初中數(shù)學(xué)教案(集錦15篇)
在教學(xué)工作者開(kāi)展教學(xué)活動(dòng)前,可能需要進(jìn)行教案編寫(xiě)工作,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。我們?cè)撛趺慈?xiě)教案呢?下面是小編為大家整理的初中數(shù)學(xué)教案,歡迎閱讀與收藏。
初中數(shù)學(xué)教案1
一、教材的地位與作用
《二元一次方程》是九年義務(wù)教育人教版教材七年級(jí)下冊(cè)第四章《二元一次方程組》的第一節(jié)。在此之前學(xué)生已經(jīng)學(xué)習(xí)了一元一次方程,這為本節(jié)的學(xué)習(xí)起了鋪墊的作用。本節(jié)內(nèi)容是二元一次方程的起始部分,因此,在本章的教學(xué)中,起著承上啟下的地位。
二、教學(xué)目標(biāo)
(一)知識(shí)與技能:
1.了解二元一次方程概念;
2.了解二元一次方程的解的概念和解的不唯一性;
3.會(huì)將一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式。
(二)數(shù)學(xué)思考:
體會(huì)學(xué)習(xí)二元一次方程的必要性,學(xué)會(huì)獨(dú)立思考,體會(huì)數(shù)學(xué)的轉(zhuǎn)化思想和主元思想。
(三)問(wèn)題解決:
初步學(xué)會(huì)利用二元一次方程來(lái)解決實(shí)際問(wèn)題,感受二元一次方程解的不唯一性。獲得求二元一次方程解的思路方法。
(四)情感態(tài)度:
培養(yǎng)學(xué)生發(fā)現(xiàn)意識(shí)和能力,使其具有強(qiáng)烈的好奇心和求知欲。
三、教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):二元一次方程及其解的概念。
教學(xué)難點(diǎn):二元一次方程的概念里“含未知數(shù)的項(xiàng)的次數(shù)”的理解;把一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式。
四、教法與學(xué)法分析
教法:情境教學(xué)法、比較教學(xué)法、閱讀教學(xué)法。
學(xué)法:閱讀、比較、探究的學(xué)習(xí)方式。
五、教學(xué)過(guò)程
1.創(chuàng)設(shè)情境,引入新課
從學(xué)生熟悉的姚明受傷事件引入。
師:火箭隊(duì)最近取得了20連勝,姚明參加了前面的12場(chǎng)比賽,是球隊(duì)的頂梁柱。
。1)連勝的第12場(chǎng),火箭對(duì)公牛,在這場(chǎng)比賽中,姚明得了12分,其中罰球得了2分,你知道姚明投中了幾個(gè)兩分球?(本場(chǎng)比賽姚明沒(méi)投中三分球)師:能用方程解決嗎?列出來(lái)的方程是什么方程?
。2)連勝的第1場(chǎng),火箭對(duì)勇士,在這場(chǎng)比賽中,姚明得了36分,你知道姚明投中了幾個(gè)兩分球,罰進(jìn)了幾個(gè)球嗎?(罰進(jìn)1球得1分,本場(chǎng)比賽姚明沒(méi)投中三分球)師:這個(gè)問(wèn)題能用一元一次方程解決嗎?,你能列出方程嗎?
設(shè)姚明投進(jìn)了x個(gè)兩分球,罰進(jìn)了y個(gè)球,可列出方程。
。3)在雄鹿隊(duì)與火箭隊(duì)的比賽中易建聯(lián)全場(chǎng)總共得了19分,其中罰球得了3分。你知道他分別投進(jìn)幾個(gè)兩分球、幾個(gè)三分球嗎?
設(shè)易建聯(lián)投進(jìn)了x個(gè)兩分球,y個(gè)三分球,可列出方程。
師:對(duì)于所列出來(lái)的三個(gè)方程,后面兩個(gè)你覺(jué)的是一元一次方程嗎?那這兩個(gè)方程有什么相同點(diǎn)嗎?你能給它們命一個(gè)名稱嗎?
從而揭示課題。
。ㄔO(shè)計(jì)意圖:第一個(gè)問(wèn)題主要是讓學(xué)生體會(huì)一元一次方程是解決實(shí)際問(wèn)題的數(shù)學(xué)模型,從而回顧一元一次方程的概念;第二、三問(wèn)題設(shè)置的主要目的是讓學(xué)生體會(huì)到當(dāng)實(shí)際問(wèn)題不能用一元一次方程來(lái)解決的時(shí)候,我們可以試著列出二元一次方程,滲透方程模型的通用性。另外,數(shù)學(xué)來(lái)源于生活,又應(yīng)用于生活,通過(guò)創(chuàng)設(shè)輕松的問(wèn)題情境,點(diǎn)燃學(xué)習(xí)新知識(shí)的“導(dǎo)火索”,引起學(xué)生的學(xué)習(xí)興趣,以“我要學(xué)”的主人翁姿態(tài)投入學(xué)習(xí),而且“會(huì)學(xué)”“樂(lè)學(xué)”。)
2.探索交流,汲取新知
概念思辨,歸納二元一次方程的特征
師:那到底什么叫二元一次方程?(學(xué)生思考后回答)
師:翻開(kāi)書(shū)本,請(qǐng)同學(xué)們把這個(gè)概念劃起來(lái),想一想,你覺(jué)得和我們自己歸納出來(lái)的概念有什么區(qū)別嗎?(同學(xué)們思考后回答)
師:根據(jù)概念,你覺(jué)得二元一次方程應(yīng)具備哪幾個(gè)特征?
活動(dòng):你自己構(gòu)造一個(gè)二元一次方程。
快速判斷:下列式子中哪些是二元一次方程?
①x2+y=0②y=2x+
4③2x+1=2x ④ab+b=4
。ㄔO(shè)計(jì)意圖:這一環(huán)節(jié)是本課設(shè)計(jì)的重點(diǎn),為加深學(xué)生對(duì)“含有未知數(shù)的項(xiàng)的次數(shù)”的內(nèi)涵的理解,我采取的是閱讀書(shū)本中二元一次方程的概念,形成學(xué)生的認(rèn)知沖突,激發(fā)學(xué)生對(duì)“項(xiàng)的次數(shù)”的思考,進(jìn)而完善學(xué)生對(duì)二元一次方程概念的.理解,通過(guò)學(xué)生自己舉例子的活動(dòng)去把“項(xiàng)的次數(shù)”形象化。)
二元一次方程解的概念
師:前面列的兩個(gè)方程2x+y=36,2x+3y=16真的是二元一次方程嗎?通過(guò)方程2x+3y=16,你知道易建聯(lián)可能投中幾個(gè)兩分球,幾個(gè)三分球嗎?
師:你是怎么考慮的?(讓學(xué)生說(shuō)說(shuō)他是如何得到x和y的值的,怎么證明自己的這對(duì)未知數(shù)的取值是對(duì)的)利用一個(gè)學(xué)生合理的解釋,引導(dǎo)學(xué)生類比一元一次方程的解的概念,讓學(xué)生歸納出二元一次方程的解的概念及其記法。(學(xué)生看書(shū)本上的記法)
使二元一次方程兩邊的值相等的一對(duì)未知數(shù)的值,叫做二元一次方程的一個(gè)解。(設(shè)計(jì)意圖:通過(guò)引導(dǎo)學(xué)生自主取值,猜x和y的值,從而更深刻的體會(huì)二元一次方程解的本質(zhì):使方程左右兩邊相等的一對(duì)未知數(shù)的取值。引導(dǎo)學(xué)生看書(shū)本,目的是讓學(xué)生在記法上體會(huì)“一對(duì)未知數(shù)的取值”的真正含義。)
二元一次方程解的不唯一性
對(duì)于2x+3y=16,你覺(jué)得這個(gè)方程還有其它的解嗎?你能試著寫(xiě)幾個(gè)嗎?師:這些解你們是如何算出來(lái)的?
。ㄔO(shè)計(jì)意圖:設(shè)計(jì)此環(huán)節(jié),目的有三個(gè):首先,是讓學(xué)生學(xué)會(huì)如何檢驗(yàn)一對(duì)未知數(shù)的取值是二元一次方程的解;其次是讓學(xué)生體會(huì)到二元一次方程的解的不唯一性;最后讓學(xué)生感受如何得到一個(gè)正確的解:只要取定一個(gè)未知數(shù)的取值,就可以代入方程算出另一個(gè)未知數(shù)的值,這也就是求二元一次方程的解的方法。)如何去求二元一次方程的解
例:已知方程3x+2y=10,
。1)當(dāng)x=2時(shí),求所對(duì)應(yīng)的y的值;
。2)取一個(gè)你自己喜歡的數(shù)作為x的值,求所對(duì)應(yīng)的y的值;
。3)用含x的代數(shù)式表示y;
。4)用含y的代數(shù)式表示x;
(5)當(dāng)x=負(fù)2,0時(shí),所對(duì)應(yīng)的y的值是多少?
。6)寫(xiě)出方程3x+2y=10的三個(gè)解.
(設(shè)計(jì)意圖:此處設(shè)計(jì)主要是想讓學(xué)生形成求二元一次方程的解的一般方法,先讓學(xué)生展示他們的思維過(guò)程,再?gòu)乃麄兘庖辉淮畏匠痰闹貜?fù)步驟中提煉出用一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù),然后把它與原方程比較,把一個(gè)未知數(shù)的值代入哪一個(gè)方程計(jì)算會(huì)更簡(jiǎn)單,形成“正遷移”,引導(dǎo)學(xué)生體會(huì)“用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)”的過(guò)程,實(shí)質(zhì)是解一個(gè)關(guān)于y的一元一次方程,滲透數(shù)學(xué)的主元思想。以此突破本節(jié)課的難點(diǎn)。)
大顯身手:
課內(nèi)練習(xí)第2題
梳理知識(shí),課堂升華
本節(jié)課你有收獲嗎?能和大家說(shuō)說(shuō)你的感想嗎?3.作業(yè)布置
必做題:書(shū)本作業(yè)題1、2、3、4。
選做題:書(shū)本作業(yè)題5、6。
設(shè)計(jì)說(shuō)明
本節(jié)授課內(nèi)容屬于概念課教學(xué)。數(shù)學(xué)學(xué)科的內(nèi)容有其固有的組成規(guī)律和邏輯結(jié)構(gòu),它總是由一些最基本的數(shù)學(xué)概念作為核心和邏輯起點(diǎn),形成系統(tǒng)的數(shù)學(xué)知識(shí),所以數(shù)學(xué)概念是數(shù)學(xué)課程的核心。只有真正理解數(shù)學(xué)概念,才能理解數(shù)學(xué)。二元一次方程作為初中階段接觸的第二類方程,形成概念并不難,關(guān)鍵如何理解它的概念,因此本節(jié)課采用先讓同學(xué)自己試著下定義,然后與教材中的完整定義相互比較,發(fā)現(xiàn)不同點(diǎn),進(jìn)而理解“含有未知數(shù)的項(xiàng)的次數(shù)都是一次”這句話的內(nèi)涵。在二元一次方程的解的教學(xué)過(guò)程中,采用的是讓學(xué)生體會(huì)“一個(gè)解、不止一個(gè)解、無(wú)數(shù)個(gè)解”的漸進(jìn)過(guò)程,感受到用一個(gè)二元一次方程并不能求出一對(duì)確定的未知數(shù)的取值,從而讓學(xué)生產(chǎn)生有后續(xù)學(xué)習(xí)的愿望。
在講授用含一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的時(shí)候,采用“特殊、一般、特殊”的教學(xué)流程,以期突破難點(diǎn)。首先拋出問(wèn)題“這幾個(gè)解你是如何求的”,
此時(shí)注意的聚焦點(diǎn)是二元一次方程;其次學(xué)生歸納先定一個(gè)未知數(shù)的取值,代入原方程求另一個(gè)未知數(shù)的值,此時(shí)注意的聚焦點(diǎn)是一元一次方程;然后教師引導(dǎo)回到二元一次方程,假如x是一個(gè)常數(shù),那么這個(gè)方程可以看成是一個(gè)關(guān)于誰(shuí)的一元一次方程,此時(shí)注意的聚焦點(diǎn)是原來(lái)的二元一次方程;最后代入求值,此時(shí)注意的聚焦點(diǎn)是等號(hào)右邊的那個(gè)算式,體會(huì)“用含一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)”在求值過(guò)程中的簡(jiǎn)潔性,強(qiáng)化這種代數(shù)形式。另外,在引導(dǎo)學(xué)生推導(dǎo)“用含一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)”的過(guò)程中,滲透數(shù)學(xué)的主元思想和轉(zhuǎn)化思想。
初中數(shù)學(xué)教案2
教學(xué)目標(biāo)
1.了解代數(shù)和的概念,理解有理數(shù)加減法可以互相轉(zhuǎn)化,會(huì)進(jìn)行加減混合運(yùn)算;
2. 通過(guò)學(xué)習(xí)一切加減法運(yùn)算,都可以統(tǒng)一成加法運(yùn)算,繼續(xù)滲透數(shù)學(xué)的轉(zhuǎn)化思想;
3.通過(guò)加法運(yùn)算練習(xí),培養(yǎng)學(xué)生的運(yùn)算能力。
教學(xué)建議
。ㄒ唬┲攸c(diǎn)、難點(diǎn)分析
本節(jié)課的重點(diǎn)是依據(jù)運(yùn)算法則和運(yùn)算律準(zhǔn)確迅速地進(jìn)行有理數(shù)的加減混合運(yùn)算,難點(diǎn)是省略加號(hào)與括號(hào)的代數(shù)和的計(jì)算.
由于減法運(yùn)算可以轉(zhuǎn)化為加法運(yùn)算,所以加減混合運(yùn)算實(shí)際上就是有理數(shù)的加法運(yùn)算。了解運(yùn)算符號(hào)和性質(zhì)符號(hào)之間的關(guān)系,把任何一個(gè)含有有理數(shù)加、減混合運(yùn)算的算式都看成和式,這是因?yàn)橛欣頂?shù)加、減混合算式都看成和式,就可靈活運(yùn)用加法運(yùn)算律,簡(jiǎn)化計(jì)算.
。ǘ┲R(shí)結(jié)構(gòu)
。ㄈ┙谭ńㄗh
1.通過(guò)習(xí)題,復(fù)習(xí)、鞏固有理數(shù)的加、減運(yùn)算以及加減混合運(yùn)算的法則與技能,講課前教師要認(rèn)真總結(jié)、分析學(xué)生在進(jìn)行有理數(shù)加、減混合運(yùn)算時(shí)常犯的錯(cuò)誤,以便在這節(jié)課分析習(xí)題時(shí),有意識(shí)地幫助學(xué)生改正.
2.關(guān)于“去括號(hào)法則”,只要學(xué)生了解,并不要求追究所以然.
3.任意含加法、減法的算式,都可把運(yùn)算符號(hào)理解為數(shù)的性質(zhì)符號(hào),看成省略加號(hào)的和式。這時(shí),稱這個(gè)和式為代數(shù)和。再例如
-3-4表示-3、-4兩數(shù)的代數(shù)和,
-4+3表示-4、+3兩數(shù)的代數(shù)和,
3+4表示3和+4的代數(shù)和
等。代數(shù)和概念是掌握有理數(shù)運(yùn)算的一個(gè)重要概念,請(qǐng)老師務(wù)必給予充分注意。
4.先把正數(shù)與負(fù)數(shù)分別相加,可以使運(yùn)算簡(jiǎn)便。
5.在交換加數(shù)的位置時(shí),要連同前面的符號(hào)一起交換。如
12-5+7 應(yīng)變成 12+7-5,而不能變成12-7+5。
教學(xué)設(shè)計(jì)示例一
有理數(shù)的加減混合運(yùn)算(一)
一、素質(zhì)教育目標(biāo)
。ㄒ唬┲R(shí)教學(xué)點(diǎn)
1.了解:代數(shù)和的概念.
2.理解:有理數(shù)加減法可以互相轉(zhuǎn)化.
3.應(yīng)用:會(huì)進(jìn)行加減混合運(yùn)算.
(二)能力訓(xùn)練點(diǎn)
培養(yǎng)學(xué)生的口頭表達(dá)能力及計(jì)算的準(zhǔn)確能力.
。ㄈ┑掠凉B透點(diǎn)
通過(guò)學(xué)習(xí)一切加減法運(yùn)算,都可以統(tǒng)一成加法運(yùn)算,繼續(xù)滲透數(shù)學(xué)的轉(zhuǎn)化思想.
。ㄋ模┟烙凉B透點(diǎn)
學(xué)習(xí)了本節(jié)課就知道一切加減法運(yùn)算都可以統(tǒng)一成加法運(yùn)算.體現(xiàn)了數(shù)學(xué)的統(tǒng)一美.
二、學(xué)法引導(dǎo)
1.教學(xué)方法:采用嘗試指導(dǎo)法,體現(xiàn)學(xué)生主體地位,每一環(huán)節(jié),設(shè)置一定題目進(jìn)行鞏固練
習(xí),步步為營(yíng),分散難點(diǎn),解決關(guān)鍵問(wèn)題.
2.學(xué)生寫(xiě)法:練習(xí)→尋找簡(jiǎn)單的一般性的方法→練習(xí)鞏固.
三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
1.重點(diǎn):把加減混合運(yùn)算算式理解為加法算式.
2.難點(diǎn):把省略括號(hào)和的形式直接按有理數(shù)加法進(jìn)行計(jì)算.
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀或電腦、自制膠片.
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師提出問(wèn)題學(xué)生練習(xí)討論,總結(jié)歸納加減混合運(yùn)算的一般步驟,教師出示練習(xí)題,學(xué)生練習(xí)反饋.
七、教學(xué)步驟
(一)創(chuàng)設(shè)情境,復(fù)習(xí)引入
師:前面我們學(xué)習(xí)了有理數(shù)的加法和減法,同學(xué)們學(xué)得都很好!請(qǐng)同學(xué)們看以下題目: -9+(+6);(-11)-7.
師:(1)讀出這兩個(gè)算式.
。2)“+、-”讀作什么?是哪種符號(hào)?
“+、-”又讀作什么?是什么符號(hào)?
學(xué)生活動(dòng):口答教師提出的問(wèn)題.
師繼續(xù)提問(wèn):(1)這兩個(gè)題目運(yùn)算結(jié)果是多少?
。2)(-11)-7這題你根據(jù)什么運(yùn)算法則計(jì)算的?
學(xué)生活動(dòng):口答以上兩題(教師訂正).
師小結(jié):減法往往通過(guò)轉(zhuǎn)化成加法后來(lái)運(yùn)算.
【教法說(shuō)明】為了進(jìn)行有理數(shù)的`加減混合運(yùn)算,必須先對(duì)有理數(shù)加法,特別是有理數(shù)減法的題目進(jìn)行復(fù)習(xí),為進(jìn)一步學(xué)習(xí)加減混合運(yùn)算奠定基礎(chǔ).這里特別指出“+、-”有時(shí)表示性質(zhì)符號(hào),有時(shí)是運(yùn)算符號(hào),為在混合運(yùn)算時(shí)省略加號(hào)、括號(hào)時(shí)做必要的準(zhǔn)備工作.
師:把兩個(gè)算式-9+(+6)與(-11)-7之間加上減號(hào)就成了一個(gè)題目,這個(gè)題目中既有加法又有減法,就是我們今天學(xué)習(xí)的有理數(shù)的加減混合運(yùn)算.(板書(shū)課題2.7有理數(shù)的加減混合運(yùn)算(1))
教學(xué)說(shuō)明:由復(fù)習(xí)的題目巧妙地填“-”號(hào),就變成了今天將學(xué)的加減混合運(yùn)算內(nèi)容,使學(xué)生更形象、更深刻地明白了有理數(shù)加減混合運(yùn)算題目組成.
(二)探索新知,講授新課
1.講評(píng)(-9)+(-6)-(-11)-7.
。1)省略括號(hào)和的形式
師:看到這個(gè)題你想怎樣做?
學(xué)生活動(dòng):自己在練習(xí)本上計(jì)算.
教師針對(duì)學(xué)生所做的方法區(qū)別優(yōu)劣.
【教法說(shuō)明】題目出示后,教師不急于自己講評(píng),而是讓學(xué)生嘗試,給了學(xué)生一個(gè)展示自己的機(jī)會(huì),這時(shí),有的學(xué)生可能是按從左到右的順序運(yùn)算,有的同學(xué)可能是先把減法都轉(zhuǎn)化成了加法,然后按加法的計(jì)算法則再計(jì)算??這樣在不同的方法中,學(xué)生自己就會(huì)尋找到簡(jiǎn)單的、一般性的方法.
師:我們對(duì)此類題目經(jīng)常采用先把減法轉(zhuǎn)化為加法,這時(shí)就成了-9,+6,+11,-7的和,加號(hào)通?梢允÷,括號(hào)也可以省略,即:
原式=(-9)+(+6)+(+11)+(-7)
。剑9+6+11-7.
提出問(wèn)題:雖然加號(hào)、括號(hào)省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以這個(gè)算式可以讀成??
學(xué)生活動(dòng):先自己練習(xí)嘗試用兩種讀法讀,口答(教師糾正).
【教法說(shuō)明】教師根據(jù)學(xué)生所做的方法,及時(shí)指出最具代表性的方法來(lái)給學(xué)生指明方向,在把算式寫(xiě)成省略括號(hào)代數(shù)和的形式后,通過(guò)讓學(xué)生練習(xí)兩種讀法,可以加深對(duì)此算式的理解,以此來(lái)訓(xùn)練學(xué)生的觀察能力及口頭表達(dá)能力.
鞏固練習(xí):(出示投影1)
1.把下列算式寫(xiě)成省略括號(hào)和的形式,并把結(jié)果用兩種讀法讀出來(lái).
。1)(+9)-(+10)+(-2)-(-8)+3;
。2)+()-()-().
2.判斷
式子-7+1-5-9的正確讀法是().
A.負(fù)7、正1、負(fù)5、負(fù)9;
B.減7、加1、減5、減9;
C.負(fù)7、加1、負(fù)5、減9;
D.負(fù)7、加1、減5、減9;
學(xué)生活動(dòng):1題兩個(gè)學(xué)生板演,兩個(gè)學(xué)生用兩種讀法讀出結(jié)果,其他同學(xué)自行演練,然后同桌讀出互相糾正,2題搶答.
【教法說(shuō)明】這兩題旨意在鞏固怎樣把加減混合運(yùn)算題目都轉(zhuǎn)化成加法運(yùn)算寫(xiě)成代數(shù)和的形式,這里特別注意了代數(shù)和形式的兩種讀法.
2.用加法運(yùn)算律計(jì)算出結(jié)果
師:既然算式能看成幾個(gè)數(shù)的和,我們可以運(yùn)用加法的運(yùn)算律進(jìn)行計(jì)算,通常同號(hào)兩數(shù)放在一起分別相加.
。9+6+11-7
。剑9-7+6+11.
學(xué)生活動(dòng):按教師要求口答并讀出結(jié)果.
鞏固練習(xí):(出示投影2)
填空:
1.-4+7-4=-______________-_______________+_______________
2.+6+9-15+3=_____________+_____________+_____________-_____________
3.-9-3+2-4=____________9____________3____________4____________2
4.____________________________________
學(xué)生活動(dòng):討論后回答.
【教法說(shuō)明】學(xué)生運(yùn)用加法交換律時(shí),很可能產(chǎn)生“-9+7+11-6”這樣的錯(cuò)誤,教師先讓學(xué)生自己去做,然后糾正,又做一組鞏固練習(xí),使學(xué)生牢固掌握運(yùn)用加法運(yùn)算律把同號(hào)數(shù)放在一起時(shí),一定要連同前面的符號(hào)一起交換這一知識(shí)點(diǎn).
師:-9-7+6+11怎樣計(jì)算?
學(xué)生活動(dòng):口答
[板書(shū)]
。9-7+6+11
。剑16+17
。1
鞏固練習(xí):(出示投影3)
1.計(jì)算(1)-1+2-3-4+5;
(2).
2.做完前面兩個(gè)題目計(jì)算:(1)(+9)-(+10)+(-2)-(-8)+3;
(2).
學(xué)生活動(dòng):四個(gè)同學(xué)板演,其他同學(xué)在練習(xí)本上做.
【教法說(shuō)明】針對(duì)一道例題分成三部分,每一部分都有一組相應(yīng)的鞏固練習(xí),這樣每一步學(xué)生都掌握得較牢固,這時(shí)教師一定要總結(jié)有理數(shù)加減混合運(yùn)算的方法,使分散的知識(shí)有相對(duì)的集中.
師小結(jié):有理數(shù)加減法混合運(yùn)算的題目的步驟為:
1.減法轉(zhuǎn)化成加法;
2.省略加號(hào)括號(hào);
3.運(yùn)用加法交換律使同號(hào)兩數(shù)分別相加;
4.按有理數(shù)加法法則計(jì)算.
。ㄈ┓答伨毩(xí)
(出示投影4)
計(jì)算:(1)12-(-18)+(-7)-15;
(2).
學(xué)生活動(dòng):可采用同桌互相測(cè)驗(yàn)的方法,以達(dá)到糾正錯(cuò)誤的目的.
【教法說(shuō)明】這兩個(gè)題目是本節(jié)課的重點(diǎn).采用測(cè)驗(yàn)的方式來(lái)達(dá)到及時(shí)反饋.
(四)歸納小結(jié)
師:1.怎樣做加減混合運(yùn)算題目?
2.省略括號(hào)和的形式的兩種讀法?
學(xué)生活動(dòng):口答.
【教法說(shuō)明】小結(jié)不是教師單純的總結(jié),而是讓學(xué)生參與回答,在學(xué)生思考回答的過(guò)程中將本節(jié)的重點(diǎn)知識(shí)納入知識(shí)系統(tǒng).
八、隨堂練習(xí)
1.把下列各式寫(xiě)成省略括號(hào)的和的形式
(1)(-5)+(+7)-(-3)-(+1);
。2)10+(-8)-(+18)-(-5)+(+6).
2.說(shuō)出式子-3+5-6+1的兩種讀法.
3.計(jì)算
(1)0-10-(-8)+(-2);
。2)-4.5+1.8-6.5+3-4;
。3).
九、布置作業(yè)
。ㄒ唬┍刈鲱}:1.計(jì)算:(1)-8+12-16-23;
。2);
。3)-40-28-(-19)+(-24)-(-32);
。4)-2.7+(-3.2)-(1.8)-2.2;
。ǘ┻x做題:(1)當(dāng)時(shí),,,哪個(gè)最大,哪個(gè)最?
(2)當(dāng)時(shí),,,哪個(gè)最大,哪個(gè)最。
十、板書(shū)設(shè)計(jì)
初中數(shù)學(xué)教案3
教學(xué)目標(biāo)
1、認(rèn)識(shí)度、分、秒,會(huì)進(jìn)行度、分、秒間單位互化及角的和、差、倍、分計(jì)算。
2、通過(guò)度、分、秒間的互化及角度的簡(jiǎn)單運(yùn)算,經(jīng)歷利用已有知識(shí)解決新問(wèn)題的探索過(guò)程,培養(yǎng)學(xué)生的數(shù)感和對(duì)數(shù)學(xué)活動(dòng)的興趣。
3、在獨(dú)立思考的基礎(chǔ)上,積極參與對(duì)數(shù)學(xué)問(wèn)題的`討論,敢于發(fā)表自己的觀點(diǎn),尊重和理解他人的見(jiàn)解,從而在交流中獲益。
教學(xué)重點(diǎn)
度、分、秒間單位互化及角的和、差、倍、分計(jì)算。
知識(shí)難點(diǎn)
度、分、秒間單位互化及角的和、差、倍、分計(jì)算。
教學(xué)準(zhǔn)備
量角器、三角尺。
教學(xué)過(guò)程
(師生活動(dòng))設(shè)計(jì)理念
復(fù)習(xí)
任意畫(huà)一個(gè)銳角和鈍角,用字母分別表示這兩個(gè)角,用量角器分別理出這兩個(gè)角的度數(shù)。復(fù)習(xí)角的概念,角的表示及量角器的使用,為學(xué)習(xí)角度制作準(zhǔn)備。
探究新知在航行、測(cè)繪等工作以及生活中,我們經(jīng)常會(huì)碰到上述類似問(wèn)題,即如何描述一個(gè)物體的方位。
讓學(xué)生回憶學(xué)過(guò)的描述方法,師生共同探討解決問(wèn)題的辦法。
不斷移動(dòng)可疑船的位置,讓學(xué)生描述緝私艇的航線,探求解決問(wèn)題的規(guī)律。
方位的表示通常用北偏東多少度、北偏西多少度或者南偏東多少度、南偏西多少度來(lái)表示。北偏東45度、北偏西45度、南偏東45度、南偏西45度,分別稱為東北方向、西北方向,東南方向、西南方向。
初中數(shù)學(xué)教案4
一元一次不等式組
教學(xué)目標(biāo)
1、熟練掌握一元一次不等式組的解法,會(huì)用一元一次不等式組解決有關(guān)的實(shí)際問(wèn)題;
2、理解一元一次不等式組應(yīng)用題的一般解題步驟,逐步形成分析問(wèn)題和解決問(wèn)題的能力;
3、體驗(yàn)數(shù)學(xué)學(xué)習(xí)的樂(lè)趣,感受一元一次不等式組在解決實(shí)際問(wèn)題中的.價(jià)值。
教學(xué)難點(diǎn)
正確分析實(shí)際問(wèn)題中的不等關(guān)系,列出不等式組。
知識(shí)重點(diǎn)
建立不等式組解實(shí)際問(wèn)題的數(shù)學(xué)模型。
探究實(shí)際問(wèn)題
出示教科書(shū)第145頁(yè)例2(略)
問(wèn):(1)你是怎樣理解“不能完成任務(wù)”的數(shù)量含義的?
(2)你是怎樣理解“提前完成任務(wù)”的數(shù)量含義的?
(3)解決這個(gè)問(wèn)題,你打算怎樣設(shè)未知數(shù)?列出怎樣的不等式?
師生一起討論解決例2.
歸納小結(jié)
1、教科書(shū)146頁(yè)“歸納”(略).
2、你覺(jué)得列一元一次不等式組解應(yīng)用題與列二元一次方程組解應(yīng)用題的步驟一樣嗎?
在討論或議論的基礎(chǔ)上老師揭示:
步法一致(設(shè)、列、解、答);本質(zhì)有區(qū)別.(見(jiàn)下表)一元一次不等式組應(yīng)用題與二元一次方程組應(yīng)用題解題步驟異同表。
初中數(shù)學(xué)教案5
教學(xué)目標(biāo)
1.使學(xué)生在了解代數(shù)式概念的基礎(chǔ)上,能把簡(jiǎn)單的與數(shù)量有關(guān)的詞語(yǔ)用代數(shù)式表示出來(lái);
2.初步培養(yǎng)學(xué)生觀察、分析和抽象思維的能力.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):列代數(shù)式.
難點(diǎn):弄清楚語(yǔ)句中各數(shù)量的意義及相互關(guān)系.
課堂教學(xué)過(guò)程設(shè)計(jì)
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題
1庇么數(shù)式表示乙數(shù):(投影)
(1)乙數(shù)比x大5;(x+5)
(2)乙數(shù)比x的2倍小3;(2x-3)
(3)乙數(shù)比x的倒數(shù)小7;(-7)
(4)乙數(shù)比x大16%((1+16%)x)
(應(yīng)用引導(dǎo)的方法啟發(fā)學(xué)生解答本題)
2痹詿數(shù)里,我們經(jīng)常需要把用數(shù)字或字母敘述的一句話或一些計(jì)算關(guān)系式,列成代數(shù)式,正如上面的練習(xí)中的問(wèn)題一樣,這一點(diǎn)同學(xué)們已經(jīng)比較熟悉了,但在代數(shù)式里也常常需要把用文字?jǐn)⑹龅囊痪湓捇蛴?jì)算關(guān)系式(即日常生活語(yǔ)言)列成代數(shù)式北窘誑撾頤薔屠匆黃鷓習(xí)這個(gè)問(wèn)題
二、講授新課
例1用代數(shù)式表示乙數(shù):
(1)乙數(shù)比甲數(shù)大5;(2)乙數(shù)比甲數(shù)的2倍小3;
(3)乙數(shù)比甲數(shù)的倒數(shù)小7;(4)乙數(shù)比甲數(shù)大16%
分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫(xiě)代數(shù)式以前需要把甲數(shù)具體設(shè)出來(lái),才能解決欲求的乙數(shù)
解:設(shè)甲數(shù)為x,則乙數(shù)的代數(shù)式為
(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x
(本題應(yīng)由學(xué)生口答,教師板書(shū)完成)
最后,教師需指出:第4小題的答案也可寫(xiě)成x+16%x
例2用代數(shù)式表示:
(1)甲乙兩數(shù)和的2倍;
(2)甲數(shù)的與乙數(shù)的的差;
(3)甲乙兩數(shù)的平方和;
(4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;
(5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積
分析:本題應(yīng)首先把甲乙兩數(shù)具體設(shè)出來(lái),然后依條件寫(xiě)出代數(shù)式
解:設(shè)甲數(shù)為a,乙數(shù)為b,則
(1)2(a+b);(2)a-b;(3)a2+b2;
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)
(本題應(yīng)由學(xué)生口答,教師板書(shū)完成)
此時(shí),教師指出:a與b的和,以及b與a的和都是指(a+b),這是因?yàn)榧臃ㄓ薪粨Q律鋇玜與b的差指的是(a-b),而b與a的差指的是(b-a)繃秸咼饗圓煌,這就是說(shuō),用文字語(yǔ)言敘述的`句子里應(yīng)特別注意其運(yùn)算順序
例3用代數(shù)式表示:
(1)被3整除得n的數(shù);
(2)被5除商m余2的數(shù)
分析本題時(shí),可提出以下問(wèn)題:
(1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?
(2)被5除商1余2的數(shù)是幾?如何表示這個(gè)數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?
解:(1)3n;(2)5m+2
(這個(gè)例子直接為以后讓學(xué)生用代數(shù)式表示任意一個(gè)偶數(shù)或奇數(shù)做準(zhǔn)備)
例4設(shè)字母a表示一個(gè)數(shù),用代數(shù)式表示:
(1)這個(gè)數(shù)與5的和的3倍;(2)這個(gè)數(shù)與1的差的;
(3)這個(gè)數(shù)的5倍與7的和的一半;(4)這個(gè)數(shù)的平方與這個(gè)數(shù)的的和
分析:?jiǎn)l(fā)學(xué)生,做分析練習(xí)比緄1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”
解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a
(通過(guò)本例的講解,應(yīng)使學(xué)生逐步掌握把較復(fù)雜的數(shù)量關(guān)系分解為幾個(gè)基本的數(shù)量關(guān)系,培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題的能力)
例5設(shè)教室里座位的行數(shù)是m,用代數(shù)式表示:
(1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個(gè)座位?
(2)教室里座位的行數(shù)是每行座位數(shù)的,教室里總共有多少個(gè)座位?
分析本題時(shí),可提出如下問(wèn)題:
(1)教室里有6行座位,如果每行都有7個(gè)座位,那么這個(gè)教室總共有多少個(gè)座位呢?
(2)教室里有m行座位,如果每行都有7個(gè)座位,那么這個(gè)教室總共有多少個(gè)座位呢?
(3)通過(guò)上述問(wèn)題的解答結(jié)果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))
解:(1)m(m+6)個(gè);(2)(m)m個(gè)
三、課堂練習(xí)
1鄙杓資為x,乙數(shù)為y,用代數(shù)式表示:(投影)
(1)甲數(shù)的2倍,與乙數(shù)的的和;(2)甲數(shù)的與乙數(shù)的3倍的差;
(3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的差;(4)甲乙的差除以甲乙兩數(shù)的積的商
2庇么數(shù)式表示:
(1)比a與b的和小3的數(shù);(2)比a與b的差的一半大1的數(shù);
(3)比a除以b的商的3倍大8的數(shù);(4)比a除b的商的3倍大8的數(shù)
3庇么數(shù)式表示:
(1)與a-1的和是25的數(shù);(2)與2b+1的積是9的數(shù);
(3)與2x2的差是x的數(shù);(4)除以(y+3)的商是y的數(shù)
〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)薄
四、師生共同小結(jié)
首先,請(qǐng)學(xué)生回答:
1痹躚列代數(shù)式?2繃寫(xiě)數(shù)式的關(guān)鍵是什么?
其次,教師在學(xué)生回答上述問(wèn)題的基礎(chǔ)上,指出:對(duì)于較復(fù)雜的數(shù)量關(guān)系,應(yīng)按下述規(guī)律列代數(shù)式:
(1)列代數(shù)式,要以不改變?cè)}敘述的數(shù)量關(guān)系為準(zhǔn)(代數(shù)式的形式不唯一);
(2)要善于把較復(fù)雜的數(shù)量關(guān)系,分解成幾個(gè)基本的數(shù)量關(guān)系;
(3)把用日常生活語(yǔ)言敘述的數(shù)量關(guān)系,列成代數(shù)式,是為今后學(xué)習(xí)列方程解應(yīng)用題做準(zhǔn)備幣求學(xué)生一定要牢固掌握
五、作業(yè)
1庇么數(shù)式表示:
(1)體校里男生人數(shù)占學(xué)生總數(shù)的60%,女生人數(shù)是a,學(xué)生總數(shù)是多少?
(2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學(xué)生人數(shù)之比是1∶10,教練人數(shù)是多?
2幣閻一個(gè)長(zhǎng)方形的周長(zhǎng)是24厘米,一邊是a厘米,
求:(1)這個(gè)長(zhǎng)方形另一邊的長(zhǎng);(2)這個(gè)長(zhǎng)方形的面積.
學(xué)法探究
已知圓環(huán)內(nèi)直徑為acm,外直徑為bcm,將100個(gè)這樣的圓環(huán)一個(gè)接著一個(gè)環(huán)套環(huán)地連成一條鎖鏈,那么這條鎖鏈拉直后的長(zhǎng)度是多少厘米?
分析:先深入研究一下比較簡(jiǎn)單的情形,比如三個(gè)圓環(huán)接在一起的情形,看有沒(méi)有規(guī)律.
當(dāng)圓環(huán)為三個(gè)的時(shí)候,如圖:
此時(shí)鏈長(zhǎng)為,這個(gè)結(jié)論可以繼續(xù)推廣到四個(gè)環(huán)、五個(gè)環(huán)、…直至100個(gè)環(huán),答案不難得到:
解:=99a+b(cm)
今天的內(nèi)容就介紹到這里了。
初中數(shù)學(xué)教案6
一、課題引入
為了讓學(xué)生更好地理解正數(shù)與負(fù)數(shù)的概念,作為教師有必要了解數(shù)系的發(fā)展.從數(shù)系的發(fā)展歷程來(lái)看,微積分的基礎(chǔ)是實(shí)數(shù)理論,實(shí)數(shù)的基礎(chǔ)是有理數(shù),而有理數(shù)的基礎(chǔ)則是自然數(shù).自然數(shù)為數(shù)學(xué)結(jié)構(gòu)提供了堅(jiān)實(shí)的基礎(chǔ).
對(duì)于“數(shù)的發(fā)展”(也即“數(shù)的擴(kuò)充”),有著兩種不同的認(rèn)知體系.一是數(shù)的自然擴(kuò)充過(guò)程,如圖1所示,即數(shù)系發(fā)展的自然的、歷史的體系,它反映了人類對(duì)數(shù)的認(rèn)識(shí)的歷史發(fā)展進(jìn)程;另一是數(shù)的邏輯擴(kuò)充過(guò)程,如圖2所示,即數(shù)系發(fā)展所經(jīng)歷的理論的、邏輯的體系,它是策墨羅、馮諾伊曼、皮亞諾、高斯等數(shù)學(xué)家構(gòu)造的一種邏輯體系,其中綜合反映了現(xiàn)代數(shù)學(xué)中許多思想方法.
二、課題研究
在實(shí)際生活中,存在著諸如上升5m,下降5m;收入5000元,支出5000元等各種具體的數(shù)量.這些數(shù)量不僅與5、5000等數(shù)量有關(guān),而且還含有上升與下降、收入與支出等實(shí)際的意義.顯然上升5m與下降5m,收入5000元與支出5000元的實(shí)際意義是不同的.
為了準(zhǔn)確表達(dá)諸如此類的一些具有相反意義的量,僅用小學(xué)學(xué)過(guò)的正整數(shù)、正分?jǐn)?shù)、零,是不夠的.如果把收入5000元記作5000元,那么支出5000元顯然是不可以也同樣記作5000元的.收入與支出是“意義相反”的兩回事,是不能用同一個(gè)數(shù)來(lái)表達(dá)的.因此,為了準(zhǔn)確表達(dá)支出5000元,就有必要引入了一種新數(shù)—負(fù)數(shù).
我們把所學(xué)過(guò)的大于零的數(shù),都稱為正數(shù);而且還可以在正數(shù)的前面添加一個(gè)“+”號(hào),比如在5的前面添加一個(gè)“+”號(hào)就成了“+5”,把“+5”稱為一個(gè)正數(shù),讀作“正5”.
在正數(shù)的前面添加一個(gè)“-”號(hào),比如在5的前面添加一個(gè)“-”號(hào),就成了“-5”,所有按這種形式構(gòu)成的數(shù)統(tǒng)稱為負(fù)數(shù).“-5”讀作“負(fù)5”,“-5000”讀作“負(fù)5000”.
于是“收入5000元”可以記作“5000元”,也可以記作“+5000元”,同時(shí)“支出5000元”就可以記作“-5000元”了.這樣具有相反意義的兩個(gè)數(shù)量就有了不同的表達(dá)方式.
利用正數(shù)與負(fù)數(shù)可以準(zhǔn)確地表達(dá)或記錄諸如上升與下降、收入與支出、海平面以上與海平面以下、零上與零下等一些“具有相反意義的量”.再如,某個(gè)機(jī)器零件的實(shí)際尺寸比設(shè)計(jì)尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一個(gè)機(jī)器零件的實(shí)際尺寸比設(shè)計(jì)尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比賽中,如果甲隊(duì)贏了乙隊(duì)2個(gè)球,那么可以把甲隊(duì)的凈勝球數(shù)記作“+2”,把乙隊(duì)的凈勝球數(shù)記作“-2”.
借助實(shí)際例子能夠讓學(xué)生較好地理解為什么要引入負(fù)數(shù),認(rèn)識(shí)到負(fù)數(shù)是為了有效表達(dá)與實(shí)際生活相關(guān)的一些數(shù)量而引入的一種新數(shù),而不是人為地“硬造”出來(lái)的一種“新數(shù)”.
三、鞏固練習(xí)
例1博然的父母6月共收入4800元,可以將這筆收入記作+4800元;由于天氣炎熱,博然家用其中的1600元錢(qián)買(mǎi)了一臺(tái)空調(diào),又該怎樣記錄這筆支出呢?
思路分析:“收入”與“支出”是一對(duì)“具有相反意義的量”,可以用正數(shù)或負(fù)數(shù)來(lái)表示.一般來(lái)說(shuō),把“收入4800元”記作+4800元,而把與之具有相反意義的量“支出1600元”記作-1600元.
特別提醒:通常具有“增加、上升、零上、海平面以上、盈余、上漲、超出”等意義的數(shù)量,都用正數(shù)來(lái)表示;而與之相對(duì)的、具有“減少、下降、零下、海平面以下、虧損、下跌、不足”等意義的'數(shù)量則用負(fù)數(shù)來(lái)表示.
再如,若游泳池的水位比正常水位高5cm,則可以將這時(shí)游泳池的水位記作+5cm;若游泳池的水位比正常的水位低3cm,則可以將這時(shí)游泳池的水位記作-3cm;若游泳池的水位正好處于正常水位的位置,則將其水位記作0cm.
例2周一證券交易市場(chǎng)開(kāi)盤(pán)時(shí),某支股票的開(kāi)盤(pán)價(jià)為18.18元,收盤(pán)時(shí)下跌了2.11元;周二到周五開(kāi)盤(pán)時(shí)的價(jià)格與前一天收盤(pán)價(jià)相比的漲跌情況及當(dāng)天的收盤(pán)價(jià)與開(kāi)盤(pán)價(jià)的漲跌情況如下表:?jiǎn)挝唬涸?/p>
日期周二周三周四周五
開(kāi)盤(pán)+0.16+0.25+0.78+2.12
收盤(pán)-0.23-1.32-0.67-0.65
當(dāng)日收盤(pán)價(jià)
試在表中填寫(xiě)周二到周五該股票的收盤(pán)價(jià).
思路分析:以周二為例,表中數(shù)據(jù)“+0.16”所表示的實(shí)際意義是“周二該股票的開(kāi)盤(pán)價(jià)比周一的收盤(pán)價(jià)高出了0.16元”;而表中數(shù)據(jù)“-0.23”則表示“周二該股票收盤(pán)時(shí)的收盤(pán)價(jià)比當(dāng)天的開(kāi)盤(pán)價(jià)降低了0.23元”.
因此,這五天該股票的開(kāi)盤(pán)價(jià)與收盤(pán)價(jià)分別應(yīng)該按如下的方式進(jìn)行計(jì)算:
周一該股票的收盤(pán)價(jià)是18.18-2.11=16.07元;周二該股票的收盤(pán)價(jià)為16.07+0.16-0.23=16.00元;周三該股票的收盤(pán)價(jià)為16.00+0.25-1.32=14.93元;周四的該股票的收盤(pán)價(jià)為14.93+0.78-0.67=15.04元;周五該股票的收盤(pán)價(jià)為15.04+2.12-0.65=16.51元.
例3甲、乙、丙三支球隊(duì)以主客場(chǎng)的形式進(jìn)行雙循環(huán)比賽,每?jī)申?duì)之間都比賽兩場(chǎng),下表是這三支球隊(duì)的比賽成績(jī),其中左欄表示主隊(duì),上行表示客隊(duì),比分中前后兩數(shù)分別是主客隊(duì)的進(jìn)球數(shù),例如3∶2表示主隊(duì)進(jìn)3球客隊(duì)進(jìn)2球.
初中數(shù)學(xué)教案7
教學(xué)目標(biāo):
1、理解并掌握三角形中位線的概念、性質(zhì),會(huì)利用三角形中位線的性質(zhì)解決有關(guān)問(wèn)題。
2、經(jīng)歷探索三角形中位線性質(zhì)的過(guò)程,讓學(xué)生實(shí)現(xiàn)動(dòng)手實(shí)踐、自主探索、合作交流的學(xué)習(xí)過(guò)程。
3、通過(guò)對(duì)問(wèn)題的探索研究,培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題的能力以及思維的靈活性。
4、培養(yǎng)學(xué)生大膽猜想、合理論證的`科學(xué)精神。
教學(xué)重點(diǎn):
探索并運(yùn)用三角形中位線的性質(zhì)。
教學(xué)難點(diǎn):
運(yùn)用轉(zhuǎn)化思想解決有關(guān)問(wèn)題。
教學(xué)方法:
創(chuàng)設(shè)情境——建立數(shù)學(xué)模型——應(yīng)用——拓展提高
教學(xué)過(guò)程:
情境創(chuàng)設(shè):測(cè)量不可達(dá)兩點(diǎn)距離。
探索活動(dòng):
活動(dòng)一:剪紙拼圖。
操作:怎樣將一張三角形紙片剪成兩部分,使分成的兩部分能拼成一個(gè)平行四邊形。
觀察、猜想: 四邊形BCFD是什么四邊形。
探索: 如何說(shuō)明四邊形BCFD是平行四邊形?
活動(dòng)二:探索三角形中位線的性質(zhì)。
應(yīng)用
練習(xí)及解決情境問(wèn)題。
例題教學(xué)
操作——猜想——驗(yàn)證
拓展:數(shù)學(xué)實(shí)驗(yàn)室
小結(jié):布置作業(yè)。
初中數(shù)學(xué)教案8
一、素質(zhì)教育目標(biāo)
。ㄒ唬┲R(shí)教學(xué)點(diǎn)
1.使學(xué)生理解多項(xiàng)式的概念.
2.使學(xué)生能準(zhǔn)確地確定一個(gè)多項(xiàng)式的次數(shù)和項(xiàng)數(shù).
3.能正確區(qū)分單項(xiàng)式和多項(xiàng)式.
。ǘ┠芰τ(xùn)練點(diǎn)
通過(guò)區(qū)別單項(xiàng)式與多項(xiàng)式,培養(yǎng)學(xué)生發(fā)散思維.
。ㄈ┑掠凉B透點(diǎn)
在本節(jié)教學(xué)中向?qū)W生滲透數(shù)學(xué)知識(shí)來(lái)源于生活,又為生活而服務(wù)的辯證思想.
。ㄋ模┟烙凉B透點(diǎn)
單項(xiàng)式和多項(xiàng)式在前二章,特別是第一章已有新接觸,本節(jié)課來(lái)研究多項(xiàng)式的概念可謂水到渠成,體現(xiàn)了數(shù)學(xué)的結(jié)構(gòu)美
二、學(xué)法引導(dǎo)
1.教學(xué)方法:采用對(duì)比法,以訓(xùn)練為主,注重嘗試指導(dǎo).
2.學(xué)生學(xué)法:觀察分析→多項(xiàng)式有關(guān)概念→練習(xí)鞏固
三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
1.重點(diǎn):多項(xiàng)式的概念及單項(xiàng)式的聯(lián)系與區(qū)別.
2.難點(diǎn):多項(xiàng)式的次數(shù)的確定,以及多項(xiàng)式與單項(xiàng)式的聯(lián)系與區(qū)別.
3.疑點(diǎn):多項(xiàng)式中各項(xiàng)的符號(hào)問(wèn)題.
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀或電腦、自制膠片.
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師出示探索性練習(xí),學(xué)生分析討論得出多項(xiàng)式有關(guān)概念,教師出示鞏固性練習(xí),學(xué)生多種形式完成.
七、教學(xué)步驟
。ㄒ唬⿵(fù)習(xí)引入,創(chuàng)設(shè)情境
師:上節(jié)課我們學(xué)習(xí)了單項(xiàng)式的有關(guān)概念,同學(xué)們看下面一些問(wèn)題.
。ǔ鍪就队1)
1.下列代數(shù)式中,哪些是單項(xiàng)式?是單項(xiàng)式的請(qǐng)指出它的系數(shù)與次數(shù).
, , ,2, , , ,
2.圓的半徑為 ,則半圓的面積為_(kāi)____________,半圓的總長(zhǎng)為_(kāi)____________.
學(xué)生活動(dòng):回答上述兩個(gè)問(wèn)題,可以進(jìn)行搶答,看誰(shuí)想的全面,回答的準(zhǔn)確,教師對(duì)回答準(zhǔn)確、速度快的給予表?yè)P(yáng)和鼓勵(lì).
【教法說(shuō)明】讓學(xué)生通過(guò)1題回顧有關(guān)單項(xiàng)式的一些知識(shí)點(diǎn),再通過(guò)2題中半圓周長(zhǎng)為 很自然地引出本節(jié)內(nèi)容.
師:上述2題中,表示半圓面積的代數(shù)式是單項(xiàng)式嗎?為什么?表示半圓的周長(zhǎng)的式子呢?
學(xué)生活動(dòng):同座進(jìn)行討論,然后選代表回答.
師:誰(shuí)能把1題中不是單項(xiàng)式的式子讀出來(lái)?(師做相應(yīng)板書(shū))
學(xué)生活動(dòng):小組討論, 、 , , 對(duì)于這些代數(shù)式的結(jié)構(gòu)特點(diǎn),由小組選代表說(shuō)明,若不完整,其他同學(xué)可做補(bǔ)充.
。ǘ┨剿餍轮,講授新課
師:像以上這樣的式子叫多項(xiàng)式,這節(jié)課我們就研究多項(xiàng)式,上面幾個(gè)式子都是多項(xiàng)式.
[板書(shū)]3.1整式(多項(xiàng)式)
學(xué)生活動(dòng):討論歸納什么叫多項(xiàng)式.可讓學(xué)生互相補(bǔ)充.
教師概括并板書(shū)
。郯鍟(shū)]多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫多項(xiàng)式.
師:強(qiáng)調(diào)每個(gè)單項(xiàng)式的符號(hào)問(wèn)題,使學(xué)生引起注意.
。ǔ鍪就队2)
練習(xí):下裂代數(shù)式 , , , , , ,
, , 中,是多項(xiàng)式的.有:
___________________________________________________________.
學(xué)生活動(dòng):學(xué)生搶答以上問(wèn)題,然后每個(gè)學(xué)生在練習(xí)本上寫(xiě)出兩個(gè)多項(xiàng)式,同桌互相交換打分,有疑問(wèn)的提出再討論.
【教法說(shuō)明】通過(guò)觀察式子特點(diǎn),討論歸納多項(xiàng)式的概念,體現(xiàn)了學(xué)生的主體作用和參與意識(shí).多項(xiàng)式的概念是本節(jié)教學(xué)重點(diǎn),為使學(xué)生對(duì)概念真正理解,讓學(xué)生每個(gè)人寫(xiě)出兩個(gè)多項(xiàng)式,可及時(shí)反饋學(xué)生掌握知識(shí)中存在的問(wèn)題,以便及時(shí)糾正.
師:提出問(wèn)題,多項(xiàng)式 、 , , 各是由幾個(gè)單項(xiàng)式相加而得到的?每個(gè)單項(xiàng)式各指的是誰(shuí)?各是幾次單項(xiàng)式?引導(dǎo)學(xué)生回答,教師根據(jù)學(xué)生回答,給予肯定、否定與糾正.
師:在 中,是兩個(gè)單項(xiàng)式相加得到,就叫做二項(xiàng)式,兩個(gè)單項(xiàng)式中, 次數(shù)是1, 次數(shù)是1,最高次數(shù)是一次,所以我們說(shuō)這個(gè)多項(xiàng)式的次數(shù)是一次,整個(gè)式子叫做一次二項(xiàng)式.
。郯鍟(shū)]
學(xué)生活動(dòng):同桌討論,, , ,應(yīng)怎樣稱謂,然后找學(xué)生回答.
師:給予歸納,并做適當(dāng)板書(shū):
。郯鍟(shū)]
學(xué)生活動(dòng):通過(guò)上例,學(xué)生討論多項(xiàng)式的項(xiàng)、次數(shù),然后選代表回答.
根據(jù)學(xué)生回答,師歸納:
在多項(xiàng)式中,每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng),是幾個(gè)單項(xiàng)式的和就叫做幾項(xiàng)式.每一項(xiàng)包含它的符號(hào),如 中, 這一項(xiàng)不是 .多項(xiàng)式里次數(shù)最高的項(xiàng)的次數(shù),就叫做多項(xiàng)式次數(shù),即最高次項(xiàng)是幾次,就叫做幾次多項(xiàng)式,不含字母的項(xiàng)叫做常數(shù)項(xiàng).
。郯鍟(shū)]
【教法說(shuō)明】通過(guò)學(xué)生對(duì)以上幾個(gè)多項(xiàng)式的感知,學(xué)生對(duì)多項(xiàng)式的特片已有了一定的了解,教師可逐步引導(dǎo),讓學(xué)生自己總結(jié)歸納一些結(jié)論,以訓(xùn)練學(xué)生的口頭表達(dá)能力和歸納能力.
。ㄈ﹪L試反饋,鞏固練習(xí)
(出示投影3)
1.填空:
2.填空:
。1) 是_________次__________項(xiàng)式; 是_________次_________項(xiàng)式; 的常數(shù)項(xiàng)是___________.
(2) 是_________次________項(xiàng)式,最高次數(shù)是___________,最高次項(xiàng)的系數(shù)是__________,常數(shù)項(xiàng)是___________.
學(xué)生活動(dòng):1題搶答,同桌同學(xué)給予肯定或否定,且肯定地說(shuō)出依據(jù),否定的再說(shuō)出正確答案;2題學(xué)生觀察后,在練習(xí)本或投影膠片上完成,部分膠片打出投影,師生一起分析、討論,對(duì)所做答案給予肯定或更正.
【教法說(shuō)明】在此組練習(xí)題中,1題目的是以填表的形式感知一個(gè)多項(xiàng)式就是單項(xiàng)式的和,多項(xiàng)式的項(xiàng)就是單項(xiàng)式;使學(xué)生能進(jìn)一步了解多項(xiàng)式與單項(xiàng)式的關(guān)系,避免死記硬背概念,而不能準(zhǔn)確應(yīng)用于解題中的弊。2題是在理解概念和完成1題單一問(wèn)題的基礎(chǔ)上進(jìn)行綜合訓(xùn)練,使學(xué)生逐步學(xué)會(huì)使用數(shù)學(xué)語(yǔ)言.
(四)歸納小結(jié)
師:今天我們學(xué)習(xí)了《整式》一節(jié)中“多項(xiàng)式”的有關(guān)概念;在掌握多項(xiàng)式概念時(shí),要注意它的項(xiàng)數(shù)和次數(shù).前面我們還學(xué)習(xí)了單項(xiàng)式,掌握單項(xiàng)式時(shí)要注意它的系數(shù)和次數(shù).
歸納:?jiǎn)雾?xiàng)式和多項(xiàng)式統(tǒng)稱為整式.
[板書(shū)]
說(shuō)明:教師邊小結(jié)邊板書(shū)出多項(xiàng)式、單項(xiàng)式,然后再提出它們統(tǒng)稱為整式,并做了述板書(shū),使所學(xué)知識(shí)納入知識(shí)系統(tǒng).
鞏固練習(xí):
。ǔ鍪就队4)
下列各代數(shù)式:0, , , , , , 中,單項(xiàng)式有__________,多項(xiàng)式有____________,整式有_____________.
學(xué)生活動(dòng):觀察后學(xué)生回答,互相補(bǔ)充、糾正,提醒學(xué)生不能遺漏.
【教法說(shuō)明】數(shù)學(xué)要領(lǐng)重在于應(yīng)用,通過(guò)上題的訓(xùn)練,可使學(xué)生很清楚地了解單項(xiàng)式、多項(xiàng)式的區(qū)別與聯(lián)系,它們與整式的關(guān)系.
。ㄎ澹┳兪接(xùn)練,培養(yǎng)能力
。ǔ鍪就队5)
1.單項(xiàng)式 , , 的和_________,它是__________次__________項(xiàng)式.
2. 是_______次________項(xiàng)式 是__________次_________項(xiàng)式,它的常數(shù)項(xiàng)_________.
3. 是________次________項(xiàng)式,最高次項(xiàng)是_________,最高次項(xiàng)的系數(shù)是_________,常數(shù)項(xiàng)是__________.
4. 的2倍與 的平方的 的和,用代數(shù)式表示__________,它是__________(填單項(xiàng)式或多項(xiàng)式).
學(xué)生活動(dòng):每個(gè)學(xué)生先獨(dú)立在練習(xí)本上完成,然后小組互相交流補(bǔ)充,最后小組選出代表發(fā)言.
師:做肯定或否定,強(qiáng)調(diào)3題中最高次項(xiàng)的系數(shù)是 , 是一個(gè)數(shù)字,不是字母,因?yàn)樗荒艽韴A周率這一個(gè)數(shù)值,而一個(gè)字母是可以取不同的值的.
【教法說(shuō)明】本組是在前面掌握了本節(jié)課基本知識(shí)后安排的一組訓(xùn)練題,目的是使學(xué)生進(jìn)一步理解多項(xiàng)式的次數(shù)與項(xiàng)數(shù),特別是對(duì) 這個(gè)數(shù)字要有一個(gè)明確的認(rèn)識(shí).
自編題目練習(xí):
每個(gè)學(xué)生寫(xiě)出6個(gè)整式,并要求既有單項(xiàng)式,又有多項(xiàng)式,然后交給同桌的同學(xué),完成以下任務(wù),①先找出單項(xiàng)式、多項(xiàng)式,②是單項(xiàng)式的寫(xiě)出系數(shù)與次數(shù),是多項(xiàng)式的寫(xiě)出是幾次幾項(xiàng)式,最高次數(shù)是什么?常數(shù)項(xiàng)是什么,然后再互相討論對(duì)方的解答是否正確.
【教學(xué)說(shuō)明】自編題目的訓(xùn)練,一是可活躍課堂氣氛,增強(qiáng)了學(xué)生的參與意識(shí);二是可以培養(yǎng)學(xué)生的發(fā)散思維和逆向思維能力.
師:通過(guò)上面編題、解題練習(xí),同學(xué)們對(duì)整式的概念有了清楚的理解,下面再按老師的要求編題,編一個(gè)四次三項(xiàng)式,看誰(shuí)編的又快又準(zhǔn)確,再編一個(gè)不高于三次的多項(xiàng)式.
學(xué)生活動(dòng):學(xué)生邊回答師邊板書(shū),然后學(xué)生討論是否符合要求.
【教法說(shuō)明】通過(guò)上面訓(xùn)練,使學(xué)生進(jìn)一步鞏固多項(xiàng)式項(xiàng)數(shù)、次數(shù)的概念,同時(shí)也可以培養(yǎng)學(xué)生逆向思維的能力.
八、隨堂練習(xí)
1.判斷題
。1)-5不是多項(xiàng)式( )
。2) 是二次二項(xiàng)式( )
。3) 是二次三項(xiàng)式( )
。4) 是一次三項(xiàng)式( )
(5) 的最高次項(xiàng)系數(shù)是3( )
2.填空題
。1)把上列代數(shù)式分別填在相應(yīng)的括號(hào)里
, , ,0, , ,
。 ;
。 ;
.
。2)如果代數(shù)式 是關(guān)于 的三次二項(xiàng)式則 , .
九、布置作業(yè)
。ㄒ唬┍刈鲱}:課本第149頁(yè)習(xí)題3.1A組12.
。ǘ┻x做題:課本第150頁(yè)習(xí)題3.1B組3.
十、板書(shū)設(shè)計(jì)
隨堂練習(xí)答案
1.√ × × √ ×
2.(1)單項(xiàng)式 ,多項(xiàng)式 ;
整式 ;
二項(xiàng)式 ;
三次三項(xiàng)式 ;
。2) , .
作業(yè)答案
教材P.149中A組12題:(1)三次二項(xiàng)式 (2)二次三項(xiàng)式
。3)一次二項(xiàng)式 (4)四次三項(xiàng)式
初中數(shù)學(xué)教案9
教學(xué)目標(biāo):
1、知識(shí)與技能:(1)通過(guò)學(xué)生熟悉的問(wèn)題情景,以過(guò)探索有理數(shù)減法法則得出的過(guò)程,理解有理數(shù)減法法則的合理性。
(2)能熟練進(jìn)行有理數(shù)的減法法則。
2、過(guò)程與方法
通過(guò)實(shí)例,歸納出有理數(shù)的減法法則,培養(yǎng)學(xué)生的邏輯思維能力和運(yùn)算能力,通過(guò)減法到加法的轉(zhuǎn)化,讓學(xué)生初步體會(huì)人歸的數(shù)學(xué)思想。
重點(diǎn)、難點(diǎn)
1、重點(diǎn):有理數(shù)減法法則及其應(yīng)用。
2、難點(diǎn):有理數(shù)減法法則的應(yīng)用符號(hào)的改變。
教學(xué)過(guò)程:
一、創(chuàng)設(shè)情景,導(dǎo)入新課
1、有理數(shù)加法運(yùn)算是怎樣做的?(-5)+3= —3+(—5)=
—3+(+5)=
2、-(-2)= -[-(+23)]=,+[-(-2)]=
3、20xx的某天,北京市的最高氣溫是-20C,最低氣溫是-100C,這天北京市的溫差是多少?
導(dǎo)語(yǔ):可見(jiàn),有理數(shù)的減法運(yùn)算在現(xiàn)實(shí)生活中也有著很廣泛的應(yīng)用。(出示課題)
二、合作交流,解讀探究
1(-2)-(-10)=8=(-2)+8
2:珠穆朗瑪峰海拔高度為8848米,與吐魯番盆地海拔高度為-155米,珠穆朗瑪峰比吐魯番盆地高多少米?
3、通過(guò)以上列式,你能發(fā)現(xiàn)減法運(yùn)算與加法運(yùn)算的關(guān)系嗎?
(學(xué)生分組討論,大膽發(fā)言,總結(jié)有理數(shù)的.減法法則)
減去一個(gè)數(shù)等于加上這個(gè)數(shù)的相反數(shù)
教師提問(wèn)、啟發(fā):(1)法則中的“減去一個(gè)數(shù)”,這個(gè)數(shù)指的是哪個(gè)數(shù)?“減去”兩字怎樣理解?(2)法則中的“加上這個(gè)數(shù)的相反數(shù)”“加上”兩字怎樣理解?“這個(gè)數(shù)的相反數(shù)”又怎樣理解?(3)你能用字母表示有理數(shù)減法法則嗎?
三、應(yīng)用遷移,鞏固提高
1、P.24例1 計(jì)算:
(1) 0-(-3.18)(2)(-10)-(-6)(3)-
解:(1)0-(-3.18)=0+3.18=3.18
(2)(-10)-(-6)=(-10)+6=-4
(3)-=+=1
2、課內(nèi)練習(xí):P.241、2、3
3、游戲:兩人一組,用撲克牌做有理數(shù)減法運(yùn)算游戲(每人27張牌,黑牌點(diǎn)數(shù)為正數(shù),紅牌點(diǎn)數(shù)為負(fù)數(shù),王牌點(diǎn)數(shù)為0。每人每次出一張牌,兩人輪流先出(先出者為被減數(shù)),先求出這兩張牌點(diǎn)數(shù)之差者獲勝,直至其中一人手中無(wú)牌為止)。
四、總結(jié)反思
(1) 有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
(2) 有理數(shù)減法的步驟:先變?yōu)榧臃,再改變減數(shù)的符號(hào),最后按有理數(shù)加法法則計(jì)算。
五、作業(yè)
P.27習(xí)題1.4A組1、2、5、6
備選題
填空:比2小-9的數(shù)是 。
а比а+2小 。
若а小于0,е是非負(fù)數(shù),則2а-3е 0。
初中數(shù)學(xué)教案10
一、背景
新課標(biāo)要求,應(yīng)讓學(xué)生在實(shí)際背景中理解基本的數(shù)量關(guān)系和變化規(guī)律,注重使學(xué)生經(jīng)歷從實(shí)際問(wèn)題中建立數(shù)學(xué)模型、估計(jì)、求解、驗(yàn)證解的正確性與合理性的過(guò)程。在實(shí)際工作中讓學(xué)生學(xué)會(huì)從具體問(wèn)題情景中抽象出數(shù)學(xué)問(wèn)題,使用各種數(shù)學(xué)語(yǔ)言表達(dá)問(wèn)題、建立數(shù)學(xué)關(guān)系式、獲得合理的解答、理解并掌握相應(yīng)的數(shù)學(xué)知識(shí)與技能,這些多數(shù)教師都注意到了,但要做好,還有一定難度。
二、教學(xué)片段
在剛過(guò)去的這個(gè)學(xué)期,我上了一節(jié)“一元一次不等式組的應(yīng)用”。
出示例題:小寶和爸爸、媽媽三人在操場(chǎng)上玩蹺蹺板,爸爸體重為72千克,坐在蹺蹺板的一端,體重只有媽媽一半的小寶和媽媽一同坐在另一端。這時(shí),爸爸的一端仍然著地,后來(lái)小寶借來(lái)一副質(zhì)量為6千克的啞鈴,加在他和媽媽坐的一端,結(jié)果,爸爸被高高地蹺起。猜猜看,小寶的`體重約多少千克?
我問(wèn)學(xué)生:“你們玩過(guò)蹺蹺板嗎?先看看題,一會(huì)請(qǐng)同學(xué)復(fù)述一下!睂W(xué)生復(fù)述后,基本已經(jīng)熟悉了題目。我接著讓學(xué)生思考:他們?nèi)俗藥状诬E蹺板?第一次坐時(shí)情況怎樣?第二次呢?學(xué)生議論了一會(huì)兒,自主發(fā)言,很快發(fā)現(xiàn)本題中存在的兩種文字形式的不等關(guān)系:
爸爸體重>小寶體重+媽媽體重
爸爸體重<小寶體重+媽媽體重+一副啞鈴重量
我引導(dǎo):你還能怎么判斷小寶體重?學(xué)生安靜了幾分鐘后,開(kāi)始議論。一學(xué)生舉手了:“可以列不等式組!蔽医o出提示:“小寶的體重應(yīng)該同時(shí)滿足上述的兩個(gè)條件。怎么把這個(gè)意思表達(dá)成數(shù)學(xué)式子呢?”這時(shí)學(xué)生們七嘴八舌地討論起來(lái),都搶著回答,我注意到一位平時(shí)不愛(ài)說(shuō)話的學(xué)生緊鎖眉頭,便讓他發(fā)言:“可以設(shè)小寶的體重為x千克,能列出兩個(gè)不等式?墒墙酉聛(lái)我就不知道了。”我聽(tīng)了心中一動(dòng),意識(shí)到這應(yīng)是思想滲透的好機(jī)會(huì),便解釋說(shuō):“我們?cè)诔踔袝?huì)遇到許多問(wèn)題都可以用類似的方法來(lái)研究解決,比方說(shuō)前面列方程組”不等我說(shuō)完,學(xué)生都齊聲答:“列不等式組。”全班12小組積極投入到解題活動(dòng)中了。5分鐘后,我請(qǐng)學(xué)生板演,自己下去巡查、指導(dǎo),發(fā)現(xiàn)學(xué)生的解題思路都很清楚,只是部分學(xué)生對(duì)答案的表達(dá)不夠準(zhǔn)確。于是提議學(xué)生說(shuō)說(shuō)列不等式組解應(yīng)用題分幾步,應(yīng)注意什么。此時(shí)學(xué)生也基本上形成了對(duì)不等式方法的完整認(rèn)識(shí)。我便出示拓展應(yīng)用課件:
一次考試共25道選擇題,做對(duì)一道得4分,做錯(cuò)一道減2分,不做得0分。若小明想確?荚嚦煽(jī)?cè)?0分以上,那么他至少要做對(duì)多少題?
設(shè)置這道題,既有調(diào)查本節(jié)課效果的意圖,也想鞏固拓展一下學(xué)生的思維。沒(méi)料到相當(dāng)多學(xué)生對(duì)“至少”一詞理解不準(zhǔn)確,導(dǎo)致失誤。這正好讓我們的“本課小結(jié)”填補(bǔ)了一個(gè)空白——弄清題目中描述數(shù)量關(guān)系的關(guān)鍵詞才是解題的關(guān)鍵。
三、反思
本節(jié)課講完后,我感到一絲欣慰,看到孩子們躍躍欲試的學(xué)習(xí)勁頭,突然領(lǐng)悟到:教師的教學(xué)行為至關(guān)重要,成功的教學(xué),能開(kāi)啟學(xué)生心靈的窗戶,能幫學(xué)生樹(shù)立學(xué)習(xí)的自信心。
本節(jié)課我有幾個(gè)深刻的感受:
1、在課前準(zhǔn)備的時(shí)候,我就覺(jué)得不等式組的應(yīng)用是個(gè)難點(diǎn)。所以在課堂教學(xué)中設(shè)置了幾個(gè)臺(tái)階,這也正好符合了循序漸進(jìn)的教學(xué)原則。
2、例題貼近學(xué)生實(shí)際,我在教學(xué)中有采用了更親近的教學(xué)語(yǔ)言,有利于激發(fā)學(xué)生的探究欲望。
初中數(shù)學(xué)教案11
【教學(xué)目標(biāo)】
1進(jìn)一步認(rèn)識(shí)方程及其解的概念。
2理解一元一次方程的概念,會(huì)根據(jù)簡(jiǎn)單數(shù)量關(guān)系列一元一次方程。 3體驗(yàn)用嘗試、檢驗(yàn)解一元一次方程的思想與方法。
【教學(xué)重點(diǎn)】
一元一次方程的概念和解法貫穿整章,因此“一元一次方程的概念”與“嘗試檢驗(yàn)法”求解是本節(jié)教學(xué)的重點(diǎn)。
【教學(xué)難點(diǎn)】
用嘗試、檢驗(yàn)的方法解一元一次方程的過(guò)程比較復(fù)雜,是本節(jié)教學(xué)的難點(diǎn)。
【學(xué)習(xí)準(zhǔn)備】
1.下面哪些式子是方程?
。1)3
(2)1;
。2)x31;
(3)3x5;
。4)2xy4;
。5)x31;
。6)3x14.
2.方程與等式有什么聯(lián)系與區(qū)別?
方程是解決實(shí)際問(wèn)題的一個(gè)重要數(shù)學(xué)模型,需要我們進(jìn)一步學(xué)習(xí)研究。
【課本導(dǎo)學(xué)】
思考一閱讀并解答課本第114頁(yè)“合作學(xué)習(xí)”的三個(gè)問(wèn)題,思考:
1.列方程就是根據(jù)問(wèn)題中的相等關(guān)系,寫(xiě)出含有未知數(shù)的等式。
。1)原價(jià)為50元的衣服,按8折銷售,售價(jià)是多少元?原價(jià)若為x元呢?
。2)你能舉例說(shuō)明你對(duì)“物體在水下,水深每增加10米,物體承受的壓力就增加
。3)張明投進(jìn)x個(gè),那么“小杰投進(jìn)的球的個(gè)數(shù)”可以怎樣表示?“3人一共投進(jìn)的球數(shù)”怎樣表示?
你是怎么理解“三人平均每人投進(jìn)14個(gè)球”這句話的?
思考二觀察你所列的方程,這些方程之間有哪些共同的特點(diǎn)?請(qǐng)思考:
1.你可以從哪些角度對(duì)這些方程進(jìn)行觀察呢?說(shuō)說(shuō)你的想法。
2.具有“合作學(xué)習(xí)”中所列方程一樣特點(diǎn)的方程叫做一元一次方程,你能說(shuō)說(shuō)這個(gè)名稱中“元”和“次”的含義嗎?[練習(xí)]完成課本第115頁(yè)課內(nèi)練習(xí)
1.『歸納』判斷一個(gè)方程是不是一元一次方程應(yīng)抓住哪幾個(gè)關(guān)鍵特點(diǎn)?
思考三閱讀課本第114頁(yè)倒數(shù)3行至第115頁(yè)正文結(jié)束,并思考下面的問(wèn)題:
1.(1)如果一個(gè)數(shù)是方程有什么關(guān)系?
。2)如果一個(gè)數(shù)是方程350應(yīng)該是多少?
(3)要判斷一個(gè)數(shù)是不是方程3m?2?1?m的解,你會(huì)怎么做?2.對(duì)方程2x12
14的解,這個(gè)數(shù)代入方程的左邊計(jì)算得到的值與14 3 1
x500的解,這個(gè)數(shù)代入方程的左邊計(jì)算得到的值10 2x12
14進(jìn)行嘗試求解時(shí),你認(rèn)為x必須是整數(shù)嗎
x可以取21嗎20呢?x可以取10或者比10還小的值嗎?為什么?說(shuō)說(shuō)你的想法。
[練習(xí)]完成課本第115頁(yè)課內(nèi)練習(xí)
2.『歸納』1.檢驗(yàn)一個(gè)數(shù)是不是一元一次方程的解的步驟有哪些?
2.用嘗試檢驗(yàn)的方法解一元一次方程,你覺(jué)得關(guān)鍵的.步驟有哪些?【盤(pán)點(diǎn)收獲】
【學(xué)習(xí)檢測(cè)】
1.下列說(shuō)法正確的是()
。╝)x1是等式(b)x1是方程(c)方程是等式(d)等式是方程
2.下列式子中,屬于一元一次方程的是()(a)5x 1
。╞)ab8(c)1257(d)5x82x9 3
3.設(shè)某數(shù)為x,根據(jù)下列條件列出求該數(shù)的方程:
。1)某數(shù)加上1,再乘以2,得6.
(2)某數(shù)與7的和的2倍等于10.
。3)某數(shù)的5倍比某數(shù)小3.
4.某校初一年級(jí)328名師生乘車外出春游,己有2輛校車可乘坐64人,還需租用44座的客車多少輛?
設(shè)還需租用x輛,則可列出方程44x+64=328.
(1)寫(xiě)出一個(gè)方程,使它的解是
2.【作業(yè)布置】略
【課后反思】
課堂教學(xué)總是在“預(yù)設(shè)”與“生成”間交融進(jìn)行,如何根據(jù)學(xué)情做好充分的預(yù)設(shè),又根據(jù)課堂生成靈活應(yīng)變,這既能反映教師的專業(yè)素養(yǎng),又能展示教師的教學(xué)功底.反芻本課,筆者認(rèn)為還有以下幾方面值得反思與改進(jìn):
1.忽略課堂“火花”,錯(cuò)失追問(wèn)良機(jī)
在交流對(duì)方程的共同特征探討的環(huán)節(jié),有一個(gè)同學(xué)直接說(shuō)出了“一元一次方程”的名稱.【片斷實(shí)錄】
師:討論好了吧.哪個(gè)小組先來(lái)說(shuō)說(shuō)你們所歸納的特點(diǎn).生8:這些等式都含有未知數(shù)的,用x或y來(lái)表示.師(板書(shū)):嗯,都含有未知數(shù),這個(gè)未知數(shù)呢,有的地方是x,有的地方是y.還有呢?生8:還有黑板上的所有等式都是一元一次方程.
師(驚喜):嗯,你都知道了所有的等式都是我們今天接下來(lái)要具體研究的一元一次方程,這位同學(xué)已經(jīng)預(yù)習(xí)了呢.我們看,剛才這位同學(xué)歸納了:都含有未知數(shù).那么請(qǐng)同學(xué)們看得更仔細(xì)一點(diǎn),未知數(shù)在這里具有什么特征呢?
不難看出,筆者在這里沒(méi)有很好地抓住學(xué)生的課堂即時(shí)生成資源,用一句“嗯,……,這位同學(xué)已經(jīng)預(yù)習(xí)了呢.”輕輕帶過(guò),仍然拉著學(xué)生回到了預(yù)設(shè)的軌道“……,請(qǐng)同學(xué)們看得更仔細(xì)一點(diǎn),未知數(shù)在這里具有什么特征呢?”如果當(dāng)時(shí)直接問(wèn)她“那么請(qǐng)你講講什
初中數(shù)學(xué)教案12
教學(xué)目標(biāo):
(1)能夠根據(jù)實(shí)際問(wèn)題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
。2)注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識(shí),培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣
重點(diǎn)難點(diǎn):
能夠根據(jù)實(shí)際問(wèn)題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
教學(xué)過(guò)程:
一、試一試
1.設(shè)矩形花圃的垂直于墻的一邊AB的長(zhǎng)為xm,先取x的一些值,算出矩形的另一邊BC的長(zhǎng),進(jìn)而得出矩形的面積ym2.試將計(jì)算結(jié)果填寫(xiě)在下表的空格中,
2.x的值是否可以任意取?有限定范圍嗎?
3.我們發(fā)現(xiàn),當(dāng)AB的長(zhǎng)(x)確定后,矩形的面積(y)也隨之確定, y是x的函數(shù),試寫(xiě)出這個(gè)函數(shù)的關(guān)系式,
對(duì)于1.,可讓學(xué)生根據(jù)表中給出的AB的長(zhǎng),填出相應(yīng)的BC的長(zhǎng)和面積,然后引導(dǎo)學(xué)生觀察表格中數(shù)據(jù)的變化情況,提出問(wèn)題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對(duì)前面提出的問(wèn)題的解答能作出什么猜想?讓學(xué)生思考、交流、發(fā)表意見(jiàn),達(dá)成共識(shí):當(dāng)AB的長(zhǎng)為5cm,BC的長(zhǎng)為10m時(shí),圍成的矩形面積最大;最大面積為50m2。 對(duì)于2,可讓學(xué)生分組討論、交流,然后各組派代表發(fā)表意見(jiàn)。形成共識(shí),x的值不可以任意取,有限定范圍,其范圍是0 <x <10。 對(duì)于3,教師可提出問(wèn)題,(1)當(dāng)AB=xm時(shí),BC長(zhǎng)等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函數(shù)關(guān)系式.
二、提出問(wèn)題
某商店將每件進(jìn)價(jià)為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過(guò)降低售價(jià)、增加銷售量的辦法來(lái)提高利潤(rùn),經(jīng)過(guò)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低0.1元,其銷售量可增加10件。將這種商品的售價(jià)降低多少時(shí),能使銷售利潤(rùn)最大? 在這個(gè)問(wèn)題中,可提出如下問(wèn)題供學(xué)生思考并回答:
1.商品的利潤(rùn)與售價(jià)、進(jìn)價(jià)以及銷售量之間有什么關(guān)系?
[利潤(rùn)=(售價(jià)-進(jìn)價(jià))×銷售量]
2.如果不降低售價(jià),該商品每件利潤(rùn)是多少元?一天總的利潤(rùn)是多少元?
[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降價(jià)x元,則每件商品的利潤(rùn)是多少元?一天可銷
售約多少件商品?
[(10-8-x);(100+100x)]
4.x的`值是否可以任意取?如果不能任意取,請(qǐng)求出它的范圍,
[x的值不能任意取,其范圍是0≤x≤2]
5.若設(shè)該商品每天的利潤(rùn)為y元,求y與x的函數(shù)關(guān)系式。
[y=(10-8-x) (100+100x)(0≤x≤2)]
將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:
y=-2x2+20x(0<x<10)……………………………(1) 將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為: y=-100x2+100x+20D (0≤x≤2)……………………(2)
三、觀察;概括
1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出以下問(wèn)題讓學(xué)生思考回答;
(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)?
(各有1個(gè))
(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式? (分別是二次多項(xiàng)式)
(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)?
(都是用自變量的二次多項(xiàng)式來(lái)表示的)
(4)本章導(dǎo)圖中的問(wèn)題以及P1頁(yè)的問(wèn)題2有什么共同特點(diǎn)? 讓學(xué)生討論、交流,發(fā)表意見(jiàn),歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。
2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).
四、課堂練習(xí)
1.(口答)下列函數(shù)中,哪些是二次函數(shù)?
(1)y=5x+1 (2)y=4x2-1
(3)y=2x3-3x2 (4)y=5x4-3x+1
2.P3練習(xí)第1,2題。
五、小結(jié)
1.請(qǐng)敘述二次函數(shù)的定義.
2,許多實(shí)際問(wèn)題可以轉(zhuǎn)化為二次函數(shù)來(lái)解決,請(qǐng)你聯(lián)系生活實(shí)際,編一道二次函數(shù)應(yīng)用題,并寫(xiě)出函數(shù)關(guān)系式。
六、作業(yè):略
初中數(shù)學(xué)教案13
教學(xué)目標(biāo)
。1)認(rèn)知目標(biāo)
理解并掌握分式的乘除法法則,能進(jìn)行簡(jiǎn)單的分式乘除法運(yùn)算,能解決一些與分式乘除有關(guān)的實(shí)際問(wèn)題。
。2)技能目標(biāo)
經(jīng)歷從分?jǐn)?shù)的乘除法運(yùn)算到分式的乘除法運(yùn)算的過(guò)程,培養(yǎng)學(xué)生類比的探究能力,加深對(duì)從特殊到一般數(shù)學(xué)的思想認(rèn)識(shí)。
。3)情感態(tài)度與價(jià)值觀
教學(xué)中讓學(xué)生在主動(dòng)探究,合作交流中滲透類比轉(zhuǎn)化的思想,使學(xué)生在學(xué)知識(shí)的同時(shí)感受探索的樂(lè)趣和成功的體驗(yàn)。
教學(xué)重難點(diǎn)
重點(diǎn):運(yùn)用分式的乘除法法則進(jìn)行運(yùn)算。
難點(diǎn):分子、分母為多項(xiàng)式的分式乘除運(yùn)算。
教學(xué)過(guò)程
。ㄒ唬┨岢鰡(wèn)題,引入課題
俗話說(shuō):“好的開(kāi)端是成功的一半”同樣,好的引入能激發(fā)學(xué)生興趣和求知欲。因此我用實(shí)際出發(fā)提出現(xiàn)實(shí)生活中的問(wèn)題:
問(wèn)題1:求容積的高是,(引出分式乘法的學(xué)習(xí)需要)。
問(wèn)題2:求大拖拉機(jī)的工作效率是小拖拉機(jī)的工作效率的倍,(引出分式除法的學(xué)習(xí)需要)。
從實(shí)際出發(fā),引出分式的乘除的實(shí)在存在意義,讓學(xué)生感知學(xué)習(xí)分式的乘法和除法的實(shí)際需要,從而激發(fā)學(xué)生興趣和求知欲。
。ǘ╊惐嚷(lián)想,探究新知
從學(xué)生熟悉的分?jǐn)?shù)的`乘除法出發(fā),引發(fā)學(xué)生的學(xué)習(xí)興趣。
解后總結(jié)概括:
。1)式是什么運(yùn)算?依據(jù)是什么?
。2)式又是什么運(yùn)算?依據(jù)是什么?能說(shuō)出具體內(nèi)容嗎?(如果有困難教師應(yīng)給于引導(dǎo),學(xué)生應(yīng)該能說(shuō)出依據(jù)的是:分?jǐn)?shù)的乘法和除法法則)教師加以肯定,并指出與分?jǐn)?shù)的乘除法法則類似,引導(dǎo)學(xué)生類比分?jǐn)?shù)的乘除法則,猜想出分式的乘除法則。
。ǚ质降某顺ǚ▌t)
乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母。
除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
(三)例題分析,應(yīng)用新知
師生活動(dòng):教師參與并指導(dǎo),學(xué)生獨(dú)立思考,并嘗試完成例題。
P11的例1,在例題分析過(guò)程中,為了突出重點(diǎn),應(yīng)多次回顧分式的乘除法法則,使學(xué)生耳熟能詳。P11例2是分子、分母為多單項(xiàng)式的分式乘除法則的運(yùn)用,為了突破本節(jié)課的難點(diǎn)我采取板演的形式,和學(xué)生一起詳細(xì)分析,提醒學(xué)生關(guān)注易錯(cuò)易漏的環(huán)節(jié),學(xué)會(huì)解題的方法。
。ㄋ模┚毩(xí)鞏固,培養(yǎng)能力
P13練習(xí)第2題的(1)、(3)、(4)與第3題的(2)。
師生活動(dòng):教師出示問(wèn)題,學(xué)生獨(dú)立思考解答,并讓學(xué)生板演或投影展示學(xué)生的解題過(guò)程。
通過(guò)這一環(huán)節(jié),主要是為了通過(guò)課堂跟蹤反饋,達(dá)到鞏固提高的目的,進(jìn)一步熟練解題的思路,也遵循了鞏固與發(fā)展相結(jié)合的原則。讓學(xué)生板演,一是為了暴露問(wèn)題,二是為了規(guī)范解題格式和結(jié)果。
。ㄎ澹┱n堂小結(jié),回扣目標(biāo)
引導(dǎo)學(xué)生自主進(jìn)行課堂小結(jié):
1、本節(jié)課我們學(xué)習(xí)了哪些知識(shí)?
2、在知識(shí)應(yīng)用過(guò)程中需要注意什么?
3、你有什么收獲呢?
師生活動(dòng):學(xué)生反思,提出疑問(wèn),集體交流。
。┎贾米鳂I(yè)
教科書(shū)習(xí)題6.2第1、2(必做)練習(xí)冊(cè)P(選做),我設(shè)計(jì)了必做題和選做題,必做題是對(duì)本節(jié)課內(nèi)容的一個(gè)反饋,選做題是對(duì)本節(jié)課知識(shí)的一個(gè)延伸。
板書(shū)設(shè)計(jì)
在本節(jié)課中我將采用提綱式的板書(shū)設(shè)計(jì),因?yàn)樘峋V式—條理清楚、從屬關(guān)系分明,給人以清晰完整的印象,便于學(xué)生對(duì)教材內(nèi)容和知識(shí)體系的理解和記憶。
初中數(shù)學(xué)教案14
教學(xué)目標(biāo)
。ㄒ唬┲R(shí)與能力
1.通過(guò)對(duì)不等式的復(fù)習(xí)和具體實(shí)例總結(jié)一元一次不等式組以及一元一次不等式組的解集的概念。2.通過(guò)例題教會(huì)學(xué)生解一元一次不等式組,并教會(huì)學(xué)生通過(guò)在數(shù)軸上表示不等式的解集得到不等式組的解集,讓學(xué)生感受數(shù)形結(jié)合的作用。
。ǘ┻^(guò)程與方法
1.創(chuàng)設(shè)情境,通過(guò)實(shí)例引導(dǎo)學(xué)生考慮多個(gè)不等式聯(lián)合的解法。2.通過(guò)例題總結(jié)解一元一次不等式組的方法,并總結(jié)一元一次不等式組的解與一元一次不等式的解之間的關(guān)系。
。ㄈ┣楦、態(tài)度與價(jià)值觀
1.通過(guò)數(shù)軸的表示不等式組的解,讓學(xué)生加深對(duì)數(shù)形結(jié)合的作用的理解,使他們逐步熟悉和掌握這一重要的思想方法。2.在對(duì)例題的講解中,使學(xué)生認(rèn)識(shí)一元一次不等式組的解集即每個(gè)不等式解集的公共部分,從而滲透“交集”的思想。
3.在解不等式組的過(guò)程中讓學(xué)生體會(huì)數(shù)學(xué)解題的直觀性和簡(jiǎn)潔性的數(shù)學(xué)美 教學(xué)重、難點(diǎn) 重點(diǎn):掌握一元一次不等式組的解法,會(huì)用數(shù)軸表示一元一次不等式組解集 的情況。難點(diǎn) :1.弄清一元一次不等式的解集與一元一次不等式組的解集之間的關(guān)系。2.靈活運(yùn)用一元一次不等式組的知識(shí)解決問(wèn)題。
教學(xué)過(guò)程
一.設(shè)置情景,引入課題
學(xué)生活動(dòng):請(qǐng)學(xué)生觀看購(gòu)物街轉(zhuǎn)轉(zhuǎn)盤(pán)游戲.(在看之前先讓學(xué)生看一看游戲規(guī)則:轉(zhuǎn)輪上平均分布著5、10、15一直到100共20個(gè)數(shù)字。每位選手最多有兩次機(jī)會(huì)。選手轉(zhuǎn)動(dòng)轉(zhuǎn)輪的數(shù)字之和,最大且不超過(guò)100者為勝出,可以獲得相應(yīng)的獎(jiǎng)品。選手每次必須把轉(zhuǎn)輪轉(zhuǎn)動(dòng)1圈才有效.)
設(shè)第三位選手第二次轉(zhuǎn)的數(shù)字為x,他要?jiǎng)俪鰬?yīng)滿足什么條件? 預(yù)設(shè)學(xué)生
1x?10?75,預(yù)設(shè)學(xué)生2
x?10?教師提出問(wèn)題:這兩個(gè)條件只需滿足一個(gè)還是缺一不可?
預(yù)設(shè)學(xué)生:同時(shí)具備??x?10?75
x?10?100?教師活動(dòng):
1、講解聯(lián)立符號(hào)的作用,并引入課題.2、給出定義:由幾個(gè)含有同一未知數(shù)的一元一次不等式所組成的一組不等式,叫做一元一次不等式組.【設(shè)計(jì)意圖】從一個(gè)學(xué)生感興趣的游戲入手.問(wèn)題的提出具有一定的現(xiàn)實(shí)性和探究性,目的是激發(fā)學(xué)生探究新知的欲望,在教師的引導(dǎo)下,將生活中的問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,從而引出本課題.學(xué)生活動(dòng)
用心找一找:下列不等式組中哪些是一元一次不等式組?
?3?x?4?2x?x?2?1?2y?7?6?x?2?2a?7?1?(1)?(2)?(3)?1(4)?(5)??5x?3?4x?1 3x?3?1x?33a?3?0?1????7?2x?6?3x??x?預(yù)設(shè)學(xué)生1:(2)(3)(4)(5)預(yù)設(shè)學(xué)生2:(2)(4)(5)預(yù)設(shè)學(xué)生3:(2)(4)
【設(shè)計(jì)意圖】教師組織學(xué)生分組討論,明析一元一次不等式組的定義.使學(xué)生進(jìn)一步明確“幾個(gè)含有同一個(gè)未知數(shù)的一元一次不等式組成.”
二、探索過(guò)程
問(wèn)題一:??x?10?75這兩個(gè)不等式的解分別是什么呢?
x?10?100??x?65 ?x?90?問(wèn)題二:怎么表示不等式組的解呢?
什么是不等式組的解呢?
【設(shè)計(jì)意圖】通過(guò)這兩個(gè)問(wèn)題的探討,讓學(xué)生在解不等式的.過(guò)程中得出不等式組的解法和不等式組的解的表示方法.文字語(yǔ)言:大于65小于或等于90的數(shù).圖形語(yǔ)言: O***0
數(shù)學(xué)式子:65<x≤90 學(xué)生活動(dòng):探究不等式組的解
問(wèn)題:求下列不等式組的解,并找出其中的規(guī)律(1)??x?3?x?2?x?3?x?3(2)?(3)?(4)? ?x?7?x??5?x?5?x?7學(xué)生預(yù)設(shè)1:通過(guò)數(shù)軸,能求出不等式組的解
學(xué)生預(yù)設(shè)2:找不出其中的規(guī)律
【設(shè)計(jì)意圖】讓學(xué)生利用數(shù)軸尋找不等式組的解,并表示出來(lái),引導(dǎo)學(xué)生找出其中的規(guī)律,培養(yǎng)學(xué)生善于現(xiàn)問(wèn)題、總結(jié)規(guī)律的能力
三、練習(xí)鞏固,拓展提高
學(xué)生活動(dòng):1.寫(xiě)出下列不等式組的解
(1)不等式組??x??5的解在數(shù)軸上表示為_(kāi)___________則不等式組的解為 x??2??x??5的解在數(shù)軸上表示為_(kāi)______________則不等式組的解?x??2(2)不等式組?為
(3)不等式組??x??1的解為 x?2??x??1的解為 x?2?(4)不等式組 ?2.選擇題:(1)不等式組??x?2的解是()x?2??2 ?2 C.無(wú)解 ?2(2)不等式組??x??2的負(fù)整數(shù)解是()x??3?A.–2,0,-1 B.-2 C.–2,-1 D.不能確定
【設(shè)計(jì)意圖】讓學(xué)生及時(shí)鞏固,準(zhǔn)確找出不等式組的解,在找不等式組的解的過(guò)程中引入整數(shù)解.四、合作小結(jié),課外探索 學(xué)生活動(dòng):
1每位同學(xué)寫(xiě)一個(gè)以x為未知數(shù)的一元一次不等式;
2、同桌的兩個(gè)不等式組在一起叫做什么?三位同學(xué)的不等式組在一起呢?
3、每位同學(xué)把你所寫(xiě)的不等式解出來(lái);
4、同桌所組成的不等式組的解是什么?
【設(shè)計(jì)意圖】通過(guò)問(wèn)題串,在生生、師生互動(dòng)的情況下,復(fù)習(xí)一元一次不等式組的定義和解.增強(qiáng)了學(xué)生之間的合作交流.五、布置作業(yè)
3個(gè)小組計(jì)劃在10天內(nèi)生產(chǎn)500件產(chǎn)品(每天生產(chǎn)量相同),按原先的生產(chǎn)速度,不能完成任務(wù);如果每個(gè)小組每天比原先多生產(chǎn)1件產(chǎn)品,就能提前完成任務(wù).每個(gè)小組原先每天生產(chǎn)多少件產(chǎn)品?
【設(shè)計(jì)意圖】通過(guò)實(shí)際問(wèn)題的解決,有利于學(xué)生體會(huì)到數(shù)學(xué)來(lái)源于生活,并能有效地復(fù)習(xí)鞏固本堂課所學(xué)的知識(shí)和方法.【板書(shū)設(shè)計(jì)】
一元一次不等式組 ?x?10?75??x?10?100?x?65 文字語(yǔ)言:大于??x?9065小于或等于90的數(shù).圖形語(yǔ)言: O***0數(shù)學(xué)式子:65<x≤90
求下列不等式組的解,并找出其中的規(guī)律(1)??x?3?x?7(2)??x?2?x?3?x??5(3)??x?5(4)規(guī)律:大大取大,小小取小;
大小小大中間找
大大小小為
初中數(shù)學(xué)教案15
教學(xué)目標(biāo)
1, 掌握有理數(shù)的概念,會(huì)對(duì)有理數(shù)按照一定的標(biāo)準(zhǔn)進(jìn)行分類,培養(yǎng)分類能力;
2, 了解分類的標(biāo)準(zhǔn)與分類結(jié)果的相關(guān)性,初步了解“集合”的含義;
3, 體驗(yàn)分類是數(shù)學(xué)上的常用處理問(wèn)題的方法。
教學(xué)難點(diǎn) 正確理解分類的標(biāo)準(zhǔn)和按照一定的標(biāo)準(zhǔn)進(jìn)行分類
知識(shí)重點(diǎn) 正確理解有理數(shù)的概念
教學(xué)過(guò)程(師生活動(dòng)) 設(shè)計(jì)理念
探索新知 在前兩個(gè)學(xué)段,我們已經(jīng)學(xué)習(xí)了很多不同類型的數(shù),通過(guò)上兩節(jié)課的學(xué)習(xí),又知道了現(xiàn)在的數(shù)包括了負(fù)數(shù),現(xiàn)在請(qǐng)同學(xué)們?cè)诓莞寮埳先我鈱?xiě)出3個(gè)數(shù)(同時(shí)請(qǐng)3個(gè)同學(xué)在黑板上寫(xiě)出).
問(wèn)題1:觀察黑板上的9個(gè)數(shù),并給它們進(jìn)行分類.
學(xué)生思考討論和交流分類的情況.
學(xué)生可能只給出很粗略的分類,如只分為“正數(shù)”和“負(fù)數(shù)”或“零”三類,此時(shí),教師應(yīng)給予引導(dǎo)和鼓勵(lì).
例如,
對(duì)于數(shù)5,可這樣問(wèn):5和5. 1有相同的類型嗎?5可以表示5個(gè)人,而5. 1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個(gè)的數(shù),我們就稱它為“正整數(shù)”,而5. 1不是整個(gè)的數(shù),稱為“正分?jǐn)?shù),,.…(由于小數(shù)可化為分?jǐn)?shù),以后把小數(shù)和分?jǐn)?shù)都稱為分?jǐn)?shù))
通過(guò)教師的引導(dǎo)、鼓勵(lì)和不斷完善,以及學(xué)生自己的概括,最后歸納出我們已經(jīng)學(xué)過(guò)的5類不同的數(shù),它們分別是“正整數(shù),零,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù),’.
按照書(shū)本的說(shuō)法,得出“整數(shù)”“分?jǐn)?shù)”和“有理數(shù)”的概念.
看書(shū)了解有理數(shù)名稱的由來(lái).
“統(tǒng)稱”是指“合起來(lái)總的名稱”的意思.
試一試:按照以上的分類,你能作出一張有理數(shù)的分類表嗎?你能說(shuō)出以上有理數(shù)的分類是以什么為標(biāo)準(zhǔn)的嗎?(是按照整數(shù)和分?jǐn)?shù)來(lái)劃分的) 分類是數(shù)學(xué)中解決問(wèn)題的常用手段,這個(gè)引入具有開(kāi)放的特點(diǎn),學(xué)生樂(lè)于參與
學(xué)生自己嘗試分類時(shí),可能會(huì)很粗略,教師給予引導(dǎo)和鼓勵(lì),劃分?jǐn)?shù)的類型要從文字所表示的意義上去引導(dǎo),這樣學(xué)生易于理解。
有理數(shù)的分類表要在黑板或媒體上展示,分類的標(biāo)準(zhǔn)要引導(dǎo)學(xué)生去體會(huì)
練一練 1,任意寫(xiě)出三個(gè)有理數(shù),并說(shuō)出是什么類型的數(shù),與同伴進(jìn)行交流.
2,教科書(shū)第10頁(yè)練習(xí).
此練習(xí)中出現(xiàn)了集合的'概念,可向?qū)W生作如下的說(shuō)明.
把一些數(shù)放在一起,就組成了一個(gè)數(shù)的集合,簡(jiǎn)稱“數(shù)集”,所有有理數(shù)組成的數(shù)集叫做有理數(shù)集.類似地,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有負(fù)數(shù)組成的數(shù)集叫做負(fù)數(shù)集……;
數(shù)集一般用圓圈或大括號(hào)表示,因?yàn)榧现械臄?shù)是無(wú)限的,而本題中只填了所給的幾個(gè)數(shù),所以應(yīng)該加上省略號(hào).
思考:上面練習(xí)中的四個(gè)集合合并在一起就是全體有理數(shù)的集合嗎?
也可以教師說(shuō)出一些數(shù),讓學(xué)生進(jìn)行判斷。
集合的概念不必深入展開(kāi)。
創(chuàng)新探究 問(wèn)題2:有理數(shù)可分為正數(shù)和負(fù)數(shù)兩大類,對(duì)嗎?為什么?
教學(xué)時(shí),要讓學(xué)生總結(jié)已經(jīng)學(xué)過(guò)的數(shù),鼓勵(lì)學(xué)生概括,通過(guò)交流和討論,教師作適當(dāng)?shù)闹笇?dǎo),逐步得到如下的分類表。
有理數(shù) 這個(gè)分類可視學(xué)生的程度確定是否有必要教學(xué)。
應(yīng)使學(xué)生了解分類的標(biāo)準(zhǔn)不一樣時(shí),分類的結(jié)果也是不同的,所以分類的標(biāo)準(zhǔn)要明確,使分類后每一個(gè)參加分類的象屬于其中的某一類而只能屬于這一類,教學(xué)中教師可舉出通俗易懂的例子作些說(shuō)明,可以按年齡,也可以按性別、地域來(lái)分等
小結(jié)與作業(yè)
課堂小結(jié) 到現(xiàn)在為止我們學(xué)過(guò)的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標(biāo)準(zhǔn)進(jìn)行分類,標(biāo)準(zhǔn)不同,分類的結(jié)果也不同。
本課作業(yè)
1, 必做題:教科書(shū)第18頁(yè)習(xí)題1.2第1題
2, 教師自行準(zhǔn)備
本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)
1,本課在引人了負(fù)數(shù)后對(duì)所學(xué)過(guò)的數(shù)按照一定的標(biāo)準(zhǔn)進(jìn)行分類,提出了有理數(shù)的概念.分類是數(shù)學(xué)中解決問(wèn)題的常用手段,通過(guò)本節(jié)課的學(xué)習(xí)使學(xué)生了解分類的思想并進(jìn)行簡(jiǎn)單的分類是數(shù)學(xué)能力的體現(xiàn),教師在教學(xué)中應(yīng)引起足夠的重視.關(guān)于分類標(biāo)準(zhǔn)與分類結(jié)果的關(guān)系,分類標(biāo)準(zhǔn)的確定可向?qū)W生作適當(dāng)?shù)臐B透,集合的概念比較抽象,學(xué)生真正接受需要很長(zhǎng)的過(guò)程,本課不要過(guò)多展開(kāi)。
2,本課具有開(kāi)放性的特點(diǎn),給學(xué)生提供了較大的思維空間,能促進(jìn)學(xué)生積極主動(dòng)地參加學(xué)習(xí),親自體驗(yàn)知識(shí)的形成過(guò)程,可避免直接進(jìn)行分類所帶來(lái)的枯燥性;同時(shí)還體現(xiàn)合作學(xué)習(xí)、交流、探究提高的特點(diǎn),對(duì)學(xué)生分類能力的養(yǎng)成有很好的作用。
3,兩種分類方法,應(yīng)以第一種方法為主,第二種方法可視學(xué)生的情況進(jìn)行。
【初中數(shù)學(xué)教案】相關(guān)文章:
初中數(shù)學(xué)教案06-03
初中數(shù)學(xué)教案【熱】04-02
初中數(shù)學(xué)教案15篇11-04
初中數(shù)學(xué)教案14篇03-26