(shù)學(xué)(下冊)第七章第2節(jié)內(nèi)容——探索平行線的性質(zhì),它是直線平行的繼續(xù),是后面研究平移等內(nèi)容的基礎(chǔ),是"空間與圖形"的重要組成部分。

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》強調(diào):數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),是師生之間、生生之間交往互動與共同發(fā)展的過程;動手實踐,自主探索,合作交流是孩子學(xué)習(xí)數(shù)學(xué)的重要方式;合作交流的學(xué)習(xí)形式是培養(yǎng)孩子積極參與、自主學(xué)習(xí)的有效途徑。本節(jié)課將以"生活·數(shù)學(xué)"、"活動·思考"、"表達·應(yīng)用"為主線開展課堂教學(xué),以學(xué)生看得到、感受得到的基本素材創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生活動,并在活動中激發(fā)學(xué)生認(rèn)真思考、積極探索,主動獲取數(shù)學(xué)知識,從而促進學(xué)生研究性學(xué)習(xí)方式的形成,同時通過小組內(nèi)學(xué)生相互協(xié)作研究,培養(yǎng)學(xué)生合作性學(xué)習(xí)精神。

  二、教學(xué)目標(biāo)

  1、知識與技能:掌握平行線的性質(zhì),能應(yīng)用性質(zhì)解決相關(guān)問題。

  2、數(shù)學(xué)思考:在平行線的性質(zhì)的探究過程中,讓學(xué)生經(jīng)歷觀察、比較、聯(lián)想、分析、歸納、猜想、概括的全過程。初中數(shù)學(xué)教育敘事

  3、解決問題:通過探究平行線的性質(zhì),使學(xué)生形成數(shù)形結(jié)合的數(shù)學(xué)思想方法,以及建模能力、創(chuàng)新意識和創(chuàng)新精神。

  4、情感態(tài)度與價值觀:在探究活動中,讓學(xué)生獲得親自參與研究的情感體驗,從而增強學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情和團結(jié)合作、勇于探索、鍥而不舍的精神。

  三、教學(xué)重、難點

  1、重點:對平行線性質(zhì)的掌握與應(yīng)用

  2、難點:對平行線性質(zhì)1的探究

  四、教學(xué)用具

  1、教具:多媒體平臺及多媒體課件

  2、學(xué)具:三角尺、量角器、剪刀

  五、教學(xué)過程

 。ㄒ唬﹦(chuàng)設(shè)情境,設(shè)疑激思

  1、播放一組幻燈片。

  內(nèi)容:

 、俟┗疖囆旭偟蔫F軌上;

  ②游泳池中的泳道隔欄;

 、蹤M格紙中的線。

  2、提問溫故:日常生活中我們經(jīng)常會遇到平行線,你能說出直線平行的'條件嗎?

  3、學(xué)生活動:針對問題,學(xué)生思考后回答——①同位角相等兩直線平行;②內(nèi)錯角相等兩直線平行;③同旁內(nèi)角互補兩直線平行;

  4、教師肯定學(xué)生的回答并提出新問題:若兩直線平行,那么同位角、內(nèi)錯角、同旁內(nèi)角各有什么關(guān)系呢?從而引出課題:7。2探索平行線的性質(zhì)(板書)

  (二)數(shù)形結(jié)合,探究性質(zhì)

  1、畫圖探究,歸納猜想

  教師提要求,學(xué)生實踐操作:任意畫出兩條平行線(a ∥ b),畫一條截線c與這兩條平行線相交,標(biāo)出8個角。(統(tǒng)一采用阿拉伯?dāng)?shù)字標(biāo)角)

  教師提出研究性問題一:

  指出圖中的同位角,并度量這些角,把結(jié)果填入下表:

  教師提出研究性問題二:

  將畫出圖中的同位角任先一組剪下后疊合。

  學(xué)生活動一:畫圖————度量————填表————猜想

  學(xué)生活動二:畫圖————剪圖————疊合

  讓學(xué)生根據(jù)活動得出的數(shù)據(jù)與操作得出的結(jié)果歸納猜想:兩直線平行,同位角相等。

  教師提出研究性問題三:

  再畫出一條截線d,看你的猜想結(jié)論是否仍然成立?

  學(xué)生活動:探究、按小組討論,最后得出結(jié)論:仍然成立。

  2、教師用《幾何畫板》課件驗證猜想,讓學(xué)生直觀感受猜想

  3、教師展示平行線性質(zhì)1:兩條平行線被第三條直線所截,同位角相等。(兩直線平行,同位角相等)

  (三)引申思考,培養(yǎng)創(chuàng)新

  教師提出研究性問題四:

  請判斷兩條平行線被第三條直線所截,內(nèi)錯角、同旁內(nèi)角各有什么關(guān)系?

  學(xué)生活動:獨立探究————小組討論————成果展示。

  教師活動:評價學(xué)生的研究成果,并引導(dǎo)學(xué)生說理

  因為a ∥ b(已知)

  所以∠ 1= ∠ 2(兩直線平行,同位角相等)

  又∠ 1= ∠ 3(對頂角相等)

  ∠ 1+ ∠ 4=180°(鄰補角的定義)

  所以∠ 2= ∠ 3(等量代換)

  ∠ 2+ ∠ 4=180°(等量代換)

  教師展示:

  平行線性質(zhì)2:兩條平行線被第三條直線所截,內(nèi)錯角相等。(兩直線平行,內(nèi)錯角相等)

  平行線性質(zhì)2:兩條平行線被第三條直線所截,同旁內(nèi)角互補。(兩直線平行,同旁內(nèi)角互補)

 。ㄋ模⿲嶋H應(yīng)用,優(yōu)勢互補

  1、(搶答)課本P13練一練1、2及習(xí)題7。2 1、5

  2、(討論解答)課本P13習(xí)題7。2 2、3、4

 。ㄎ澹┱n堂總結(jié):這節(jié)課你有哪些收獲?

  1、學(xué)生總結(jié):平行線的性質(zhì)1、2、3

  2、教師補充總結(jié):

 、庞"運動"的觀點觀察數(shù)學(xué)問題;(如我們前面將同位角剪下疊合后分析問題)

 、朴脭(shù)形結(jié)合的方法來解決問題;(如我們前面將同位角測量后分析問題)

 、怯脺(zhǔn)確的語言來表達問題;(如平行線的性質(zhì)1、2、3的表述)

  ⑷用邏輯推理的形式來論證問題。(如我們前面對性質(zhì)2和3的說理過程)

 。┳鳂I(yè)

  學(xué)習(xí)與評價P5 1、2、3(填空);4、5、6(選擇);7、8(拓展與延伸)

  六、教學(xué)反思:

  數(shù)學(xué)課要注重引導(dǎo)學(xué)生探索與獲取知識的過程而不單注重學(xué)生對知識內(nèi)容的認(rèn)識,因為"過程"不僅能引導(dǎo)學(xué)生更好地理解知識,還能夠引導(dǎo)學(xué)生在活動中思考,更好地感受知識的價值,增強應(yīng)用數(shù)學(xué)知識解決問題的意識;感受生活與數(shù)學(xué)的聯(lián)系,獲得"情感、態(tài)度、價值觀"方面的體驗。這節(jié)課的教學(xué)實現(xiàn)了三個方面的轉(zhuǎn)變:

 、俳痰霓D(zhuǎn)變:本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者。教師成為了學(xué)生的導(dǎo)師、伙伴、甚至成為了學(xué)生的學(xué)生,在課堂上除了導(dǎo)引學(xué)生活動外,還要認(rèn)真聆聽學(xué)生"教"你他們活動的過程和通過活動所得的知識或方法。

 、趯W(xué)的轉(zhuǎn)變:學(xué)生的角色從學(xué)會轉(zhuǎn)變?yōu)闀䦟W(xué),跟老師學(xué)轉(zhuǎn)變?yōu)樽灾魅W(xué)。本節(jié)課學(xué)生不是停留在學(xué)會課本知識的層面上,而是站在研究者的角度深入其境,不是簡單地"學(xué)"數(shù)學(xué),而是深入地"做"數(shù)學(xué)。

 、壅n堂氛圍的轉(zhuǎn)變:整節(jié)課以"流暢、開放、合作、‘隱'導(dǎo)"為基本特征,教師對學(xué)生的思維活動減少干預(yù),教學(xué)過程呈現(xiàn)一種比較流暢的特征,整節(jié)課學(xué)生與學(xué)生、學(xué)生與教師之間以"對話"、"討論"為出發(fā)點,以互助、合作為手段,以解決問題為目的,讓學(xué)生在一個較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。

  總之,在數(shù)學(xué)教學(xué)的花園里,教師只要為學(xué)生布置好和諧的場景和明晰的路標(biāo),然后就讓他們自由地快活地去跳舞吧

初中數(shù)學(xué)教案5

  教材分析

  立體圖形的翻折問題是高二《代數(shù)》(下)中立體幾何的一個學(xué)習(xí)內(nèi)容,它融會貫通于各種立體幾何和幾何體中,對學(xué)生進一步理解立體圖形起著至關(guān)重要的作用。立體圖形的翻折是從學(xué)生生活周圍熟悉的物體入手,使學(xué)生進一步認(rèn)識立體圖形于平面圖形的關(guān)系;不僅要讓學(xué)生了解幾何體可由平面圖形折疊而成,更重要的是讓學(xué)生通過觀察、思考和自己動手操作、經(jīng)歷和體驗圖形的變化過程,使學(xué)生了解研究立體圖形的方法。

  教學(xué)重點

  了解平面圖形于折疊后的立體圖形之間的關(guān)系,找到變化過程中的不變量。

  教學(xué)難點

  轉(zhuǎn)化思想的運用及發(fā)散思維的培養(yǎng)。

  學(xué)生分析

  學(xué)生在前面已經(jīng)對一些簡單幾何體有了一定的認(rèn)識,對于求解空間角及空間距離已具備了一定的能力,并且在班級中已初步形成合作交流,敢于探索與實踐的良好習(xí)慣。學(xué)生間相互評價、相互提問的互動的氣氛較濃。

  設(shè)計理念

  根據(jù)教育課程改革的具體目標(biāo),結(jié)合“注重開放與生成,構(gòu)建充滿生命活力的課堂教學(xué)運行體系”的要求,改變課程過于注重知識傳授的傾向,強調(diào)形成積極生動的學(xué)習(xí)態(tài)度,關(guān)注學(xué)生的學(xué)習(xí)興趣和經(jīng)驗,實施開放式教學(xué),讓學(xué)生主動參與學(xué)習(xí)活動,并引導(dǎo)學(xué)生在課堂活動中感悟知識的生成、發(fā)展與變化。

  教學(xué)目標(biāo)

  1、使學(xué)生掌握翻折問題的解題方法,并會初步應(yīng)用。

  2、培養(yǎng)學(xué)生的動手實踐能力。在實踐過程中,使學(xué)生提高對立體圖形的分析能力,并在設(shè)疑的同時培養(yǎng)學(xué)生的發(fā)散思維。

  3、通過平面圖形與折疊后的立體圖形的對比,向?qū)W生滲透事物間的變化與聯(lián)系觀點,在解題過程中,使學(xué)生理解,將立體圖形中的問題化歸到平面圖形中去解決的轉(zhuǎn)化思想。

  教學(xué)流程

  一、創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生觀察、設(shè)想、導(dǎo)入課題。

  1、如圖(圖略),是一個正方體的展開圖,在原正方體中,有下列命題

 。1)AB與EF所在直線平行

  (2)AB與CD所在直線異面

 。3)MN與EF所在直線成60度

 。4)MN與CD所在直線互相垂直其中正確命題的序號是

  2、引入課題----翻折

  二、學(xué)生通過直觀感知、操作確認(rèn)等實踐活動,加強對圖形的認(rèn)識和感受(引導(dǎo)學(xué)生在解題的過程中如何突破難點,從而體現(xiàn)在平面圖形中求解一些不變量對于解空間問題的重要性)。

  1、給學(xué)生一個展示自我的空間和舞臺,讓學(xué)生自己講解。教師根據(jù)學(xué)生的講解進一步提出問題。

  (1)線段AE與EF的.夾角為什么不是60度呢?

 。2)AE與FG所成角呢?

 。3)AE與GC所成角呢?

 。4)在此正四棱柱上若有一小蟲從A點爬到C點最短路徑是什么?經(jīng)過各面呢?

 。ㄍㄟ^對發(fā)散問題的提出培養(yǎng)學(xué)生的培養(yǎng)精神及轉(zhuǎn)化的教學(xué)思想方法,讓學(xué)生體會折疊圖與展開圖的不同應(yīng)用。)

  2、讓學(xué)生觀察電腦演示折疊過程后,再親自動手折疊,針對問題做出回答。

 。1)E、F分別處于G1G2、G2G3的什么位置?

  (2)選擇哪種擺放方式更利于求解體積呢?

  (3)如何求G點到面PEF的距離呢?

 。4)PG與面PEF所成角呢?

  (5)面GEF與面PEF所成角呢?

 。▽W(xué)生會發(fā)現(xiàn)這幾個問題可在同一個直角三角形中找到答案,然后讓學(xué)生在折紙中找到這個三角形的位置,既而發(fā)現(xiàn)折疊過程中的不變量。)

  3、演示MN的運動過程,讓學(xué)生觀察分析解題過程強調(diào)證PN垂直AB的困難性。與學(xué)生共同品位解出這道20xx高考題的喜悅的同時,引導(dǎo)學(xué)生用上題的思路能否更快捷地解出此題呢?

  (學(xué)生大膽想象,并通過模型制作確認(rèn)想象結(jié)果的正確性,從而開辟一條簡捷的翻折思想解題思路。)

  三、小結(jié)

  1、畫平面圖,并折前圖與折后圖中的字母盡量保持一致。

  2、尋找立體圖形中的不變量到平面圖形中求解是關(guān)鍵。

  3、注意培養(yǎng)轉(zhuǎn)化思想和發(fā)散思維。

 。ㄍㄟ^提問方式引導(dǎo)學(xué)生小結(jié)本節(jié)主要知識及學(xué)習(xí)活動,養(yǎng)成學(xué)習(xí)、總結(jié)、學(xué)習(xí)的良好學(xué)習(xí)習(xí)慣,發(fā)散自我評價的作用,培養(yǎng)學(xué)生的語言表達能力。)

  四、課外活動

  1、完成課上未解決的問題。

  2、對與1題折成正三棱柱結(jié)果會怎樣?對于2題改變E、F兩點位置剪成正三棱柱呢?

 。ㄍㄟ^課外活動學(xué)習(xí)本節(jié)知識內(nèi)容,培養(yǎng)學(xué)生的發(fā)散思維。)

  課后反思

  本課設(shè)計中,有梯度性的先安排三個小題,讓學(xué)生經(jīng)歷先動手、思考、預(yù)習(xí)這一學(xué)習(xí)過程,然后在課堂上給學(xué)生一個充分展示自我的空間,并且適時發(fā)問的同時幫助學(xué)生找到解決方法。歸納總結(jié)解翻折問題的技巧和作為解題方法的優(yōu)越性。在實施開放式教學(xué)的過程中,注重引導(dǎo)學(xué)生在課堂活動過程中感悟知識的生成、發(fā)展與變化,培養(yǎng)學(xué)生主動探索、敢于實踐、善于發(fā)現(xiàn)的科學(xué)精神以及合作交流的精神和創(chuàng)新意識,將創(chuàng)新的教材、創(chuàng)新的教法與創(chuàng)新的課堂環(huán)境有機地結(jié)合起來,將學(xué)生自主學(xué)習(xí)與創(chuàng)新意識的培養(yǎng)落到實處。

初中數(shù)學(xué)教案6

  一、素質(zhì)教育目標(biāo)

 。ㄒ唬┲R教學(xué)點

  1.理解畫兩個角的差,一個角的幾倍、幾分之一的方法.

  2.掌握用量角器畫兩個角的和差,一個角的幾倍、幾分之一的畫法.用三角板畫一些特殊角的畫法.

 。ǘ┠芰τ(xùn)練點

  通過畫角的和、差、倍、分,三角板和量角器的使用,培養(yǎng)學(xué)生動手能力和操作技巧.

  (三)德育滲透點

  通過利用三角板畫特殊角的方法,說明幾何知識常用來解決實際問題,進行幾何學(xué)在生產(chǎn)、生活中起著重要作用的教育,鼓勵他們努力學(xué)習(xí)。

 。ㄋ模┟烙凉B透點

  通過學(xué)生動手操作,使學(xué)生體會到簡單幾何圖形組合的多樣性,領(lǐng)會幾何圖形美.

  二、學(xué)法引導(dǎo)

  1.教師教法:嘗試指導(dǎo),以學(xué)生操作為主.

  2.學(xué)生學(xué)法:在教師的指導(dǎo)下,積極動手參與,認(rèn)真思考領(lǐng)會歸納.

  三、重點、難點、疑點及解決辦法

 。ㄒ唬┲攸c

  用量角器畫角的和、差、倍、分及用三角板畫特殊角.

 。ǘ╇y點

  準(zhǔn)確使用量角器畫一個角的幾分之一.

 。ㄈ┮牲c

  量角器的正確使用.

 。ㄋ模┙鉀Q辦法

  通過正確指導(dǎo),規(guī)范操作,使學(xué)生掌握畫法要領(lǐng),并以練習(xí)加以鞏固,從而解決重難點及疑點.

  四、課時安排

  1課時

  五、教具學(xué)具準(zhǔn)備

  一副三角板、量角器.

  六、師生互動活動設(shè)計

  1.通過教師設(shè),學(xué)生動手及思考創(chuàng)設(shè)出情境,引出課題.

  2.通過學(xué)生嘗試解決、教師把握幾何語言美的方法,放手由學(xué)生自己解決有關(guān)角的畫法.

  3.通過提問的形式完成小結(jié).

  七、教學(xué)步驟

 。ㄒ唬┟鞔_目標(biāo)

  使學(xué)生會用量角器畫角及角的和、差、倍、分,培養(yǎng)學(xué)生動手能力和操作能力.

 。ǘ┱w感知

  通過教師指導(dǎo),學(xué)生動手操作完成對畫圖能力和操作能力的掌握.

  圖1

 。ㄈ┙虒W(xué)過程

  創(chuàng)設(shè)情境,引出課題

  教師在黑板上畫出(如圖1).

  師:現(xiàn)有工具量角器和三角板,誰到黑板上畫一個角等于呢?請同學(xué)們觀察他的操作,老師要找同學(xué)說明他的畫法.

  【教法說明】有上節(jié)課的基礎(chǔ),學(xué)生會先用量角器測量的度數(shù),再畫一個度數(shù)等于這個度數(shù)的角,學(xué)生也會敘述其畫法.

  提出問題:若老師想畫的余角、補角呢?

  學(xué)生會想到畫、減去的度數(shù)后的角,即為的余角、補角.

  師:是否還有別的方法?

  這時學(xué)生一定會積極思考,立刻回答還有困難.教師抓住時機點明課題:同學(xué)們不用著急,今天我們就研究角的畫法,學(xué)習(xí)用三角板、量角器畫角的和、差、倍、分以及一些特殊角.老師提出的問題你們會解決的.另外,角的畫法在我們?nèi)粘I钪袘?yīng)用廣泛,希望同學(xué)們認(rèn)真學(xué)習(xí).(板書課題……)

 。郯鍟1.7角的畫法

  探究新知

  1.畫一個角等于已知角

  找學(xué)生再次敘述方法:用量角器量出已知角的度數(shù),再畫一個等于這個度數(shù)的角.

  操作:略.

  注意:量角器使用三要素:對中、重合、讀數(shù).

  2.用三角板畫特殊角

  師:請同學(xué)們準(zhǔn)備好練習(xí)本和一副三角板,再找同學(xué)說出一副三角板中各角度數(shù).

  學(xué)生活動:用三角板在練習(xí)本上畫出直角、角、角、角.

  提出問題:你能利用一副三角板畫出、的角嗎?

  學(xué)生活動:討論畫、的角的方法,在練習(xí)本上畫出圖形,同桌可相互交換檢查,找學(xué)生到黑板上畫.

  【教法說明】有前一節(jié)角的和、差的理解和、 、角的畫法,學(xué)生對畫、的角不會有困難.因此,教師要敢于放手,讓學(xué)生自己去嘗試解決問題的方法,也培養(yǎng)他們的動手操作的.能力,但對于畫法學(xué)生不會敘述得太嚴(yán)密,教師要把關(guān),培養(yǎng)學(xué)生幾何語言的嚴(yán)密性.

  教師根據(jù)前面學(xué)生所畫圖形,引導(dǎo)學(xué)生寫出畫法.(以角的畫法為例,與例題相符.)

  圖1

  畫法如圖l,①利用三角板,畫

 、谠诘耐獠,再畫就是要畫的的角.

  反饋練習(xí):用三角板畫、的角.

  【教法說明】由學(xué)生獨立完成以上三個角的畫圖.教師不給任何提示,只要求寫出畫角的方法,注意觀察畫法,是否寫出了“在角的內(nèi)部畫的角”.區(qū)別例題中兩角和的畫法.

  提出問題:由一副三角板可以畫出多少度的角?

  學(xué)生討論得出可以畫出的角.

  這些角都是的倍數(shù),用三角板也只限畫這樣的角.由此得出:由量角器畫任意角的和、差、倍、分角.

  3.畫任意兩個角的和差及一個角的幾倍、幾分之一.

  問題:如圖1,已知、(),如何畫出與的和?與的差?

  圖1

  學(xué)生活動:討論畫,的方法,并在練習(xí)本上根據(jù)自己的想法畫圖.

  根據(jù)學(xué)生的討論回答,老師歸納以下方法:

 。1)用量角器量出、的度數(shù),計算出它們度數(shù)的和、差,再用量角器畫出等于它們度數(shù)和、差的角.

 。2)用量角器把移到上,如果本方法.

  圖1

  教師示范,寫出兩種畫法:

  畫法一:(1)用量角器量得,.

 。2)畫,就是要畫的角如圖1.

  圖2

  畫法二:(1)用量角器畫.

 。2)以點為頂點,射為一邊,在的外部畫.

  就是要畫的角如圖2.

  學(xué)生活動:敘述用兩種方法畫的畫法.出示例1由學(xué)生完成,要求用兩種方法,找同學(xué)板演.

  例1?已知,畫出它們的余角.

  畫法一:(1)量得.

  圖1圖2

 。2)畫,就是所要畫的角,見圖1.

  畫法二:利用三角板,以的頂點為頂點,一邊為邊,畫直角,使的另一邊在直角的內(nèi)部,如圖2,就是所要畫的角.

  【教法說明】第二種畫法學(xué)生可能敘述或書寫不太完整,教師要注意其嚴(yán)密性.

  反饋練習(xí)

  1.已知,畫出它的補角.

  2.已知,畫它們的角平分線.

  3.畫的角,并把它分成三等份.

  【教法說明】本練習(xí)只要求圖形正確即可,不要求寫出畫法.

  (四)總結(jié)、擴展

  以提問的形式歸納出以下知識脈絡(luò):

  八、布置作業(yè)

  課本第46頁習(xí)題1.5A組第2、3題.

初中數(shù)學(xué)教案7

  這節(jié)課的內(nèi)容是義務(wù)教育課程標(biāo)準(zhǔn)教材數(shù)學(xué)九年級下冊銳角三角函數(shù)——正弦。我將從以下幾個方面來就本節(jié)課的教學(xué)進行解說。

  一、教材分析

  教材所處的地位及作用:

  本章是在學(xué)生已學(xué)了一次函數(shù)、反比例函數(shù)、二次函數(shù)以及相似形的基礎(chǔ)上進行的,它反映的不是數(shù)值與數(shù)值的對應(yīng)關(guān)系,而是角度與數(shù)值之間的對應(yīng)關(guān)系,這對學(xué)生來說是個全新的領(lǐng)域。一方面,這是在學(xué)習(xí)了直角三角形兩銳角關(guān)系、勾股定理等知識的基礎(chǔ)上,對直角三角形邊角關(guān)系的進一步深入和拓展;另一方面,又為解直角三角形等知識奠定了基礎(chǔ).

  二、學(xué)情分析

  1、九年級學(xué)生的思維活躍,接受能力較強,具備了一定的'數(shù)學(xué)探究活動經(jīng)歷和應(yīng)用數(shù)學(xué)的意識。

  2、學(xué)生已經(jīng)掌握直角三角形中各邊和各角的關(guān)系,能靈活運用相似圖形的性質(zhì)及判定方法解決問題,有較強的推理證明能力,這為順利完成本節(jié)課的教學(xué)任務(wù)打下了基礎(chǔ),學(xué)生要得出銳角與比值之間的對應(yīng)關(guān)系,這種對應(yīng)關(guān)系不同于以前學(xué)習(xí)的數(shù)值與數(shù)值之間的對應(yīng)關(guān)系,因此對學(xué)生而言建立這種對應(yīng)關(guān)系有一定困難。

  三、教學(xué)目標(biāo)

  1、理解銳角正弦的意義,了解銳角與銳角正弦值之間的一一對應(yīng)關(guān)系,進一步體會函數(shù)的變化與對應(yīng)的思想;

  2、會根據(jù)銳角正弦的意義解決直角三角形中已知邊長求銳角正弦,以及已知正弦值和一邊長求其它邊長的問題;

  3、經(jīng)歷銳角正弦意義的探索過程,體會從特殊到一般的研究問題的思路和數(shù)形結(jié)合的思想方法;

  4、經(jīng)歷由實際問題引發(fā)出對正弦函數(shù)討論的過程,培養(yǎng)學(xué)生觀察生活、發(fā)現(xiàn)問題、研究問題的能力。

  四、重點、難點

  1、重點:銳角正弦的定義及應(yīng)用;

  2、難點:理解銳角正弦是銳角與邊的比值之間的函數(shù)關(guān)系.

  3、難點突破方法:由特殊角入手開展討論,自然過度到一般角;從具體情境抽象出正弦的概念,并結(jié)合多個實例從不同角度深化理解。

  五、教法及學(xué)法

  本節(jié)課采用情境引導(dǎo)和探究發(fā)現(xiàn)教學(xué)法,通過適宜的問題情境引發(fā)新的認(rèn)知沖突,建立知識間的聯(lián)系。同時采用多媒體輔助教學(xué),以直觀生動地呈現(xiàn)教學(xué)素材,從而更好地激發(fā)學(xué)生的學(xué)習(xí)興趣,增大教學(xué)容量,提高教學(xué)效率。

  六、教學(xué)過程

  為了實現(xiàn)本節(jié)的教學(xué)目標(biāo),教學(xué)過程分為以下六個環(huán)節(jié):

 。ㄒ唬⿵(fù)習(xí)舊知,情境引入(二)合作探究,獲得新知:(三)鞏固訓(xùn)練,落實雙基

  (四)強化提高,培養(yǎng)能力(五)小結(jié)歸納,拓展深化(六)反饋練習(xí),自主評價。

  下面就幾個主要環(huán)節(jié)進行解說

 。ㄒ唬⿵(fù)習(xí)舊知,情境引入

 。ǘ┫茸寣W(xué)生回顧直角三角形知識,再從鋪設(shè)水管引入30°的直角三角形中的邊與角的關(guān)聯(lián)。

 。ǘ┖献魈骄,獲得新知:

  先讓學(xué)生猜想,再利用幾何畫板演示,在直角三角形中,任意角度的銳角的對邊和斜邊的比和這個角的關(guān)系。得出結(jié)論:

  當(dāng)∠A的度數(shù)一定時,∠A的對邊和斜邊的比值是一個定值。這個比值隨著角度的變化而變化,當(dāng)角度一定時,有唯一和它對應(yīng)的比值。所以∠A的對邊和斜邊的比值是關(guān)于∠A度數(shù)的函數(shù)。

  再引出課題和正弦概念,給出正弦的含義和表示方法。認(rèn)識幾個特殊角的正弦值。

 。ㄈ╈柟逃(xùn)練

  講解一道求正弦值的例題。

 。ㄋ模⿵娀岣,培養(yǎng)能力

  出示三道提高題,第一道是關(guān)于直接利用正弦值求斜邊的題,然后進行變式,第二題是關(guān)于不是直角三角形中求正弦的題,第三題是關(guān)于用不同的方法求一個銳角的正弦值。

 。ㄎ澹┬〗Y(jié)歸納,拓展深化

初中數(shù)學(xué)教案8

  教學(xué) 建議

  一、知識結(jié)構(gòu)

  二、重點、難點分析

  本節(jié) 教學(xué) 的重點是不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.難點為不等式的解集的概念.

  1.不等式的解與方程的解的意義的異同點

  相同點:定義方式相同(使方程成立的未知數(shù)的值,叫做方程的解);解的表示方法也相同.

  不同點:解的個數(shù)不同,一般地,一個不等式有無數(shù)多個解,而一個方程只有一個或幾個解,例如, 能使不等式 成立,那么 是不等式的一個解,類似地 等也能使不等式 成立,它們都是不等式 的解,事實上,當(dāng) 取大于 的數(shù)時,不等式 都成立,所以不等式 有無數(shù)多個解.

  2.不等式的解與解集的區(qū)別與聯(lián)系

  不等式的解與不等式的解集是兩個不同的概念,不等式的解是指滿足這個不等式的未知數(shù)的某個值,而不等式的解集,是指滿足這個不等式的未知數(shù)的所有的值,不等式的所有解組成了解集,解集中包括了每一個解.

  注意:不等式的解集必須滿足兩個條件:第一,解集中的任何一個數(shù)值,都能使不等式成立;第二,解集外的任何一個數(shù)值,都不能使不等式成立.

  3.不等式解集的表示方法

 。1)用不等式表示

  一般地,一個含未知數(shù)的不等式有無數(shù)多個解,其解集是某個范圍,這個范圍可用一個最簡單的不等式表示出來,例如,不等式 的解集是 .

  (2)用數(shù)軸表示

  如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圓.

  如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圈.

  注意:在數(shù)軸上,右邊的點表示的數(shù)總比左邊的點表示的數(shù)大,所以在數(shù)軸上表示不等式的解集時應(yīng)牢記:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.

  一、素質(zhì) 教育 目標(biāo)

 。ㄒ唬┲R 教學(xué)

  1.使學(xué)生了解不等式的解集、解不等式的概念,會在數(shù)軸上表示出不等式的解集.

  2.知道不等式的“解集”與方程“解”的不同點.

 。ǘ┠芰τ(xùn)練點

  通過 教學(xué) ,使學(xué)生能夠正確地在數(shù)軸上表示出不等式的解集,并且能把數(shù)軸上的某部分?jǐn)?shù)集用相應(yīng)的不等式表示.

 。ㄈ┑掠凉B透點

  通過講解不等式的“解集”與方程“解”的關(guān)系,向?qū)W生滲透對立統(tǒng)一的辯證觀點.

 。ㄋ模┟烙凉B透點

  通過本節(jié)課的學(xué)習(xí),讓學(xué)生了解不等式的解集可利用圖形來表達,滲透數(shù)形結(jié)合的數(shù)學(xué)美.

  二、學(xué)法引導(dǎo)

  1. 教學(xué) 方法:類比法、引導(dǎo)發(fā)現(xiàn)法、實踐法.

  2.學(xué)生學(xué)法:明確不等式的解與解集的區(qū)別和聯(lián)系,并能熟練地用數(shù)軸表示不等式的解集,在數(shù)軸上表示不等式的解集時,要特別注意:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.

  三、重點·難點·疑點及解決辦法

 。ㄒ唬┲攸c

  1.不等式解集的概念.

  2.利用數(shù)軸表示不等式的解集.

  (二)難點

  正確理解不等式解集的概念.

 。ㄈ┮牲c

  弄不清不等式的解集與方程的解的區(qū)別、聯(lián)系.

 。ㄋ模┙鉀Q辦法

  弄清楚不等式的解與解集的概念.

  四、課時安排

  一課時.

  五、教具學(xué)具準(zhǔn)備

  投影儀或電腦、自制膠片、直尺.

  六、師生互動活動設(shè)計

 。ㄒ唬┟鞔_目標(biāo)

  本節(jié)課重點學(xué)習(xí)不等式的解集,解不等式的概念并會用數(shù)軸表示不等式的解集.

 。ǘ┱w感知

  通過枚舉法來形象直觀地推出不等式的解集,再給出不等式解集的概念,從而更準(zhǔn)確地讓學(xué)生掌握該概念.再通過師生的互動學(xué)習(xí)用數(shù)軸表示不等式的解集,從而為今后求不等式組的解集打下良好的基礎(chǔ).

 。ㄈ 教學(xué) 過程

  1.創(chuàng)設(shè)情境,復(fù)習(xí)引入

  (1)根據(jù)不等式的基本性質(zhì),把下列不等式化成 或 的形式.

 、  、

 。2)當(dāng) 取下列數(shù)值時,不等式 是否成立?

  l,0,2,-2.5,-4,3.5,4,4.5,3.

  學(xué)生活動:獨立思考并說出答案:(1)① ② .(2)當(dāng) 取1,0,2,-2.5,-4時,不等式 成立;當(dāng) 取3.5,4,4.5,3時,不等式 不成立.

  大家知道,當(dāng) 取1,2,0,-2.5,-4時,不等式 成立.同方程類似,我們就說1,2,0,-2.5,-4是不等式的解,而3.5,4,4.5,3這些使不等式 不成立的數(shù)就不是不等式 的解.

  對于不等式 ,除了上述解外,還有沒有解?解的個數(shù)是多少?將它們在數(shù)軸上表示出來,觀察它們的分布有什么規(guī)律?

  學(xué)生活動:思考討論,嘗試得出答案,指名板演如下:

  【教法說明】啟發(fā)學(xué)生用試驗方法,結(jié)合數(shù)軸直觀研究,把已說出的不等式 的解2,0,1,-2.5,-4用“實心圓點”表示,把不是 的解的數(shù)值3.5,4,4.5,3用“空心圓圈”表示,好像是“挖去了”.

  師生歸納:觀察數(shù)軸可知,用“實心圓點”表示的數(shù)都落在3的左側(cè),3和3右側(cè)的數(shù)都用空心圓圈表示,從而我們推斷,小于3的每一個數(shù)都是不等式 的解,而大于或等于3的任何一個數(shù)都不是 的解.可以看出,不等式 有無限多個解,這無限多個解既包括小于3的正整數(shù)、正小數(shù)、又包括0、負(fù)整數(shù)、負(fù)小數(shù);把不等式 的無限多個解集中起來,就得到 的解的集會,簡稱不等式 的解集.

  2.探索新知,講授新課

 。1)不等式的解集

  一般地,一個含有未知數(shù)的不等式的所有的解,組成這個不等式的解的集合,簡稱這個不等式的解集.

 、僖苑匠 為例,說出一元一次方程的解的情況.

 、诓坏仁 的解的個數(shù)是多少?能一一說出嗎?

 。2)解不等式

  求不等式的解集的過程,叫做解不等式.

  解方程 求出的是方程的解,而解不等式 求出的則是不等式的解集,為什么?

  學(xué)生活動:觀察思考,指名回答.

  教師 歸納:正是因為一元一次方程只有惟一解,所以可以直接求出.例如 的解就是 ,而不等式 的解有無限多個,無法一一列舉出來,因而只能用不等式 或 揭示這些解的共同屬性,也就是求出不等式的.解集.實際上,求某個不等式的解集就是運用不等式的基本性質(zhì),把原不等式變形為 或 的形式, 或 就是原不式的解集,例如 的解集是 ,同理, 的解集是 .

  【教法說明】學(xué)生對一元一次方程的解印象較深,而不等式與方程的相同點較多,因而易將“不等式的解集”與“方程的解”混為一談,這里設(shè)置上述問題,目的是使學(xué)生弄清“不等式的解集”與“方程的解”的關(guān)系.

 。3)在數(shù)軸上表示不等式的解集

  ①表示不等式 的解集:( )

  分析:因為未知數(shù)的取值小于3,而數(shù)軸上小于3的數(shù)都在3的左邊,所以就用數(shù)軸上表示3的點的左邊部分來表示解集 .注意未知數(shù) 的取值不能為3,所以在數(shù)軸上表示3的點的位置上畫空心圓圈,表示不包括3這一點,表示如下:

  ②表示 的解集:( )

  學(xué)生活動:獨立思考,指名板演并說出分析過程.

  分析:因為未知數(shù)的取值可以為-2或大于-2的數(shù),而數(shù)軸上大于-2的數(shù)都在-2右邊,所以就用數(shù)鋼上表示-2的點和它的右邊部分來表示.如下圖所示:

  注意問題:在數(shù)軸上表示-2的點的位置上,應(yīng)畫實心圓心,表示包括這一點.

  【教法說明】利用數(shù)軸表示不等式解的解集,增強了解集的直觀性,使學(xué)生形象地看到不等式的解有無限多個,這是數(shù)形結(jié)合的具體體現(xiàn). 教學(xué) 時,要特別講清“實心圓點”與“空心圓圈”的不同用法,還要反復(fù)提醒學(xué)生弄清到底是“左邊部分”還是“右邊部分”,這也是學(xué)好本節(jié)內(nèi)容的關(guān)鍵.

  3.嘗試反饋,鞏固知識

 。1)不等式的解集 與 有什么不同?在數(shù)軸上表示它們時怎樣區(qū)別?分別在數(shù)軸上把這兩個解集表示出來.

 。2)在數(shù)軸上表示下列不等式的解集.

 、  ② 、 、

 。3)指出不等式 的解集,并在數(shù)軸上表示出來.

  師生活動:首先學(xué)生在練習(xí)本上完成,然后 教師 抽查,最后與出示投影的正確答案進行對比.

  【教法說明】 教學(xué) 時,應(yīng)強調(diào)2.(4)題的正確表示為:

  我們已經(jīng)能夠在數(shù)軸上準(zhǔn)確地表示出不等式的解集,反之若給出數(shù)軸上的某部分?jǐn)?shù)集,還要會寫出與之對應(yīng)的不等式的解集來.

  4.變式訓(xùn)練,培養(yǎng)能力

 。1)用不等式表示圖中所示的解集.

  【教法說明】強調(diào)“· ”“ °”在使用、表示上的區(qū)別.

 。2)單項選擇:

 、俨坏仁 的解集是(。

  A.   B.   C.   D.

 、诓坏仁 的正整數(shù)解為(。

  A.1,2  B.1,2,3  C.1  D.2

  ③用不等式表示圖中的解集,正確的是(。

  A.   B.   C.   D.

 、苡脭(shù)軸表示不等式的解集 正確的是( )

  學(xué)生活動:分析思考,說出答案.( 教師 給予糾正或肯定)

  【教法說明】此題以搶答形式茁現(xiàn),更能激發(fā)學(xué)生探索知識的熱情.

  (四)總結(jié)、擴展

  學(xué)生小結(jié), 教師 完善:

  1.? 本節(jié)重點:

  (1)了解不等式的解集的概念.

 。2)會在數(shù)軸上表示不等式的解集.

  2.注意事項:

  弄清“ · ”還是“ °”,是“左邊部分”還是“右邊部分”.

  七、布置作業(yè)

初中數(shù)學(xué)教案9

  一、教材分析

  本節(jié)課是人民教育出版社義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書(六三學(xué)制)七年級下冊第七章第三節(jié)多邊形內(nèi)角和。

  二、教學(xué)目標(biāo)

  1、知識目標(biāo):了解多邊形內(nèi)角和公式。

  2、數(shù)學(xué)思考:通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運用,同時讓學(xué)生體會從特殊到一般的認(rèn)識問題的方法。

  3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。

  4、情感態(tài)度目標(biāo):通過猜想、推理活動感受數(shù)學(xué)活動充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)熱情。

  三、教學(xué)重、難點

  重點:探索多邊形內(nèi)角和。

  難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。

  四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法

  五、教具、學(xué)具

  教具:多媒體課件

  學(xué)具:三角板、量角器

  六、教學(xué)媒體:大屏幕、實物投影

  七、教學(xué)過程:

  (一)創(chuàng)設(shè)情境,設(shè)疑激思

  師:大家都知道三角形的內(nèi)角和是180,那么四邊形的內(nèi)角和,你知道嗎?

  活動一:探究四邊形內(nèi)角和。

  在獨立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問題的方法。

  方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360。

  方法二:把兩個三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360。

  接下來,教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個四邊形轉(zhuǎn)化成兩個三角形。

  師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?

  活動二:探究五邊形、六邊形、十邊形的內(nèi)角和。

  學(xué)生先獨立思考每個問題再分組討論。

  關(guān)注:

 。1)學(xué)生能否類比四邊形的方式解決問題得出正確的結(jié)論。

 。2)學(xué)生能否采用不同的方法。

  學(xué)生分組討論后進行交流(五邊形的內(nèi)角和)

  方法1:把五邊形分成三個三角形,3個180的和是540。

  方法2:從五邊形內(nèi)部一點出發(fā),把五邊形分成五個三角形,然后用5個180的和減去一個周角360。結(jié)果得540。

  方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180的和減去一個平角180,結(jié)果得540。

  方法4:把五邊形分成一個三角形和一個四邊形,然后用180加上360,結(jié)果得540。

  師:你真聰明!做到了學(xué)以致用。

  交流后,學(xué)生運用幾何畫板演示并驗證得到的方法。

  得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720,十邊形內(nèi)角和是1440。

  (二)引申思考,培養(yǎng)創(chuàng)新

  師:通過前面的討論,你能知道多邊形內(nèi)角和嗎?

  活動三:探究任意多邊形的內(nèi)角和公式。

  思考:

 。1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?

 。2)多邊形的邊數(shù)與內(nèi)角和的關(guān)系?

  (3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關(guān)系?

  學(xué)生結(jié)合思考題進行討論,并把討論后的結(jié)果進行交流。

  發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180的和,五邊形內(nèi)角和是3個180的和,六邊形內(nèi)角和是4個180的和,十邊形內(nèi)角和是8個180的和。發(fā)現(xiàn)2:多邊形的邊數(shù)增加1,內(nèi)角和增加180。

  發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關(guān)系。

  得出結(jié)論:多邊形內(nèi)角和公式:(n-2)·180。

  (三)實際應(yīng)用,優(yōu)勢互補

  1、口答:(1)七邊形內(nèi)角和()

  (2)九邊形內(nèi)角和()

 。3)十邊形內(nèi)角和()

  2、搶答:(1)一個多邊形的內(nèi)角和等于1260,它是幾邊形?

  (2)一個多邊形的內(nèi)角和是1440,且每個內(nèi)角都相等,則每個內(nèi)角的.度數(shù)是()。

  3、討論回答:一個多邊形的內(nèi)角和比四邊形的內(nèi)角和多540,并且這個多邊形的各個內(nèi)角都相等,這個多邊形每個內(nèi)角等于多少度?

  (四)概括存儲

  學(xué)生自己歸納總結(jié):

  1、多邊形內(nèi)角和公式

  2、運用轉(zhuǎn)化思想解決數(shù)學(xué)問題

  3、用數(shù)形結(jié)合的思想解決問題

  (五)作業(yè):練習(xí)冊第93頁1、2、3

  八、教學(xué)反思:

  1、教的轉(zhuǎn)變

  本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者,在引導(dǎo)學(xué)生畫圖、測量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學(xué)生自覺探究數(shù)學(xué)問題,體驗發(fā)現(xiàn)的樂趣。

  2、學(xué)的轉(zhuǎn)變

  學(xué)生的角色從學(xué)會轉(zhuǎn)變?yōu)闀䦟W(xué)。本節(jié)課學(xué)生不是停留在學(xué)會課本知識層面,而是站在研究者的角度深入其境。

  3、課堂氛圍的轉(zhuǎn)變

  整節(jié)課以“流暢、開放、合作、隱導(dǎo)”為基本特征,教師對學(xué)生的思維減少干預(yù),教學(xué)過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學(xué)生與學(xué)生,學(xué)生與教師之間以“對話”、“討論”為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學(xué)生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。

初中數(shù)學(xué)教案10

  一、課題

  略。

  二、教學(xué)目標(biāo)

  1.結(jié)合具體例子,體會數(shù)學(xué)與我們的成長密切相關(guān)。

  2.通過對小學(xué)數(shù)學(xué)知識的歸納,感受到數(shù)學(xué)學(xué)習(xí)促進了我們的成長。

  3.嘗試從不同角度,運用多種方式(觀察、獨立思考、自主探索、合作交流)有效解決問題。

  4.通過對數(shù)學(xué)問題的自主探索,進一步體會數(shù)學(xué)學(xué)習(xí)促進了我們成長,發(fā)展了我們的思維。

  三、教學(xué)重點和難點

  重點

  難點

  1.結(jié)合具體例子,體會數(shù)學(xué)與我們的成長密切相關(guān)。

  2.通過對小學(xué)數(shù)學(xué)知識的歸納,感受到數(shù)學(xué)學(xué)習(xí)促進了我們的成長。

  結(jié)合具體例子,體會數(shù)學(xué)與我們的成長密切相關(guān)。

  四、教學(xué)手段

  現(xiàn)代課堂教學(xué)手段

  教學(xué)準(zhǔn)備

  教師準(zhǔn)備

  錄音機、投影儀、剪刀、長方形紙片。

  學(xué)生準(zhǔn)備

  預(yù)習(xí)、剪刀、長方形紙片

  五、教學(xué)方法

  啟發(fā)式教學(xué)

  六、教學(xué)過程設(shè)計

  一、導(dǎo)入

  教師活動

  學(xué)生活動

  展示圖片并播放錄音。

  宇宙之大(海王星、流星雨),粒子之微(鈹原子、氯化鈉晶體結(jié)構(gòu)),火箭之速(火箭),化工之巧(陶瓷),地球之變(隕石坑),生物之謎(青蛙),日用之繁(杯子、表),大千世界,天上人間,無處不有數(shù)學(xué)的貢獻,讓我們共同走進數(shù)學(xué)世界,去領(lǐng)略一下數(shù)學(xué)的風(fēng)采,體會數(shù)學(xué)的魅力。

  觀察圖片,聽錄音。

  二、板書課題。

  三、導(dǎo)學(xué)

  教師活動

  學(xué)生活動

  1.現(xiàn)在讓我們進入時空的隧道,回憶我們的成長歷程:

  出生——學(xué)前——小學(xué)(板書),我們每一天都在接觸數(shù)學(xué)并不斷學(xué)習(xí)它,相信嗎?不妨大家從不同階段來舉出一些我們身邊或親身經(jīng)歷的例子,試一試。(積極鼓勵)

 。◣、生共同討論交流,從具體事例中分析并找出數(shù)學(xué)信息。)

  2.進入小學(xué),我們正式開始學(xué)習(xí)數(shù)學(xué),回憶一下,在小學(xué)階段我們學(xué)習(xí)的主要數(shù)學(xué)知識有哪些?

  3.指定若干名學(xué)生口答,師生共同系統(tǒng)歸納:

  數(shù)與式:認(rèn)識、計算、方程、解應(yīng)用題;

  圖形:圖形的認(rèn)識、圖形的畫法、圖形的計算;

  統(tǒng)計知識。

  4.?dāng)?shù)學(xué)知識的學(xué)習(xí),不僅開闊了我們的視野,而且改變了我們的思維方式,使我們變得更加聰明了。發(fā)揮一下我們的聰明才智,嘗試解決下面的2個問題:

  (1)投影或小黑板展示下列問題:

 、儆嬎悴⒂^察下列三組算式:

 、谝阎25×25=625,則24×26=(不要計算)

  ③你能舉出一個類似的例子嗎?

 、芨话愕,若a×a=m,則(a+1)(a-1)= 。

 。ɡ蠋燑c評、表揚)

 。2)投影或小黑板展示教材第13頁第4題。

  通過剛才的解題,可以看出同學(xué)們都非常聰明,其實不僅我們每個人離不開數(shù)學(xué),而且整個人類、整個社會也離不開數(shù)學(xué),同學(xué)們課后可以閱讀一下第1節(jié)第2點《人類離不開數(shù)學(xué)》,體會數(shù)學(xué)對促進人類社會發(fā)展的重大作用。

  布置作業(yè):

 。1)談一談你對數(shù)學(xué)的興趣、學(xué)習(xí)數(shù)學(xué)的方法以及學(xué)習(xí)中存在的困難等;

 。2)習(xí)題1.1第2、4題。

  1.回憶、交流、積極大膽發(fā)言。

  2.回憶、交流。

  3.觀察、計算、思考、探索。

  4.學(xué)生取出剪刀和長方形紙片,小組合作,動手嘗試解決。

  學(xué)生1

  學(xué)生2

  學(xué)生拼圖(略)

  七、練習(xí)設(shè)計

  課堂基礎(chǔ)練習(xí)

  1、下列圖形中,陰影部分的.面積相等的是.

  答案:A與B;C與D

  2、三個連續(xù)奇數(shù)的和是21,它們的積為

  答案:315

  3、計算:7+27+377+4777

  答案:5188

  課后延伸練習(xí)

  1、猜謎語(各打數(shù)學(xué)中常用字)

  千人分在北上下;②1人立在口上邊

  答案:①乘;②倍

  2、在與伙伴玩“24點”游戲中,使數(shù)1,5,5,5通過運算得24?

  答案:[5-(1÷5)]×5

  3、只允許添兩個“一”、一個“十”和一個括號,不改變數(shù)字順序,把1,2,3,4,5,6,7,8,9這九個數(shù)字連成結(jié)果為100的算式:

  1 2 3 4 5 6 7 8 9 =100

  答案:123-(45+67-89)=100

  4、把長方形剪去一個角,它可能是幾邊形?

  答案:三邊形,四邊形,五邊形.

  5、有一個正方形池塘如圖1-1-2,在它的四個角上有四棵大樹,現(xiàn)在為了擴大池塘,要把池塘面積擴大一倍,但是,這四棵樹不便搬動,也不能使它淹在水里,而且擴大后的池塘還是正方形,這該怎么辦呢?

  答案:

  能力提高訓(xùn)練

  18

  19

  

  答案:7個,邊長從大到

  小依次為11、8、

  7、5、3

  1、一個長方形,長19cm,寬18cm,如果把這個長方形分割成若干個邊長為整數(shù)的小正方形,那么這些小正方形最少有多少個?如何分割?

  2、在操場上,小華遇到小馮,交談中順便問道:“你們班有多少學(xué)生?”小馮說:“如果我們班上的學(xué)生像孫悟空那樣一個能變兩個,然后再來這么多學(xué)生的,再加上班上學(xué)生的,最后連你也算過去,就該有100個了.”那么小馮班上有多少學(xué)生?

  答案:36

  八、板書設(shè)計

  (一)知識回顧(四)例題解析(六)課堂小結(jié)

 。ǘ┯^察發(fā)現(xiàn)例1、例2

 。ㄈ┙夥匠蹋ㄎ澹┱n堂練習(xí)練習(xí)設(shè)計

  九、教學(xué)后記

初中數(shù)學(xué)教案11

  知識技能目標(biāo)

  1、理解反比例函數(shù)的圖象是雙曲線,利用描點法畫出反比例函數(shù)的圖象,說出它的性質(zhì);

  2、利用反比例函數(shù)的圖象解決有關(guān)問題。

  過程性目標(biāo)

  1、經(jīng)歷對反比例函數(shù)圖象的觀察、分析、討論、概括過程,會說出它的性質(zhì);

  2、探索反比例函數(shù)的圖象的性質(zhì),體會用數(shù)形結(jié)合思想解數(shù)學(xué)問題。

  教學(xué)過程

  一、創(chuàng)設(shè)情境

  上節(jié)的練習(xí)中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質(zhì)。

  二、探究歸納

  1、畫出函數(shù)的圖象。

  分析畫出函數(shù)圖象一般分為列表、描點、連線三個步驟,在反比例函數(shù)中自變量x≠0。

  解

  1、列表:這個函數(shù)中自變量x的取值范圍是不等于零的一切實數(shù),列出x與y的對應(yīng)值:

  2、描點:用表里各組對應(yīng)值作為點的坐標(biāo),在直角坐標(biāo)系中描出在京各點點(—6,—1)、(—3,—2)、(—2,—3)等。

  3、連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支。這兩個分支合起來,就是反比例函數(shù)的圖象。

  上述圖象,通常稱為雙曲線(hyperbola)。

  提問這兩條曲線會與x軸、y軸相交嗎?為什么?

  學(xué)生試一試:畫出反比例函數(shù)的圖象(學(xué)生動手畫反比函數(shù)圖象,進一步掌握畫函數(shù)圖象的步驟)。

  學(xué)生討論、交流以下問題,并將討論、交流的結(jié)果回答問題。

  1、這個函數(shù)的圖象在哪兩個象限?和函數(shù)的圖象有什么不同?

  2、反比例函數(shù)(k≠0)的圖象在哪兩個象限內(nèi)?由什么確定?

  3、聯(lián)系一次函數(shù)的性質(zhì),你能否總結(jié)出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?

  反比例函數(shù)有下列性質(zhì):

 。1)當(dāng)k>0時,函數(shù)的圖象在第一、三象限,在每個象限內(nèi),曲線從左向右下降,也就是在每個象限內(nèi)y隨x的增加而減少;

 。2)當(dāng)k<0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加。

  注

  1、雙曲線的兩個分支與x軸和y軸沒有交點;

  2、雙曲線的兩個分支關(guān)于原點成中心對稱。

  以上兩點性質(zhì)在上堂課的問題1和問題2中反映了怎樣的實際意義?

  在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時間少。

  在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小。

  三、實踐應(yīng)用

  例1若反比例函數(shù)的圖象在第二、四象限,求m的值。

  分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個條件可解出m的值。

  解由題意,得解得。

  例2已知反比例函數(shù)(k≠0),當(dāng)x>0時,y隨x的增大而增大,求一次函數(shù)y=kx—k的圖象經(jīng)過的象限。

  分析由于反比例函數(shù)(k≠0),當(dāng)x>0時,y隨x的增大而增大,因此k<0,而一次函數(shù)y=kx—k中,k<0,可知,圖象過二、四象限,又—k>0,所以直線與y軸的交點在x軸的上方。

  解因為反比例函數(shù)(k≠0),當(dāng)x>0時,y隨x的增大而增大,所以k<0,所以一次函數(shù)y=kx—k的圖象經(jīng)過一、二、四象限。

  例3已知反比例函數(shù)的圖象過點(1,—2)。

 。1)求這個函數(shù)的解析式,并畫出圖象;

 。2)若點A(—5,m)在圖象上,則點A關(guān)于兩坐標(biāo)軸和原點的對稱點是否還在圖象上?

  分析(1)反比例函數(shù)的圖象過點(1,—2),即當(dāng)x=1時,y=—2。由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過列表、描點、連線可畫出反比例函數(shù)的圖象;

 。2)由點A在反比例函數(shù)的圖象上,易求出m的值,再驗證點A關(guān)于兩坐標(biāo)軸和原點的對稱點是否在圖象上。

  解(1)設(shè):反比例函數(shù)的解析式為:(k≠0)。

  而反比例函數(shù)的圖象過點(1,—2),即當(dāng)x=1時,y=—2。

  所以,k=—2。

  即反比例函數(shù)的解析式為:。

 。2)點A(—5,m)在反比例函數(shù)圖象上,所以,

  點A的坐標(biāo)為。

  點A關(guān)于x軸的對稱點不在這個圖象上;

  點A關(guān)于y軸的對稱點不在這個圖象上;

  點A關(guān)于原點的對稱點在這個圖象上;

  例4已知函數(shù)為反比例函數(shù)。

 。1)求m的值;

 。2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?

 。3)當(dāng)—3≤x≤時,求此函數(shù)的最大值和最小值。

  解(1)由反比例函數(shù)的定義可知:解得,m=—2。

 。2)因為—2<0,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大。

 。3)因為在第個象限內(nèi),y隨x的增大而增大,

  所以當(dāng)x=時,y最大值=;

  當(dāng)x=—3時,y最小值=。

  所以當(dāng)—3≤x≤時,此函數(shù)的最大值為8,最小值為。

  例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。

 。1)寫出用高表示長的`函數(shù)關(guān)系式;

 。2)寫出自變量x的取值范圍;

  (3)畫出函數(shù)的圖象。

  解(1)因為100=5xy,所以。

  (2)x>0。

 。3)圖象如下:

  說明由于自變量x>0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個分支。

  四、交流反思

  本節(jié)課學(xué)習(xí)了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì)。

  1、反比例函數(shù)的圖象是雙曲線(hyperbola)。

  2、反比例函數(shù)有如下性質(zhì):

 。1)當(dāng)k>0時,函數(shù)的圖象在第一、三象限,在每個象限內(nèi),曲線從左向右下降,也就是在每個象限內(nèi)y隨x的增加而減少;

 。2)當(dāng)k<0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加。

  五、檢測反饋

  1、在同一直角坐標(biāo)系中畫出下列函數(shù)的圖象:

 。1);(2)。

  2、已知y是x的反比例函數(shù),且當(dāng)x=3時,y=8,求:

  (1)y和x的函數(shù)關(guān)系式;

 。2)當(dāng)時,y的值;

 。3)當(dāng)x取何值時,?

  3、若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值。

  4、已知反比例函數(shù)經(jīng)過點A(2,—m)和B(n,2n),求:

 。1)m和n的值;

 。2)若圖象上有兩點P1(x1,y1)和P2(x2,y2),且x1<0

初中數(shù)學(xué)教案12

  教學(xué)目標(biāo)

  1.使學(xué)生正確理解數(shù)軸的意義,掌握數(shù)軸的三要素;

  2.使學(xué)生學(xué)會由數(shù)軸上的已知點說出它所表示的數(shù),能將有理數(shù)用數(shù)軸上的點表示出來;

  3.使學(xué)生初步理解數(shù)形結(jié)合的思想方法.

  教學(xué)重點和難點

  重點:初步理解數(shù)形結(jié)合的思想方法,正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù).

  難點:正確理解有理數(shù)與數(shù)軸上點的對應(yīng)關(guān)系.

  課堂教學(xué)過程

  設(shè)計

  一、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問題

  1.小學(xué)里曾用“射線”上的點來表示數(shù),你能在射線上表示出1和2嗎?

  2.用“射線”能不能表示有理數(shù)?為什么?

  3.你認(rèn)為把“射線”做怎樣的改動,才能用來表示有理數(shù)呢?

  待學(xué)生回答后,教師指出,這就是我們本節(jié)課所要學(xué)習(xí)的內(nèi)容——數(shù)軸.

  二、講授新課

  讓學(xué)生觀察掛圖——放大的溫度計,同時教師給予語言指導(dǎo):利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標(biāo)有讀數(shù),根據(jù)溫度計的液面的不同位置就可以讀出不同的數(shù),從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.

  與溫度計類似,我們也可以在一條直線上畫出刻度,標(biāo)上讀數(shù),用直線上的點表示正數(shù)、負(fù)數(shù)和零.具體方法如下(邊說邊畫):

  1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點表示0(相當(dāng)于溫度計上的0℃);

  2.規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負(fù)方向(相當(dāng)于溫度計上0℃以上為正,0℃以下為負(fù));

  3.選取適當(dāng)?shù)拈L度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…

  提問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))

  在此基礎(chǔ)上,給出數(shù)軸的定義,即規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸.

  進而提問學(xué)生:在數(shù)軸上,已知一點P表示數(shù)-5,如果數(shù)軸上的原點不選在原來位置,而改選在另一位置,那么P對應(yīng)的數(shù)是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?

  通過上述提問,向?qū)W生指出:數(shù)軸的三要素——原點、正方向和單位長度,缺一不可.

  三、運用舉例,變式練習(xí)

  例1畫一個數(shù)軸,并在數(shù)軸上畫出表示下列各數(shù)的點:

  例2指出數(shù)軸上A,B,C,D,E各點分別表示什么數(shù).

  課堂練習(xí)

  示出來.

  2.說出下面數(shù)軸上A,B,C,D,O,M各點表示什么數(shù)?

  最后引導(dǎo)學(xué)生得出結(jié)論:正有理數(shù)可用原點右邊的點表示,負(fù)有理數(shù)可用原點左邊的點表示,零用原點表示.

  四、小結(jié)

  指導(dǎo)學(xué)生閱讀教材后指出:數(shù)軸是非常重要的數(shù)學(xué)工具,它使數(shù)和直線上的點建立了對應(yīng)關(guān)系,它揭示了數(shù)和形之間的內(nèi)在聯(lián)系,為我們研究問題提供了新的方法.

  本節(jié)課要求同學(xué)們能掌握數(shù)軸的三要素,正確地畫出數(shù)軸,在此還要提醒同學(xué)們,所有的有理數(shù)都可用數(shù)軸上的點來表示,但是反過來不成立,即數(shù)軸上的點并不是都表示有理數(shù),至于數(shù)軸上的哪些點不能表示有理數(shù),這個問題以后再研究.

  五、作業(yè)

  1.在下面數(shù)軸上:

  (1)分別指出表示-2,3,-4,0,1各數(shù)的點.

  (2)A,H,D,E,O各點分別表示什么數(shù)?

  2.在下面數(shù)軸上,A,B,C,D各點分別表示什么數(shù)?

  3.下列各小題先分別畫出數(shù)軸,然后在數(shù)軸上畫出表示大括號內(nèi)的一組數(shù)的`點:

  (1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

  課堂教學(xué)設(shè)計說明

  從學(xué)生已有知識、經(jīng)驗出發(fā)研究新問題,是我們組織教學(xué)的一個重要原則.小學(xué)里曾學(xué)過利用射線上的點來表示數(shù),為此我們可引導(dǎo)學(xué)生思考:把射線怎樣做些改進就可以用來表示有理數(shù)?伴以溫度計為模型,引出數(shù)軸的概念.教學(xué)中,數(shù)軸的三要素中的每一要素都要認(rèn)真分析它的作用,使學(xué)生從直觀認(rèn)識上升到理性認(rèn)識.直線、數(shù)軸都是非常抽象的數(shù)學(xué)概念,當(dāng)然對初學(xué)者不宜講的過多,但適當(dāng)引導(dǎo)學(xué)生進行抽象的思維活動還是可行的例如,向?qū)W生提問:在數(shù)軸上對應(yīng)一億萬分之一的點,你能畫出來嗎?它是不是存在等.

初中數(shù)學(xué)教案13

  一、內(nèi)容特點

  在知識與方法上類似于數(shù)系的第一次擴張。也是后繼內(nèi)容學(xué)習(xí)的基礎(chǔ)。

  內(nèi)容定位:了解無理數(shù)、實數(shù)概念,了解(算術(shù))平方根的概念;會用根號表示數(shù)的(算術(shù))平方根,會求平方根、立方根,用有理數(shù)估計一個無理數(shù)的大致范圍,實數(shù)簡單的四則運算(不要求分母有理化)。

  二、設(shè)計思路

  整體設(shè)計思路:

  無理數(shù)的引入----無理數(shù)的表示----實數(shù)及其相關(guān)概念(包括實數(shù)運算),實數(shù)的應(yīng)用貫穿于內(nèi)容的始終。

  學(xué)習(xí)對象----實數(shù)概念及其運算;學(xué)習(xí)過程----通過拼圖活動引進無理數(shù),通過具體問題的.解決說明如何表示無理數(shù),進而建立實數(shù)概念;以類比,歸納探索的方式,尋求實數(shù)的運算法則;學(xué)習(xí)方式----操作、猜測、抽象、驗證、類比、推理等。

  具體過程:

  首先通過拼圖活動和計算器探索活動,給出無理數(shù)的概念,然后通過具體問題的解決,引入平方根和立方根的概念和開方運算。最后教科書總結(jié)實數(shù)的概念及其分類,并用類比的方法引入實數(shù)的相關(guān)概念、運算律和運算性質(zhì)等。

  第一節(jié):數(shù)怎么又不夠用了:通過拼圖活動,讓學(xué)生感受無理數(shù)產(chǎn)生的實際背景和引入的必要性;借助計算器探索無理數(shù)是無限不循環(huán)小數(shù),并從中體會無限逼近的思想;會判斷一個數(shù)是有理數(shù)還是無理數(shù)。

  第二、三節(jié):平方根、立方根:如何表示正方形的邊長?它的值到底是多少?并引入算術(shù)平方根、平方根、立方根等概念和開方運算。

  第四節(jié):公園有多寬:在實際生活和生產(chǎn)實際中,對于無理數(shù)我們常常通過估算來求它的近似值,為此這一節(jié)內(nèi)容介紹估算的方法,包括通過估算比較大小,檢驗計算結(jié)果的合理性等,其目的是發(fā)展學(xué)生的數(shù)感。

  第五節(jié):用計算器開方:會用計算器求平方根和立方根。經(jīng)歷運用計算器探求數(shù)學(xué)規(guī)律的活動,發(fā)展合情推理的能力。

  第六節(jié):實數(shù)?偨Y(jié)實數(shù)的概念及其分類,并用類比的方法引入實數(shù)的相關(guān)概念、運算律和運算性質(zhì)等。

  三、一些建議

  1.注重概念的形成過程,讓學(xué)生在概念的形成的過程中,逐步理解所學(xué)的概念;關(guān)注學(xué)生對無理數(shù)和實數(shù)概念的意義理解。

  2.鼓勵學(xué)生進行探索和交流,重視學(xué)生的分析、概括、交流等能力的考察。

  3.注意運用類比的方法,使學(xué)生清楚新舊知識的區(qū)別和聯(lián)系。

  4.淡化二次根式的概念。

初中數(shù)學(xué)教案14

  教學(xué)目標(biāo)

  1.經(jīng)歷不同的拼圖方法驗證公式的過程,在此過程中加深對因式分解、整式運算、面積等的認(rèn)識。

  2.通過驗證過程中數(shù)與形的結(jié)合,體會數(shù)形結(jié)合的思想以及數(shù)學(xué)知識之間內(nèi)在聯(lián)系,每一部分知識并不是孤立的。

  3.通過豐富有趣的拼圖活動,經(jīng)歷觀察、比較、拼圖、計算、推理交流等過程,發(fā)展空間觀念和有條理地思考和表達的能力,獲得一些研究問題與合作交流方法與經(jīng)驗。

  4.通過獲得成功的體驗和克服困難的經(jīng)歷,增進數(shù)學(xué)學(xué)習(xí)的信心。通過豐富有趣拼的圖活動增強對數(shù)學(xué)學(xué)習(xí)的`興趣。

  重點1.通過綜合運用已有知識解決問題的過程,加深對因式分解、整式運算、面積等的認(rèn)識。

  2.通過拼圖驗證公式的過程,使學(xué)習(xí)獲得一些研究問題與合作交流的方法與經(jīng)驗。

  難點利用數(shù)形結(jié)合的方法驗證公式

  教學(xué)方法動手操作,合作探究課型新授課教具投影儀

  教師活動學(xué)生活動

  情景設(shè)置:

  你已知道的關(guān)于驗證公式的拼圖方法有哪些?(教師在此給予學(xué)生獨立思考和討論的時間,讓學(xué)生回想前面拼圖。)

  新課講解:

  把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常?梢缘玫揭恍┯杏玫氖阶。美國第二十任總統(tǒng)伽菲爾德就由這個圖(由兩個邊長分別為a、b、c的直角三角形和一個兩條直角邊都是c的直角三角形拼成一個新的圖形)得出:c2=a2+b2他的證法在數(shù)學(xué)史上被傳為佳話。他是這樣分析的,如圖所示:

  教師接著在介紹教材第94頁例題的拼法及相關(guān)公式

  提問:還能通過怎樣拼圖來解決以下問題

  (1)任意選取若干塊這樣的硬紙片,嘗試拼成一個長方形,計算它的面積,并寫出相應(yīng)的等式;

 。2)任意寫出一個關(guān)于a、b的二次三項式,如a2+4ab+3b2

  試用拼一個長方形的方法,把這個二次三項式因式分解。

  這個問題要給予學(xué)生充足的時間和空間進行討論和拼圖,教師在這要引導(dǎo)適度,不要限制學(xué)生思維,同時鼓勵學(xué)生在拼圖過程中進行交流合作

  了解學(xué)生拼圖的情況及利用自己的拼圖驗證的情況。教師在巡視過程中,及時指導(dǎo),并讓學(xué)生展示自己的拼圖及讓學(xué)生講解驗證公式的方法,并根據(jù)不同學(xué)生的不同狀況給予適當(dāng)?shù)囊龑?dǎo),引導(dǎo)學(xué)生整理結(jié)論。

  小結(jié):

  從這節(jié)課中你有哪些收獲?

  (教師應(yīng)給予學(xué)生充分的時間鼓勵學(xué)生暢所欲言,只要是學(xué)生的感受和想法,教師要多鼓勵、多肯定。最后,教師要對學(xué)生所說的進行全面的總結(jié)。)

  學(xué)生回答

  a(b+c+d)=ab+ac+ad

 。╝+b)(c+d)=ac+ad+bc+bd

  (a+b)2=a2+2ab+b2

  學(xué)生拿出準(zhǔn)備好的硬紙板制作

  給學(xué)生充分的時間進行拼圖、思考、交流經(jīng)驗,對于有困難的學(xué)生教師要給予適當(dāng)引導(dǎo)。

  作業(yè)第95頁第3題

  板書設(shè)計

  復(fù)習(xí)例1板演

  ………………

  ………………

  ……例2……

  ………………

  ………………

  教學(xué)后記

初中數(shù)學(xué)教案15

  [教學(xué)目標(biāo)]

  1、體會并了解反比例函數(shù)的圖象的意義

  2、能列表、描點、連線法畫出反比例函數(shù)的圖象

  3、通過反比例函數(shù)的圖象的分析,探索并掌握反比例函數(shù)的圖象的性質(zhì)

  [教學(xué)重點和難點]

  本節(jié)教學(xué)的重點是反比例函數(shù)的'圖象及圖象的性質(zhì)

  由于反比例函數(shù)的圖象分兩支,給畫圖帶來了復(fù)雜性是本節(jié)教學(xué)的難點

  [教學(xué)過程]

  1、情境創(chuàng)設(shè)

  可以從復(fù)習(xí)一次函數(shù)的圖象開始:你還記得一次函數(shù)的圖象嗎?在回憶與交流中,進一步認(rèn)識函數(shù)圖象的直觀有助于理解函數(shù)的性質(zhì)。轉(zhuǎn)而導(dǎo)人關(guān)注新的函數(shù)——反比例函數(shù)的圖象研究:反比例函數(shù)的圖象又會是什么樣子呢?

  2、探索活動

  探索活動1反比例函數(shù)y?

  由于反比例函數(shù)y?

  要分幾個層次來探求:

  (1)可以先估計——例如:位置(圖象所在象限、圖象與坐標(biāo)軸的交點等)、趨勢(上升、下降等);

  (2)方法與步驟——利用描點作圖;

  列表:取自變量x的哪些值?——x是不為零的任何實數(shù),所以不能取x的值的為零,但仍可以以零為基準(zhǔn),左右均勻,對稱地取值。

  描點:依據(jù)什么(數(shù)據(jù)、方法)找點?

  連線:怎樣連線?——可在各個象限內(nèi)按照自變量從小到大的順序用兩條光滑的曲線把所描的點連接起來。

  探索活動2反比例函數(shù)y??2的圖象.x2的圖象是曲線型的,且分成兩支.對此,學(xué)生第一次接觸有一定的難度,因此需x2的圖象.x

  可以引導(dǎo)學(xué)生采用多種方式進行自主探索活動:

  2的圖象的方式與步驟進行自主探索其圖象;x

  222(2)可以通過探索函數(shù)y?與y??之間的關(guān)系,畫出y??的圖象.xxx

  22探索活動3反比例函數(shù)y??與y?的圖象有什么共同特征?xx(1)可以用畫反比例函數(shù)y?

  引導(dǎo)學(xué)生從通過與一次函數(shù)的圖象的對比感受反比例函數(shù)圖象“曲線”及“兩支”的特征.(即雙曲線)反比例函數(shù)y?

  k(k≠0)的圖象中兩支曲線都與x軸、y軸不相交;并且當(dāng)k?0時,圖象在第一、第x

【初中數(shù)學(xué)教案】相關(guān)文章:

初中數(shù)學(xué)教案06-03

初中數(shù)學(xué)教案【熱】04-02

初中數(shù)學(xué)教案15篇11-04

初中數(shù)學(xué)教案精選15篇12-29

初中數(shù)學(xué)教案14篇03-26

初中數(shù)學(xué)教案(精選15篇)02-23

初中數(shù)學(xué)教案(15篇)12-26

初中數(shù)學(xué)教案(通用15篇)12-30

初中數(shù)學(xué)教案(集錦15篇)02-06

初中數(shù)學(xué)教案合集15篇04-02