亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

二次根式教案

時(shí)間:2023-04-25 12:33:35 教案大全 我要投稿

二次根式教案模板匯編8篇

  作為一名為他人授業(yè)解惑的教育工作者,編寫教案是必不可少的,教案是教學(xué)活動(dòng)的總的組織綱領(lǐng)和行動(dòng)方案。如何把教案做到重點(diǎn)突出呢?以下是小編精心整理的二次根式教案8篇,希望對(duì)大家有所幫助。

二次根式教案模板匯編8篇

二次根式教案 篇1

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  二次根式的性質(zhì)。

  2.內(nèi)容解析

  本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個(gè)基本性質(zhì).

  對(duì)于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過 “探究”欄目中給出四個(gè)具體問題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進(jìn)行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn)為:理解二次根式的性質(zhì).

  二、目標(biāo)和目標(biāo)解析

  1.教學(xué)目標(biāo)

 。1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;

  (2)會(huì)運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);

  (3)了解代數(shù)式的概念.

  2.目標(biāo)解析

 。1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會(huì)用符號(hào)表述這一性質(zhì);

 。2)學(xué)生能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);

 。3)學(xué)生能從已學(xué)過的各種式子中,體會(huì)其共同特點(diǎn),得出代數(shù)式的概念.

  三、教學(xué)問題診斷分析

  二次根式的性質(zhì)是二次根式化簡(jiǎn)和運(yùn)算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn)和解決一些綜合性較強(qiáng)的問題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對(duì)二次根式性質(zhì)的靈活運(yùn)用存在一定的困難,突破這一難點(diǎn)需要教師精心設(shè)計(jì)好每一道習(xí)題,讓學(xué)生在練習(xí)中進(jìn)一步掌握二次根式的.性質(zhì),培養(yǎng)其靈活運(yùn)用的能力.

  本節(jié)課的教學(xué)難點(diǎn)為:二次根式性質(zhì)的靈活運(yùn)用.

  四、教學(xué)過程設(shè)計(jì)

  1.探究性質(zhì)1

  問題1 你能解釋下列式子的含義嗎?

  師生活動(dòng):教師引導(dǎo)學(xué)生說出每一個(gè)式子的含義.

  【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)非負(fù)數(shù)的算術(shù)平方根的平方.

  問題2 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

  師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

  【設(shè)計(jì)意圖】學(xué)生通過計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.

  問題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?

  師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0).

  【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.

  例2 計(jì)算

  (1) ;(2) .

  師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.

  【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)1,學(xué)會(huì)靈活運(yùn)用.

  2.探究性質(zhì)2

  問題4 你能解釋下列式子的含義嗎?

  師生活動(dòng):教師引導(dǎo)學(xué)生說出每一個(gè)式子的含義.

  【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)數(shù)的平方的算術(shù)平方根.

  問題5 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

  師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

  【設(shè)計(jì)意圖】學(xué)生通過計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.

  問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?

  師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)

  【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.

  例3 計(jì)算

 。1) ;(2) .

  師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.

  【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)2,學(xué)會(huì)靈活運(yùn)用.

  3.歸納代數(shù)式的概念

  問題7 回顧我們學(xué)過的式子,如, ( ≥0),這些式子有哪些共同特征?

  師生活動(dòng):學(xué)生概括式子的共同特征,得出代數(shù)式的概念.

  【設(shè)計(jì)意圖】學(xué)生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.

  4.綜合運(yùn)用

  (1)算一算:

  【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號(hào).

  (2)想一想: 中, 的取值范圍是什么?當(dāng) ≥0時(shí), 等于多少?當(dāng) 時(shí), 又等于多少?

  【設(shè)計(jì)意圖】通過此問題的設(shè)計(jì),加深學(xué)生對(duì) 的理解,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

 。3)談一談你對(duì) 與 的認(rèn)識(shí).

  【設(shè)計(jì)意圖】加深學(xué)生對(duì)二次根式性質(zhì)的理解.

  5.總結(jié)反思

  (1)你知道了二次根式的哪些性質(zhì)?

  (2)運(yùn)用二次根式性質(zhì)進(jìn)行化簡(jiǎn)需要注意什么?

  (3)請(qǐng)談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?

  (4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類字母表示數(shù)得到的式子?說說你對(duì)代數(shù)式的認(rèn)識(shí).

  6.布置作業(yè):教科書習(xí)題16.1第2,4題.

  五、目標(biāo)檢測(cè)設(shè)計(jì)

  1. ; ; .

  【設(shè)計(jì)意圖】考查對(duì)二次根式性質(zhì)的理解.

  2.下列運(yùn)算正確的是( )

  A. B. C. D.

  【設(shè)計(jì)意圖】考查學(xué)生運(yùn)用二次根式的性質(zhì)進(jìn)行化簡(jiǎn)的能力.

  3.若 ,則 的取值范圍是 .

  【設(shè)計(jì)意圖】考查學(xué)生對(duì)一個(gè)數(shù)非負(fù)數(shù)的算術(shù)平方根的理解.

  4.計(jì)算: .

  【設(shè)計(jì)意圖】考查二次根式性質(zhì)的靈活運(yùn)用.

二次根式教案 篇2

  【1】二次根式的加減教案

  教材分析:

  本節(jié)內(nèi)容出自九年級(jí)數(shù)學(xué)上冊(cè)第二十一章第三節(jié)的第一課時(shí),本節(jié)在研究最簡(jiǎn)二次根式和二次根式的乘除的基礎(chǔ)上,來學(xué)習(xí)二次根式的加減運(yùn)算法則和進(jìn)一步完善二次根式的化簡(jiǎn)。本小節(jié)重點(diǎn)是二次根式的加減運(yùn)算,教材從一個(gè)實(shí)際問題引出二次根式的加減運(yùn)算,使學(xué)生感到研究二次根式的加減運(yùn)算是解決實(shí)際問題的需要。通過探索二次根式加減運(yùn)算,并用其解決一些實(shí)際問題,來提高我們用數(shù)學(xué)解決實(shí)際問題的意識(shí)和能力。另外,通過本小節(jié)學(xué)習(xí)為后面學(xué)生熟練進(jìn)行二次根式的加減運(yùn)算以及加、減、乘、除混合運(yùn)算打下了鋪墊。

  學(xué)生分析:

  本節(jié)課的內(nèi)容是知識(shí)的延續(xù)和創(chuàng)新,學(xué)生積極主動(dòng)的投入討論、交流、建構(gòu)中,自主探索、動(dòng)手操作、協(xié)作交流,全班學(xué)生具有較扎實(shí)的知識(shí)和創(chuàng)新能力,通過自學(xué)、小組討論大部分學(xué)生能夠達(dá)到教學(xué)目標(biāo),少部分學(xué)生有困難,基礎(chǔ)差、自學(xué)能力差,因此要提供賞識(shí)性評(píng)價(jià)教學(xué)策略,給予個(gè)別關(guān)照、心理暗示以及適當(dāng)?shù)木窦?lì),克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的學(xué)習(xí)任務(wù)。

  設(shè)計(jì)理念:

  新課程有效課堂教學(xué)明確倡導(dǎo),學(xué)生是學(xué)習(xí)的主人,在學(xué)生自學(xué)文本的基礎(chǔ)上動(dòng)手實(shí)踐、自主探究、合作交流,來倡導(dǎo)新的學(xué)習(xí)觀,讓他們完成二次根式加減知識(shí)研究。教師從過去知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生的自主性、探究性、合作性學(xué)習(xí)活動(dòng)的設(shè)計(jì)者和組織者,與學(xué)生零距離接觸共同探究。在教學(xué)過程中教師設(shè)置開放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問題情境,使學(xué)生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學(xué)”變成“我要學(xué)”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略,并根據(jù)活動(dòng)中示范和指導(dǎo)培養(yǎng)學(xué)生大膽闡述并討論觀點(diǎn),說明所獲討論的有效性,并對(duì)推論進(jìn)行評(píng)價(jià)。從而營(yíng)造一個(gè)接納的、支持的、寬容的良好氛圍進(jìn)行學(xué)習(xí)。

  教學(xué)目標(biāo)知識(shí)與技能目標(biāo):

  會(huì)化簡(jiǎn)二次根式,了解同類二次根式的概念,會(huì)進(jìn)行簡(jiǎn)單的二次根式的加減法;通過加減運(yùn)算解決生活的實(shí)際問題。

  過程與方法目標(biāo):

  通過類比整式加減法運(yùn)算體驗(yàn)二次根式加減法運(yùn)算的過程;學(xué)生經(jīng)歷由實(shí)際問題引入數(shù)學(xué)問題的過程,發(fā)展學(xué)生的抽象概括能力。

  情感態(tài)度與價(jià)值觀:

  通過對(duì)二次根式加減法的探究,激發(fā)學(xué)生的探索熱情,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,使他們體驗(yàn)到成功的.樂趣.

  重點(diǎn)、難點(diǎn):重點(diǎn):

  合并被開放數(shù)相同的同類二次根式,會(huì)進(jìn)行簡(jiǎn)單的二次根式的加減法。

  難點(diǎn):

  二次根式加減法的實(shí)際應(yīng)用。

  關(guān)鍵問題 :

  了解同類二次根式的概念,合并同類二次根式,會(huì)進(jìn)行二次根式的加減法。

  教學(xué)方法:.

  1. 引導(dǎo)發(fā)現(xiàn)法:在教師的啟發(fā)引導(dǎo)下,鼓勵(lì)學(xué)生積極參與,與實(shí)際問題相結(jié)合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學(xué)生自主探索,合作學(xué)習(xí),歸納結(jié)論,掌握規(guī)律。

  2. 類比法:由實(shí)際問題導(dǎo)入二次根式加減運(yùn)算;類比合并同類項(xiàng)合并同類二次根式。

  3.嘗試訓(xùn)練法:通過學(xué)生嘗試,教師針對(duì)個(gè)別問題進(jìn)行點(diǎn)撥指導(dǎo),實(shí)現(xiàn)全優(yōu)的教育效果。

  【2】二次根式的加減教案

  教學(xué)目標(biāo):

  1.知識(shí)目標(biāo):二次根式的加減法運(yùn)算

  2.能力目標(biāo):能熟練進(jìn)行二次根式的加減運(yùn)算,能通過二次根式的加減法運(yùn)算解決實(shí)際問題。

  3.情感態(tài)度:培養(yǎng)學(xué)生善于思考,一絲不茍的科學(xué)精神。

  重難點(diǎn)分析:

  重點(diǎn):能熟練進(jìn)行二次根式的加減運(yùn)算。

  難點(diǎn):正確合并被開方數(shù)相同的二次根式,二次根式加減法的實(shí)際應(yīng)用。

  教學(xué)關(guān)鍵:通過復(fù)習(xí)舊知識(shí),運(yùn)用類比思想方法,達(dá)到溫故知新的目的;運(yùn)用創(chuàng)設(shè)問題激發(fā)學(xué)生求知欲;通過學(xué)生全面參與學(xué)習(xí)(分層次要求),達(dá)到每個(gè)學(xué)生在學(xué)習(xí)數(shù)學(xué)上有不同的發(fā)展。

  運(yùn)用教具:小黑板等。

  教學(xué)過程:

問題與情景

師生活動(dòng)

設(shè)計(jì)目的

活動(dòng)一:

情景引入,導(dǎo)學(xué)展示

1.把下列二次根式化為最簡(jiǎn)二次根式: , ; , , 。上述兩組二次根式,有什么特點(diǎn)?

2.現(xiàn)有一塊長(zhǎng)7.5dm、寬5dm的木板,能否采用如教科書圖21.3-所示的方式,在這塊木板上截出兩個(gè)面積分別是8dm 和18dm 的正方形木板?

這道題是舊知識(shí)的回顧,老師可以找同學(xué)直接回答。對(duì)于問題,老師要關(guān)注:學(xué)生是否能熟練得到正確答案。 教師傾聽學(xué)生的交流,指導(dǎo)學(xué)生探究。

問:什么樣的二次根式能進(jìn)行加減運(yùn)算,運(yùn)算到那一步為止。

由此也可以看到二次根式的加減只有通過找出被開方數(shù)相同的二次根式的途徑,才能進(jìn)行加減。

加強(qiáng)新舊知識(shí)的聯(lián)系。通過觀察,初步認(rèn)識(shí)同類二次根式。

引出二次根式加減法則。

3. A、B層同學(xué)自主學(xué)習(xí)15頁例1、例2、例3,C層同學(xué)至少完成例1、例2的學(xué)習(xí)。

例1.計(jì)算:

(1) ;

(2) - ;

例2. 計(jì)算:

1)

2)

例3.要焊接一個(gè)如教科書圖21.3—2所示的鋼架,大約需要多少米鋼材(精確到0.1米)?

活動(dòng)二:分層練習(xí),合作互助

1.下列計(jì)算是否正確?為什么?

(1)

(2) ;

(3) 。

2.計(jì)算:

(1) ;

(2)

(3)

(4)

3.(見課本16頁)

補(bǔ)充:

活動(dòng)三:分層檢測(cè),反饋小結(jié)

教材17頁習(xí)題:

A層、 B層:2、3.

C層1、2.

小結(jié):

這節(jié)課你學(xué)到了什么知識(shí)?你有什么收獲?

作業(yè):課堂練習(xí)冊(cè)第5、6頁。

自學(xué)的同時(shí)抽查部分同學(xué)在黑板上板書計(jì)算過程。抽2名C層同學(xué)在黑板上完成例1板書過程,學(xué)生在計(jì)算時(shí)若出現(xiàn)錯(cuò)誤,抽2名B層同學(xué)訂正。抽2名B層同學(xué)在黑板上完成例2板書過程,若出現(xiàn)錯(cuò)誤,再抽2名A層同學(xué)訂正。抽1名A層同學(xué)在黑板上完成例3板書過程,并做適當(dāng)?shù)腵分析講解。

此題是聯(lián)系實(shí)際的題目,需要學(xué)生先列式,再計(jì)算。并將結(jié)果精確到0.1 m, 學(xué)生考慮問題要全面,不能漏掉任何一段鋼材。

老師提示:

1)解決問題的方案是否得當(dāng);2)考慮的問題是否全面。3)計(jì)算是否準(zhǔn)確。

A層同學(xué)完成16頁練習(xí)1、2、3;B層同學(xué)完成練習(xí)1、2,可選做第3題;C層同學(xué)盡量完成練習(xí)1、2。多數(shù)同學(xué)完成后,讓學(xué)生在小組內(nèi)互相檢查,有問題時(shí)共同分析矯正或請(qǐng)教老師。也可以抽查部分同學(xué)。例如:抽3名C層同學(xué)口答練習(xí)1;抽4名B層或C層同學(xué)在黑板上板書練習(xí)第2題;抽1名A層或B層同學(xué)在黑板上板書練習(xí)第3題后再分析講解。

點(diǎn)撥:1)對(duì) 的化簡(jiǎn)是否正確;2)當(dāng)根式中出現(xiàn)小數(shù)、分?jǐn)?shù)、字母時(shí),是否能正確處理;

3)運(yùn)算法則的運(yùn)用是否正確

先測(cè)試,再小組內(nèi)互批,查找問題。學(xué)生反思本節(jié)課學(xué)到的知識(shí),談自己的感受。

小結(jié)時(shí)教師要關(guān)注:

1)學(xué)生是否抓住本課的重點(diǎn);

2)對(duì)于常見錯(cuò)誤的認(rèn)識(shí)。

把學(xué)習(xí)目標(biāo)由高到低分為A、B、C三個(gè)層次,教學(xué)中做到分層要求。

學(xué)生學(xué)習(xí)經(jīng)歷由淺到深的過程,可以提高學(xué)生能力,同時(shí)有利于激發(fā)學(xué)生的探索知識(shí)的欲望。

二次根式的加減運(yùn)算融入實(shí)際問題中去,提高了學(xué)生的學(xué)習(xí)興趣和對(duì)數(shù)學(xué)知識(shí)的應(yīng)用意識(shí)和能力。

小組成員互相檢查學(xué)生對(duì)于新的知識(shí)掌握的情況,鞏固學(xué)生剛掌握的知識(shí)能力。達(dá)到共同把關(guān)、合作互助的目的。

培養(yǎng)學(xué)生的計(jì)算的準(zhǔn)確性,以培養(yǎng)學(xué)生科學(xué)的精神。

對(duì)課堂的問題及時(shí)反饋,使學(xué)生熟練掌握新知識(shí)。

每個(gè)學(xué)生對(duì)于知識(shí)的理解程度不同,學(xué)生回答時(shí)教師要多鼓勵(lì)學(xué)生。

二次根式教案 篇3

  教學(xué)設(shè)計(jì)思想

  新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實(shí)踐到理論再回到實(shí)踐,由淺入深,符合認(rèn)知結(jié)構(gòu)的新模式。本節(jié)首先通過四個(gè)實(shí)際問題引出二次根式的概念,給出二次根式的意義。然后讓學(xué)生通過二次根式的意義和算術(shù)平方根的意義找出二次根式的三個(gè)性質(zhì)。本節(jié)通過學(xué)生所熟悉的實(shí)際問題建立二次根式的概念,使學(xué)生在經(jīng)歷將現(xiàn)實(shí)問題符號(hào)化的過程中,進(jìn)一步體會(huì)二次根式的重要作用,發(fā)展學(xué)生的應(yīng)用意識(shí)。

  教學(xué)目標(biāo)

  知識(shí)與技能

  1.知道什么是二次根式,并會(huì)用二次根式的意義解題;

  2.熟記二次根式的性質(zhì),并能靈活應(yīng)用;

  過程與方法

  通過二次根式的概念和性質(zhì)的學(xué)習(xí),培養(yǎng)邏輯思維能力;

  情感態(tài)度價(jià)值觀

  1.經(jīng)歷將現(xiàn)實(shí)問題符號(hào)化的.過程,發(fā)展應(yīng)用的意識(shí);

  2.通過二次根式性質(zhì)的介紹滲透對(duì)稱性、規(guī)律性的數(shù)學(xué)美。

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):(1)二次根式的意義;(2)二次根式中字母的取值范圍;

  難點(diǎn):確定二次根式中字母的取值范圍。

  教學(xué)方法

  啟發(fā)式、講練結(jié)合

  教學(xué)媒體

  多媒體

  課時(shí)安排

  1課時(shí)

二次根式教案 篇4

  教學(xué)目標(biāo)

  1.使學(xué)生進(jìn)一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡(jiǎn)含二次根式的式子;

  2.熟練地進(jìn)行二次根式的加、減、乘、除混合運(yùn)算.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):含二次根式的式子的混合運(yùn)算.

  難點(diǎn):綜合運(yùn)用二次根式的 性質(zhì)及運(yùn)算法則化簡(jiǎn)和計(jì)算含二次根式的式子.

  教學(xué)過程設(shè)計(jì)

  一、復(fù)習(xí)

  1.請(qǐng)同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各 式成立的條件.

  指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡(jiǎn)二次根式.

  2.二次根式 的乘法及除法的法則是什么?用式子表示出來.

  指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個(gè)二次根式相除,

  計(jì)算結(jié)果要把分母有理化.

  3.在二次根式的化簡(jiǎn)或計(jì)算中,還常用到以下兩個(gè)二次根式的關(guān)系式:

  4.在含有二次根式的式子的化簡(jiǎn)及求值等問題中,常運(yùn)用三個(gè)可逆的式子:

  二、例題

  例1 x取什么值時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義:

  分析:

  (1)題是兩個(gè)二次根式的和,x的取值必須使兩個(gè)二次根式都有意義;

  (3)題是兩個(gè)二次根式的和, x的取值必須使兩個(gè)二次根式都有意義;

  (4)題的分子是二次根式,分母是含x的單項(xiàng)式,因此x的取值必須使二次根式有意義,同時(shí)使分母的值不等于零.

  x-2且x0.

  解因?yàn)閚2-90, 9-n20,且n-30,所以n2=9且n3,所以

  例3

  分析:第一個(gè)二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡(jiǎn),化簡(jiǎn)中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.

  解 因?yàn)?-a>0,3-a0,所以

  a<1,|a-2|=2-a.

  (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

  這些性質(zhì)化簡(jiǎn)含二次根式的式子時(shí),要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.

  問:上面的代數(shù)式中的.兩個(gè)二次根式的被開方數(shù)的式子如何化為完全平方式?

  分析:先把第二個(gè)式子化簡(jiǎn),再把兩個(gè)式子進(jìn)行通分,然后進(jìn)行計(jì)算.

  注意:

  所以在化簡(jiǎn)過程中,

  例6

  分析:如果把兩個(gè)式子通分,或把每一個(gè)式子的分母有理化再進(jìn)行計(jì)算,這兩種方法的運(yùn)算量都較大,根據(jù)式子的結(jié)構(gòu)特點(diǎn),分別把兩個(gè)式子的分母看作一個(gè)整體,用換元法把式子變形,就可以使運(yùn)算變?yōu)楹?jiǎn)捷.

  a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

  三、課堂練習(xí)

  1.選擇題:

  A.a(chǎn)2B.a(chǎn)2

  C.a(chǎn)2D.a(chǎn)<2

  A .x+2 B.-x-2

  C.-x+2D.x-2

  A.2x B.2a

  C.-2x D.-2a

  2.填空題:

  4.計(jì)算:

  四、小結(jié)

  1.本節(jié)課復(fù)習(xí)的五個(gè)基本問題是“二次根式”這一章的主要基礎(chǔ)知識(shí),同學(xué)們要深刻理解并牢固掌握.

  2.在一次根式的化簡(jiǎn)、計(jì)算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負(fù)數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.

  3.運(yùn)用二次根式的四個(gè)基本性質(zhì)進(jìn)行二次根式的運(yùn)算時(shí),一定要注意論述每一個(gè)性質(zhì)中字母的取值范圍的條件.

  4.通過例題的討論,要學(xué)會(huì)綜合、靈活運(yùn)用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項(xiàng)式的因式分解,解答有關(guān)含二次根式的式子的化簡(jiǎn)、計(jì)算及求值等問題.

  五、作業(yè)

  1.x是什么值時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義?

  2.把下列各式化成最簡(jiǎn)二次根式:

二次根式教案 篇5

  教學(xué)目標(biāo)

  課標(biāo)要求:學(xué)生要學(xué)會(huì)學(xué)習(xí)、自主學(xué)習(xí),要為學(xué)生終生學(xué)習(xí)打下堅(jiān)實(shí)的基礎(chǔ),根據(jù)教學(xué)大綱和新課標(biāo)的要求,根據(jù)教材內(nèi)容和學(xué)生的特點(diǎn)我確定了本節(jié)課的教學(xué)目標(biāo) 1、了解二次根式的概念 2、了解二次根式的基本性質(zhì),經(jīng)歷觀察、比較、總結(jié)二次根式的基本性質(zhì)的過程,發(fā)展學(xué)生的歸納概括能力。 3、通過對(duì)二次根式的概念和性質(zhì)的探究,提高數(shù)學(xué)探究能力和歸納表達(dá)能力。 4、學(xué)生經(jīng)歷觀察、比較、總結(jié)和應(yīng)用等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)活動(dòng)充滿了探索性與創(chuàng)造性,體驗(yàn)發(fā)現(xiàn)的樂趣,并提高應(yīng)用的意識(shí)。

  教學(xué)重點(diǎn):二次根式的概念和基本性質(zhì)

  教學(xué)難點(diǎn):二次根式的基本性質(zhì)的靈活運(yùn)用

  教法和學(xué)法

  教學(xué)活動(dòng)的本質(zhì)是一種合作,一種交流。學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者,本節(jié)課主要采用自主學(xué)習(xí),合作探究,引領(lǐng)提升的方式展開教學(xué)。依據(jù)學(xué)生的年齡特點(diǎn)和已有的知識(shí)基礎(chǔ),本節(jié)課注重加強(qiáng)知識(shí)間的縱向聯(lián)系,,拓展學(xué)生探索的空間,體現(xiàn)由具體到抽象的認(rèn)識(shí)過程。為了為后續(xù)學(xué)習(xí)打下堅(jiān)實(shí)的基礎(chǔ),例如在“銳角三角函數(shù)”一章中,會(huì)遇到很多實(shí)際問題,在解決實(shí)際問題的過程中,要遇到將二次根式化成最簡(jiǎn)二次根式等,本課適當(dāng)加強(qiáng)練習(xí),讓學(xué)生養(yǎng)成聯(lián)系和發(fā)展的觀點(diǎn)學(xué)習(xí)數(shù)學(xué)的習(xí)慣。

  教學(xué)過程

  活動(dòng)一:根據(jù)學(xué)生已有知識(shí)探究二次根式的概念 1.探究二次根式概念 由四個(gè)實(shí)際問題(三個(gè)幾何問題,一個(gè)物理問題)入手,設(shè)置問題情境,讓學(xué)生感受到研究二次根式來源于生活又服務(wù)于生活。 思考:用帶有根號(hào)的式子填空,看看寫出的結(jié)果有什么特點(diǎn)? (1)要做一個(gè)兩條直角邊的長(zhǎng)分別為7cm和4cm的三角尺,斜邊的長(zhǎng)應(yīng)為 cm

  (2)面積為S的正方形的邊長(zhǎng)為

  (3)要修建一個(gè)面積為6.28m2的圓形噴水池,它的.半徑為m(∏取3.14)

  (4)一個(gè)物體從高處自由落下,落到地面所用的時(shí)間t(單位:s)與開始落下時(shí)的高度h(單位:m)滿足關(guān)系h=5t2.如果用含有h的式子表示t,則t= 學(xué)生發(fā)現(xiàn)所填結(jié)果都表示一個(gè)數(shù)的算術(shù)平方根,教師引導(dǎo)學(xué)生用一個(gè)式子表示這些有共同特點(diǎn)的式子。學(xué)生表示為,此時(shí)教師啟發(fā)學(xué)生回憶已學(xué)平方根的性質(zhì)讓學(xué)生總結(jié)出a這一條件。在此基礎(chǔ)上總結(jié)出二次根式的概念。 2.例題評(píng)析 例1:哪些為二次根式? 練習(xí):x取何值時(shí)下列各式有意義,通過4小題的訓(xùn)練,讓學(xué)生體會(huì)二次根式概念的初步應(yīng)用。加深對(duì)二次根式定義的理解,并注重新舊知識(shí)間的聯(lián)系,用轉(zhuǎn)化的思想解決問題,總結(jié)出解題規(guī)律:求未知數(shù)的取值范圍即轉(zhuǎn)化為①被開方數(shù)大于等于0②分母不為0列不等式或不等式組解決問題。

  活動(dòng)二:探究二次根式的性質(zhì)1 1.探究(a)與0的關(guān)系 學(xué)生分類討論探究出:(a)是一個(gè)非負(fù)數(shù),此時(shí)歸納出二次根式的第一個(gè)性質(zhì):雙重非負(fù)性。培養(yǎng)學(xué)生的分類討論和概括能力。例2:,則變式:,

  活動(dòng)三:探究二次根式的性質(zhì)2 探究()2=a(a)由課本具體的正數(shù)和零入手來研究二次根式的第二個(gè)性質(zhì),首先讓學(xué)生通過探究活動(dòng)感受這條結(jié)論,然后再從算術(shù)平方根的意義出發(fā),結(jié)合具體例子對(duì)這條結(jié)論進(jìn)行分析,引導(dǎo)學(xué)生由具體到抽象,得出一般的結(jié)論,并發(fā)現(xiàn)開平方運(yùn)算與平方運(yùn)算的關(guān)系,培養(yǎng)學(xué)生由特殊到一般的思維方式,提高歸納、總結(jié)的能力。前兩題學(xué)生口述教師板書,后面的兩題由學(xué)生板演引導(dǎo)學(xué)生分析(2)(4)實(shí)質(zhì)是積的乘方和分式的乘方 拓展:反之(a)如 為后面的化最簡(jiǎn)二次根式(簡(jiǎn)單的分母有理化)做好鋪墊。 例4:在實(shí)數(shù)范圍內(nèi)分解因式

  活動(dòng)四:探究二次根式的性質(zhì)3 3.探究 在活動(dòng)三的基礎(chǔ)上出示課本第4頁的探究: 引導(dǎo)學(xué)生比較活動(dòng)三與活動(dòng)四探究中兩組題目的不同之處,活動(dòng)三中的題目是對(duì)非負(fù)數(shù)先進(jìn)行開平方運(yùn)算,再進(jìn)行平方運(yùn)算;而活動(dòng)四中的題目正好相反,是先進(jìn)行平方運(yùn)算,再進(jìn)行開平方運(yùn)算。再次由特殊到一般的讓學(xué)生歸納出二次根式的又一個(gè)性質(zhì)。培養(yǎng)學(xué)生觀察、對(duì)比的能力和意識(shí)。 此時(shí)引導(dǎo)學(xué)生談一談對(duì)()2和的聯(lián)系和區(qū)別 相同點(diǎn):①都有平方和開平方運(yùn)算 ②運(yùn)算結(jié)果都是非負(fù)數(shù) ③僅當(dāng)a時(shí),()2= 不同點(diǎn):①從形式和運(yùn)算順序看:()2先開方后平方,先平方后開方 ②從a的取值范圍看:()2(a),(a為任意數(shù)) ③從運(yùn)算結(jié)果看:()2=a(a),(a為任意數(shù)

二次根式教案 篇6

  教學(xué)目的

  1.使學(xué)生掌握最簡(jiǎn)二次根式的定義,并會(huì)應(yīng)用此定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式;

  2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡(jiǎn)二次根式。

  教學(xué)重點(diǎn)

  最簡(jiǎn)二次根式的定義。

  教學(xué)難點(diǎn)

  一個(gè)二次根式化成最簡(jiǎn)二次根式的方法。

  教學(xué)過程

  一、復(fù)習(xí)引入

  1.把下列各根式化簡(jiǎn),并說出化簡(jiǎn)的根據(jù):

  2.引導(dǎo)學(xué)生觀察考慮:

  化簡(jiǎn)前后的根式,被開方數(shù)有什么不同?

  化簡(jiǎn)前的被開方數(shù)有分?jǐn)?shù),分式;化簡(jiǎn)后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號(hào)外。

  3.啟發(fā)學(xué)生回答:

  二次根式,請(qǐng)同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡(jiǎn)二次根式?

  二、講解新課

  1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡(jiǎn)二次根式定義:

  滿足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:

  (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

  (2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

  最簡(jiǎn)二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個(gè)因式的`指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

  2.練習(xí):

  下列各根式是否為最簡(jiǎn)二次根式,不是最簡(jiǎn)二次根式的說明原因:

  3.例題:

  例1 把下列各式化成最簡(jiǎn)二次根式:

  例2 把下列各式化成最簡(jiǎn)二次根式:

  4.總結(jié)

  把二次根式化成最簡(jiǎn)二次根式的根據(jù)是什么?應(yīng)用了什么方法?

  當(dāng)被開方數(shù)為整數(shù)或整式時(shí),把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。

  當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

  此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡(jiǎn)。

  三、鞏固練習(xí)

  1.把下列各式化成最簡(jiǎn)二次根式:

  2.判斷下列各根式,哪些是最簡(jiǎn)二次根式?哪些不是最簡(jiǎn)二次根式?如果不是,把它化成最簡(jiǎn)二次根式。

  四、小結(jié)

  本節(jié)課學(xué)習(xí)了最簡(jiǎn)二次根式的定義及化簡(jiǎn)二次根式的方法。同學(xué)們掌握用最簡(jiǎn)二次根式的定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個(gè)根式化成最簡(jiǎn)二次根式,特別注意當(dāng)被開方數(shù)為多項(xiàng)式時(shí)要進(jìn)行因式分解,被開方數(shù)為兩個(gè)分?jǐn)?shù)的和則要先通分,再化簡(jiǎn)。

  五、布置作業(yè)

  下列各式化成最簡(jiǎn)二次根式:

二次根式教案 篇7

  一、復(fù)習(xí)引入

  學(xué)生活動(dòng):請(qǐng)同學(xué)們完成下列各題:

  1.計(jì)算

 。1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

  二、探索新知

  如果把上面的x、y、z改寫成二次根式呢?以上的運(yùn)算規(guī)律是否仍成立呢?仍成立.

  整式運(yùn)算中的x、y、z是一種字母,它的意義十分廣泛,可以代表所有一切,當(dāng)然也可以代表二次根式,所以,整式中的運(yùn)算規(guī)律也適用于二次根式.

  例1.計(jì)算:

 。1)(+)×(2)(4-3)÷2分析:剛才已經(jīng)分析,二次根式仍然滿足整式的運(yùn)算規(guī)律,所以直接可用整式的運(yùn)算規(guī)律.

  解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.計(jì)算

  (1)(+6)(3-)(2)(+)(-)

  分析:剛才已經(jīng)分析,二次根式的多項(xiàng)式乘以多項(xiàng)式運(yùn)算在乘法公式運(yùn)算中仍然成立.

  解:(1)(+6)(3-)

  =3-()2+18-6=13-3(2)(+)(-)=()2-()2

  =10-7=3

  三、鞏固練習(xí)

  課本P20練習(xí)1、2.

  四、應(yīng)用拓展

  例3.已知=2-,其中a、b是實(shí)數(shù),且a+b≠0,

  化簡(jiǎn)+,并求值.

  分析:由于(+)(-)=1,因此對(duì)代數(shù)式的`化簡(jiǎn),可先將分母有理化,再通過解含有字母系數(shù)的一元一次方程得到x的值,代入化簡(jiǎn)得結(jié)果即可?

二次根式教案 篇8

  【 學(xué)習(xí)目標(biāo) 】

  1、知識(shí)與技能:了解二次根式的概念,能求根號(hào)內(nèi)字母范圍,理解二次根式的雙重非負(fù)性,并能應(yīng)用它解決相關(guān)問題。

  2、過程與方法:進(jìn)一步體會(huì)分類討論的數(shù)學(xué)思想。

  3、情感、態(tài)度與價(jià)值觀:通過小組合作學(xué)習(xí),體驗(yàn)在合作探索中學(xué)習(xí)數(shù)學(xué)的樂趣。

  【 學(xué)習(xí)重難點(diǎn) 】

  1、重點(diǎn):準(zhǔn)確理解二次根式的概念,并能進(jìn)行簡(jiǎn)單的計(jì)算。

  2、難點(diǎn):準(zhǔn)確理解二次根式的雙重非負(fù)性。

  【 學(xué)習(xí)內(nèi)容 】課本第2— 3頁

  【 學(xué)習(xí)流程 】

  一、 課前準(zhǔn)備(預(yù)習(xí)學(xué)案見附件1)

  學(xué)生在家中認(rèn)真閱讀理解課本中相關(guān)內(nèi)容的知識(shí),并根據(jù)自己的.理解完成預(yù)習(xí)學(xué)案。

  二、 課堂教學(xué)

  (一)合作學(xué)習(xí)階段。

  教師出示課堂教學(xué)目標(biāo)及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標(biāo),根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認(rèn)真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進(jìn)行及時(shí)的引導(dǎo)、點(diǎn)撥,對(duì)普遍存在的問題做好記錄。

  (二)集體講授階段。(15分鐘左右)

  1. 各小組推選代表依次對(duì)課堂引導(dǎo)材料中的問題進(jìn)行解答,不足的本組成員可以補(bǔ)充。

  2. 教師對(duì)合作學(xué)習(xí)中存在的普遍的不能解決的問題進(jìn)行集體講解。

  3. 各小組提出本組學(xué)習(xí)中存在的困惑,并請(qǐng)其他小組幫助解答,解答不了的由教師進(jìn)行解答。

  (三)當(dāng)堂檢測(cè)階段

  為了及時(shí)了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對(duì)本節(jié)課進(jìn)行及時(shí)的鞏固,對(duì)學(xué)生進(jìn)行當(dāng)堂檢測(cè),測(cè)試完試卷上交。

  (注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進(jìn)行適當(dāng)調(diào)整次序或交叉進(jìn)行)

  三、 課后作業(yè)(課后作業(yè)見附件2)

  教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對(duì)性作業(yè),以幫助學(xué)生進(jìn)一步鞏固提高課堂所學(xué)。

  四、板書設(shè)計(jì)

  課題:二次根式(1)

  二次根式概念 例題 例題

  二次根式性質(zhì)

  反思:

【二次根式教案】相關(guān)文章:

二次根式教案11-10

二次根式教案三篇04-12

二次根式數(shù)學(xué)教案11-26

二次根式教案6篇02-21

二次根式教案15篇02-15

二次根式教案(15篇)02-16

二次根式教案(集合15篇)02-27

數(shù)學(xué)最簡(jiǎn)二次根式教案12-30

二次根式教案模板10篇10-18

二次根式教案匯總10篇10-31