- 相關(guān)推薦
初中數(shù)學圓教案
作為一位杰出的老師,常常需要準備教案,教案是備課向課堂教學轉(zhuǎn)化的關(guān)節(jié)點。教案應(yīng)該怎么寫才好呢?下面是小編整理的初中數(shù)學圓教案,僅供參考,大家一起來看看吧。
初中數(shù)學圓教案1
教學目標
1、初步掌握用直接開平方法解一元二次方程,會用直接開平方法解形如的方程;
2、初步掌握用配方法解一元二次方程,會用配方法解數(shù)字系數(shù)的一元二次方程;
3、掌握一元二次方程的求根公式的推導(dǎo),能夠運用求根公式解一元二次方程;
4、會用因式分解法解某些一元二次方程。
5、通過對一元二次方程解法的教學,使學生進一步理解“降次”的數(shù)學方法,進一步獲得對事物可以轉(zhuǎn)化的認識。
教學重點和難點
重點:一元二次方程的四種解法。
難點:選擇恰當?shù)姆椒ń庖辉畏匠獭?/p>
教學建議:
一、教材分析:
1、知識結(jié)構(gòu):一元二次方程的解法
2、重點、難點分析
。1)熟練掌握開平方法解一元二次方程
用開平方法解一元二次方程,一種是直接開平方法,另一種是配方法。
如果一元二次方程的一邊是未知數(shù)的.平方或含有未知數(shù)的一次式的平方,另一邊是一個非負數(shù),或完全平方式,如方程,和方程就可以直接開平方法求解,在開平方時注意取正、負兩個平方根。
配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,轉(zhuǎn)化為的形式來求解。配方時要注意把二次項系數(shù)化為1和方程兩邊都加上一次項系數(shù)一半的平方這兩個關(guān)鍵步驟。
。2)熟記求根公式和公式中字母的意義在使用求根公式時要注意以下三點:
1)把方程化為一般形式,并做到、之間沒有公因數(shù),且二次項系數(shù)為正整數(shù),這樣代入公式計算較為簡便。
2)把一元二次方程的各項系數(shù)、、代入公式時,注意它們的符號。
3)當時,才能求出方程的兩根。
。3)抓住方程特點,選用因式分解法解一元二次方程
如果一個一元二次方程的一邊是零,另一邊易于分解成兩個一次因式時,就可以用因式分解法求解。這時只要使每個一次因式等于零,分別解兩個一元一次方程,得到兩個根就是一元二次方程的解。
我們共學習了四種解一元二次方程的方法:直接開平方法;配方法;公式法和因式分解法。解方程時,要認真觀察方程的特征,選用適當?shù)姆椒ㄇ蠼狻?/p>
二、教法建議
1、教學方法建議采用啟發(fā)引導(dǎo),講練結(jié)合的授課方式,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學生主體地位,學生獲取知識必須通過學生自己一系列思維活動完成,啟發(fā)誘導(dǎo)學生深入思考問題,有利于培養(yǎng)學生思維靈活、嚴謹、深刻等良好思維品質(zhì)、
2.注意培養(yǎng)應(yīng)用意識、教學中應(yīng)不失時機地使學生認識到數(shù)學源于實踐并反作用于實踐、
初中數(shù)學圓教案2
教學目標:
(1)理解圓周角的概念,掌握圓周角的兩個特征、定理的內(nèi)容及簡單應(yīng)用;
。2)繼續(xù)培養(yǎng)學生觀察、分析、想象、歸納和邏輯推理的能力;
。3)滲透由“特殊到一般”,由“一般到特殊”的數(shù)學思想方法.
教學重點:
圓周角的概念和圓周角定理
教學難點:
圓周角定理的證明中由“一般到特殊”的數(shù)學思想方法和完全歸納法的數(shù)學思想.
教學活動設(shè)計:
。ㄔ诮處熤笇(dǎo)下完成)
(一)圓周角的概念
1、復(fù)習提問:
(1)什么是圓心角?
答:頂點在圓心的角叫圓心角.
(2)圓心角的度數(shù)定理是什么?
答:圓心角的度數(shù)等于它所對弧的度數(shù).(如右圖)
2、引題圓周角:
如果頂點不在圓心而在圓上,則得到如左圖的新的角∠ACB,它就是圓周角.(如右圖)(演示圖形,提出圓周角的定義)
定義:頂點在圓周上,并且兩邊都和圓相交的角叫做圓周角
3、概念辨析:
教材P93中1題:判斷下列各圖形中的是不是圓周角,并說明理由.
學生歸納:一個角是圓周角的條件:①頂點在圓上;②兩邊都和圓相交.
。ǘ﹫A周角的定理
1、提出圓周角的度數(shù)問題
問題:圓周角的度數(shù)與什么有關(guān)系?
經(jīng)過電腦演示圖形,讓學生觀察圖形、分析圓周角與圓心角,猜想它們有無關(guān)系.引導(dǎo)學生在建立關(guān)系時注意弧所對的圓周角的三種情況:圓心在圓周角的一邊上、圓心在圓周角內(nèi)部、圓心在圓周角外部.
(在教師引導(dǎo)下完成)
。1)當圓心在圓周角的一邊上時,圓周角與相應(yīng)的圓心角的關(guān)系:(演示圖形)觀察得知圓心在圓周角上時,圓周角是圓心角的一半.
提出必須用嚴格的數(shù)學方法去證明.
證明: (圓心在圓周角上)
。2)其它情況,圓周角與相應(yīng)圓心角的關(guān)系:
當圓心在圓周角外部時(或在圓周角內(nèi)部時)引導(dǎo)學生作輔助線將問題轉(zhuǎn)化成圓心在圓周角一邊上的情況,從而運用前面的結(jié)論,得出這時圓周角仍然等于相應(yīng)的圓心角的結(jié)論.
證明:作出過C的直徑(略)
圓周角定理: 一條弧所對的'
周角等于它所對圓心角的一半.
說明:這個定理的證明我們分成三種情況.這體現(xiàn)了數(shù)學中的分類方法;在證明中,后兩種都化成了第一種情況,這體現(xiàn)數(shù)學中的化歸思想.(對A層學生滲透完全歸納法)
(三)定理的應(yīng)用
1 、例題:如圖?? OA、OB、OC都是圓O的半徑,∠AOB=2∠BOC.
求證:∠ACB=2∠BAC
讓學生自主分析、解得,教師規(guī)范推理過程.
說明:①推理要嚴密;②符號“”應(yīng)用要嚴格,教師要講清.
2、鞏固練習:
(1)如圖,已知圓心角∠AOB=100°,求圓周角∠ACB、∠ADB的度數(shù)?
。2)一條弦分圓為1:4兩部分,求這弦所對的圓周角的度數(shù)?
說明:一條弧所對的圓周角有無數(shù)多個,卻這條弧所對的圓周角的度數(shù)只有一個,但一條弦所對的圓周角的度數(shù)只有兩個.
。ㄋ模┛偨Y(jié)
知識:(1)圓周角定義及其兩個特征;(2)圓周角定理的內(nèi)容.
思想方法:一種方法和一種思想:
在證明中,運用了數(shù)學中的分類方法和“化歸”思想.分類時應(yīng)作到不重不漏;化歸思想是將復(fù)雜的問題轉(zhuǎn)化成一系列的簡單問題或已證問題.
。ㄎ澹┳鳂I(yè)教材P100中習題A組6,7,8
第二、三課時圓周角(二、三)
教學目標:
。1)掌握圓周角定理的三個推論,并會熟練運用這些知識進行有關(guān)的計算和證明;
。2)進一步培養(yǎng)學生觀察、分析及解決問題的能力及邏輯推理能力;
(3)培養(yǎng)添加輔助線的能力和思維的廣闊性.
教學重點:圓周角定理的三個推論的應(yīng)用.
教學難點:三個推論的靈活應(yīng)用以及輔助線的添加.
教學活動設(shè)計:
。ㄒ唬﹦(chuàng)設(shè)學習情境
問題1 :畫一個圓,以B、C為弧的端點能畫多少個圓周角?它們有什么關(guān)系?
問題2 :在⊙O中,若=,能否得到∠C=∠G呢?根據(jù)什么?反過來,若土∠C=∠G,是否得到=呢?
。ǘ┓治觥⒀芯、交流、歸納
讓學生分析、研究,并充分交流.
注意:①問題解決,只要構(gòu)造圓心角進行過渡即可;②若=,則∠C=∠G;但反之不成立.
老師組織學生歸納:
推論1 :同弧或等弧所對的圓周角相等;在同圓或等圓中,相等的圓周角所對的弧也相等.
重視:同弧說明是“同一個圓”;等弧說明是“在同圓或等圓中”.
問題:“同弧”能否改成“同弦”呢?同弦所對的圓周角一定相等嗎?(學生通過交流獲得知識)
問題3 :(1)一個特殊的圓弧——半圓,它所對的圓周角是什么樣的角?
(2)如果一條弧所對的圓周角是90°,那么這條弧所對的圓心角是什么樣的角?
學生通過以上兩個問題的解決,在教師引導(dǎo)下得推論2:
推論2 :半圓(或直徑)所對的圓周角是直角;90 °的圓周角所對的弦直徑.
指出:這個推論是圓中一個很重要的性質(zhì),為在圓中確定直角、成垂直關(guān)系創(chuàng)造了條件,要熟練掌握.
啟發(fā)學生根據(jù)推論2推出推論3:
推論3 :如果三角形一邊上的中線等于這邊的一半,那么這個三角是直角三角形.
指出:推論3是下面定理的逆定理:在直角三角形中,斜邊上的中線等于斜邊的一半.
。ㄈ⿷(yīng)用、反思
例1、如圖,AD是△ABC的高,AE是△ABC的外接圓直徑.
求證:AB·AC=AE·AD.
對A層同學,讓學生自主地分析問題、解決問題,進行生生交流,師生交流;其他層次的學生在教師引導(dǎo)下完成.
交流:①分析解題思路;②作輔助線的方法;③解題推理過程(要規(guī)范).
解(略)
教師引導(dǎo)學生思考:(1)此題還有其它證法嗎?(2)比較以上證法的優(yōu)缺點.
指出:在解圓的有關(guān)問題時,常常需要添加輔助線,構(gòu)成直徑上的圓周角,以便利用直徑上的圓周角是直角的性質(zhì).
變式練習1:如圖,△ABC內(nèi)接于⊙O,∠1=∠2.
求證:AB·AC=AE·AD.
變式練習2:如圖,已知△ABC內(nèi)接于⊙O,弦AE平分
∠BAC交BC于D.
求證:AB·AC=AE·AD.
指出:這組題目比較典型,圓和相似三角形有密切聯(lián)系,證明圓中某些線段成比例,常常需要找出或通過輔助線構(gòu)造出相似三角形.
例2:如圖,已知在⊙O中,直徑AB為10厘米,弦AC為6厘米,∠ACB的平分線交⊙O于D;
求BC,AD和BD的長.
解:(略)
說明:充分利用直徑所對的圓周角為直角,解直角三角形.
練習:教材P96中1、2
(四)小結(jié)(指導(dǎo)學生共同小結(jié))
知識:本節(jié)課主要學習了圓周角定理的三個推論.這三個推論各具特色,作用各異,在今后的學習中應(yīng)用十分廣泛,應(yīng)熟練掌握.
能力:在解圓的有關(guān)問題時,常常需要添加輔助線,構(gòu)成直徑所對的圓周角或構(gòu)成相似三角形,這種基本技能技巧一定要掌握.
。ㄎ澹┳鳂I(yè)
教材P100.習題A組9、10、12、13、14題;另外A層同學做P102B組3,4題.
探究活動
我們已經(jīng)學習了“圓周角的度數(shù)等于它所對的弧的度數(shù)的一半”,但當角的頂點在圓外(如圖①稱圓外角)或在圓內(nèi)(如圖②稱圓內(nèi)角),它的度數(shù)又和什么有關(guān)呢?請?zhí)骄浚?/p>
提示:(1)連結(jié)BC,可得∠E=(的度數(shù)—的度數(shù))
(2)延長AE、CE分別交圓于B、D,則∠B=的度數(shù),
∠C=的度數(shù),
∴∠AEC=∠B+∠C=(的度數(shù)+的度數(shù)).
初中數(shù)學圓教案3
教學目標:
1、使學生理解直線和圓的相交、相切、相離的概念。
2、掌握直線與圓的位置關(guān)系的性質(zhì)與判定并能夠靈活運用來解決實際問題。
3、培養(yǎng)學生把實際問題轉(zhuǎn)化為數(shù)學問題的能力及分類和化歸的能力。
重點難點:
1、重點:直線與圓的三種位置關(guān)系的概念。
2、難點:運用直線與圓的位置關(guān)系的性質(zhì)及判定解決相關(guān)的問題。
教學過程:
一、復(fù)習引入
1、提問:復(fù)習點和圓的三種位置關(guān)系。
。康模鹤寣W生將點和圓的位置關(guān)系與直線和圓的位置關(guān)系進行類比,以便更好的掌握直線和圓的位置關(guān)系)
2、由日出升起過程當中的三個特殊位置引入直線與圓的位置關(guān)系問題。
。康模鹤寣W生感知直線和圓的位置關(guān)系,并培養(yǎng)學生把實際問題抽象成數(shù)學模型的能力)
二、定義、性質(zhì)和判定
1、結(jié)合關(guān)于日出的三幅圖形,通過學生討論,給出直線與圓的三種位置關(guān)系的定義。
。1)線和圓有兩個公共點時,叫做直線和圓相交。這時直線叫做圓的割線。
(2)直線和圓有唯一的公點時,叫做直線和圓相切。這時直線叫做圓的切線。唯一的公共點叫做切點。
。3)直線和圓沒有公共點時,叫做直線和圓相離。
2、直線和圓三種位置關(guān)系的`性質(zhì)和判定:
如果⊙O半徑為r,圓心O到直線l的距離為d,那么:
。1)線l與⊙O相交d<r
(2)直線l與⊙O相切d=r
。3)直線l與⊙O相離d>r
三、例題分析:
例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C為圓心,r為半徑。
①當r=時,圓與AB相切。
、诋攔=2cm時,圓與AB有怎樣的位置關(guān)系,為什么?
、郛攔=3cm時,圓與AB又是怎樣的位置關(guān)系,為什么?
④思考:當r滿足什么條件時圓與斜邊AB有一個交點?
四、小結(jié)(學生完成)
五、隨堂練習:
(1)直線和圓有種位置關(guān)系,是用直線和圓的個數(shù)來定義的;這也是判斷直線和圓的位置關(guān)系的重要方法。
(2)已知⊙O的直徑為13cm,直線L與圓心O的距離為d。
、佼攄=5cm時,直線L與圓的位置關(guān)系是;
②當d=13cm時,直線L與圓的位置關(guān)系是;
、郛攄=6。5cm時,直線L與圓的位置關(guān)系是;
。康模褐本和圓的位置關(guān)系的判定的應(yīng)用)
(3)⊙O的半徑r=3cm,點O到直線L的距離為d,若直線L與⊙O至少有一個公共點,則d應(yīng)滿足的條件是()
(A)d=3 (B)d≤3 (C)d<3 d="">3