- 二次根式教案 推薦度:
- 二次根式教案 推薦度:
- 二次根式教案 推薦度:
- 相關(guān)推薦
二次根式教案模板錦集9篇
作為一名教職工,通常需要準(zhǔn)備好一份教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。我們?cè)撛趺慈?xiě)教案呢?下面是小編幫大家整理的二次根式教案9篇,歡迎大家分享。
二次根式教案 篇1
第十六章 二次根式
代數(shù)式用運(yùn)算符號(hào)把數(shù)和表示數(shù)的字母連接起來(lái)的式子叫代數(shù)式①式子中不能出現(xiàn)“=,≠,≥,≤,<,>”;②單個(gè)的數(shù)字或單個(gè)的字母也是代數(shù)式
5.5(解析:這類(lèi)題保證被開(kāi)方數(shù)是最小的完全平方數(shù)即可得出結(jié)論.20=22×5,所以正整數(shù)的最小值為5.)
6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關(guān)鍵是逆用()2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)
7.解:(1) . (2)寬:3 ;長(zhǎng):5 .
8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.
9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.
10.解析:在利用=|a|=化簡(jiǎn)二次根式時(shí),當(dāng)根號(hào)內(nèi)的因式移到根號(hào)外面時(shí),一定要注意原來(lái)根號(hào)里面的符號(hào),這也是化簡(jiǎn)時(shí)最容易出錯(cuò)的地方.
解:乙的解答是錯(cuò)誤的.因?yàn)楫?dāng)a=時(shí),=5,a-<0,所以 ≠a-,而應(yīng)是 =-a.
本節(jié)課通過(guò)“觀察——?dú)w納——運(yùn)用”的模式,讓學(xué)生對(duì)知識(shí)的形成與掌握變得簡(jiǎn)單起來(lái),將一個(gè)一個(gè)知識(shí)點(diǎn)落實(shí)到位,適當(dāng)增加了拓展性的練習(xí),層層遞進(jìn),使不同的學(xué)生得到了不同的發(fā)展和提高.
在探究二次根式的性質(zhì)時(shí),通過(guò)“提問(wèn)——追問(wèn)——討論”的形式展開(kāi),保證了活動(dòng)有一定的針對(duì)性,但是學(xué)生發(fā)揮主體作用不夠.
在探究完成二次根式的性質(zhì)1后,總結(jié)學(xué)習(xí)方法,再放手讓學(xué)生自主探究二次根式的`性質(zhì)2.既可以提高學(xué)習(xí)效率,又可以培養(yǎng)學(xué)生自學(xué)能力.
練習(xí)(教材第4頁(yè))
1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.
2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.
習(xí)題16.1(教材第5頁(yè))
1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當(dāng)a≥-2時(shí),有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當(dāng)a≤3時(shí),有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當(dāng)a≥0時(shí),有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當(dāng)a≥-時(shí),有意義.
2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.
3.解:(1)設(shè)圓的半徑為R,由圓的面積公式得S=πR2,所以R2=,所以R=± .因?yàn)閳A的半徑不能是負(fù)數(shù),所以R=-不符合題意,舍去,故R= ,即面積為S的圓的半徑為 . (2)設(shè)較短的邊長(zhǎng)為2x,則它的鄰邊長(zhǎng)為3x.由長(zhǎng)方形的面積公式得2x3x=S,所以x=±,因?yàn)閤=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個(gè)長(zhǎng)方形的相鄰兩邊的長(zhǎng)分別為和.
4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.
5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.
6.解:設(shè)AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長(zhǎng)為.
7.解:(1)∵x2+1>0恒成立,∴無(wú)論x取任何實(shí)數(shù),都有意義. (2)∵(x-1)2≥0恒成立,∴無(wú)論x取任何實(shí)數(shù),都有意義. (3)∵即x>0,∴當(dāng)x>0時(shí), 在實(shí)數(shù)范圍內(nèi)有意義. (4)∵即x>-1,∴當(dāng)x>-1時(shí),在實(shí)數(shù)范圍內(nèi)有意義.
8.解:設(shè)h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負(fù)值已舍去).當(dāng)h=10時(shí),t= =,當(dāng)h=25時(shí),t= =.故當(dāng)h=10和h=25時(shí),小球落地所用的時(shí)間分別為 s和 s.
9.解:(1)由題意知18-n≥0且為整數(shù),則n≤18,n為自然數(shù)且為整數(shù),∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數(shù),n為正整數(shù),∴符合條件的n的最小值是6.
10.解:V=πr2×10,r= (負(fù)值已舍去),當(dāng)V=5π時(shí), r= =,當(dāng)V=10π時(shí),r= =1,當(dāng)V=20π時(shí),r= =.
如圖所示,根據(jù)實(shí)數(shù)a,b在數(shù)軸上的位置,化簡(jiǎn):+.
〔解析〕 根據(jù)數(shù)軸可得出a+b與a-b的正負(fù)情況,從而可將二次根式化簡(jiǎn).
解:由數(shù)軸可得:a+b<0,a-b>0,
∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.
[解題策略] 結(jié)合數(shù)軸得出字母的取值范圍,再化簡(jiǎn)二次根式,此題體現(xiàn)了數(shù)形結(jié)合的思想.
已知a,b,c為三角形的三條邊,則+= .
〔解析〕 根據(jù)三角形三邊的關(guān)系,先判斷a+b-c與b-a-c的符號(hào),再去根號(hào)、絕對(duì)值符號(hào)并化簡(jiǎn).因?yàn)閍,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.
[解題策略] 此類(lèi)化簡(jiǎn)問(wèn)題要特別注意符號(hào)問(wèn)題.
化簡(jiǎn):.
〔解析〕 題中并沒(méi)有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.
解:當(dāng)x≥3時(shí),=|x-3|=x-3;
當(dāng)x<3時(shí),=|x-3|=-(x-3)=3-x.
[解題策略] 化簡(jiǎn)時(shí),先將它化成|a|,再根據(jù)絕對(duì)值的意義分情況進(jìn)行討論.
5
O
M
二次根式教案 篇2
教學(xué)目的
1.使學(xué)生掌握最簡(jiǎn)二次根式的定義,并會(huì)應(yīng)用此定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式;
2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡(jiǎn)二次根式。
教學(xué)重點(diǎn)
最簡(jiǎn)二次根式的定義。
教學(xué)難點(diǎn)
一個(gè)二次根式化成最簡(jiǎn)二次根式的方法。
教學(xué)過(guò)程
一、復(fù)習(xí)引入
1.把下列各根式化簡(jiǎn),并說(shuō)出化簡(jiǎn)的根據(jù):
2.引導(dǎo)學(xué)生觀察考慮:
化簡(jiǎn)前后的根式,被開(kāi)方數(shù)有什么不同?
化簡(jiǎn)前的被開(kāi)方數(shù)有分?jǐn)?shù),分式;化簡(jiǎn)后的被開(kāi)方數(shù)都是整數(shù)或整式,且被開(kāi)方數(shù)中開(kāi)得盡方的因數(shù)或因式,被移到根號(hào)外。
3.啟發(fā)學(xué)生回答:
二次根式,請(qǐng)同學(xué)們考慮一下被開(kāi)方數(shù)符合什么條件的二次根式叫做最簡(jiǎn)二次根式?
二、講解新課
1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡(jiǎn)二次根式定義:
滿足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:
(1)被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開(kāi)方數(shù)中不含能開(kāi)得盡的因數(shù)或因式。
最簡(jiǎn)二次根式定義中第(1)條說(shuō)明被開(kāi)方數(shù)不含有分母;分母是1的例外。第(2)條說(shuō)明被開(kāi)方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開(kāi)方數(shù)應(yīng)化為因式連乘積的形式。
2.練習(xí):
下列各根式是否為最簡(jiǎn)二次根式,不是最簡(jiǎn)二次根式的`說(shuō)明原因:
3.例題:
例1 把下列各式化成最簡(jiǎn)二次根式:
例2 把下列各式化成最簡(jiǎn)二次根式:
4.總結(jié)
把二次根式化成最簡(jiǎn)二次根式的根據(jù)是什么?應(yīng)用了什么方法?
當(dāng)被開(kāi)方數(shù)為整數(shù)或整式時(shí),把被開(kāi)方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開(kāi)得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。
當(dāng)被開(kāi)方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
此方法是先根據(jù)分式的基本性質(zhì)把被開(kāi)方數(shù)的分母化成能開(kāi)得盡方的因式,然后分子、分母再分別化簡(jiǎn)。
三、鞏固練習(xí)
1.把下列各式化成最簡(jiǎn)二次根式:
2.判斷下列各根式,哪些是最簡(jiǎn)二次根式?哪些不是最簡(jiǎn)二次根式?如果不是,把它化成最簡(jiǎn)二次根式。
四、小結(jié)
本節(jié)課學(xué)習(xí)了最簡(jiǎn)二次根式的定義及化簡(jiǎn)二次根式的方法。同學(xué)們掌握用最簡(jiǎn)二次根式的定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個(gè)根式化成最簡(jiǎn)二次根式,特別注意當(dāng)被開(kāi)方數(shù)為多項(xiàng)式時(shí)要進(jìn)行因式分解,被開(kāi)方數(shù)為兩個(gè)分?jǐn)?shù)的和則要先通分,再化簡(jiǎn)。
五、布置作業(yè)
下列各式化成最簡(jiǎn)二次根式:
二次根式教案 篇3
一、教學(xué)目標(biāo)
1.理解分母有理化與除法的關(guān)系.
2.掌握二次根式的分母有理化.
3.通過(guò)二次根式的分母有理化,培養(yǎng)學(xué)生的運(yùn)算能力.
4.通過(guò)學(xué)習(xí)分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想
二、教學(xué)設(shè)計(jì)
小結(jié)、歸納、提高
三、重點(diǎn)、難點(diǎn)解決辦法
1.教學(xué)重點(diǎn):分母有理化.
2.教學(xué)難點(diǎn):分母有理化的'技巧.
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀、膠片、多媒體
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動(dòng)為主
七、教學(xué)過(guò)程
【復(fù)習(xí)提問(wèn)】
二次根式混合運(yùn)算的步驟、運(yùn)算順序、互為有理化因式.
例1 說(shuō)出下列算式的運(yùn)算步驟和順序:
。1) (先乘除,后加減).
。2) (有括號(hào),先去括號(hào);不宜先進(jìn)行括號(hào)內(nèi)的運(yùn)算).
(3)辨別有理化因式:
有理化因式: 與 , 與 , 與 …
不是有理化因式: 與 , 與 …
化簡(jiǎn)一個(gè)式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依據(jù)分式的基本性質(zhì)).
例如:等式子的化簡(jiǎn),如果分母是兩個(gè)二次根式的和,應(yīng)該怎樣化簡(jiǎn)?
引入新課題.
【引入新課】
化簡(jiǎn)式子 ,乘以什么樣的式子,分母中的根式符號(hào)可去掉,結(jié)論是分子與分母要同乘以 的有理化因式,而這個(gè)式子就是 ,從而可將式子化簡(jiǎn).
例2 把下列各式的分母有理化:
。1) ; (2) ; (3)
解:略.
注:通過(guò)例題的講解,使學(xué)生理解和掌握化簡(jiǎn)的步驟、關(guān)鍵問(wèn)題、化簡(jiǎn)的依據(jù).式子的化簡(jiǎn),若分子與分母可分解因式,則可先分解因式,再約分,使化簡(jiǎn)變得簡(jiǎn)單.
二次根式教案 篇4
一、內(nèi)容解析
本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過(guò)觀察、歸納和思考得到二次根式的兩個(gè)基本性質(zhì).
對(duì)于二次根式的性質(zhì),教材沒(méi)有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過(guò) “探究”欄目中給出四個(gè)具體問(wèn)題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進(jìn)行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn)為:理解二次根式的性質(zhì).
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
。1)經(jīng)歷探索二次根式的性質(zhì)的過(guò)程,并理解其意義;
。2)會(huì)運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);
。3)了解代數(shù)式的概念.
2.目標(biāo)解析
(1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會(huì)用符號(hào)表述這一性質(zhì);
(2)學(xué)生能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);
(3)學(xué)生能從已學(xué)過(guò)的各種式子中,體會(huì)其共同特點(diǎn),得出代數(shù)式的概念.
三、教學(xué)問(wèn)題診斷分析
二次根式的性質(zhì)是二次根式化簡(jiǎn)和運(yùn)算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn)和解決一些綜合性較強(qiáng)的問(wèn)題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對(duì)二次根式性質(zhì)的靈活運(yùn)用存在一定的困難,突破這一難點(diǎn)需要教師精心設(shè)計(jì)好每一道習(xí)題,讓學(xué)生在練習(xí)中進(jìn)一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運(yùn)用的能力.
本節(jié)課的教學(xué)難點(diǎn)為:二次根式性質(zhì)的靈活運(yùn)用.
四、教學(xué)過(guò)程設(shè)計(jì)
1.探究性質(zhì)1
問(wèn)題1 你能解釋下列式子的含義嗎?
師生活動(dòng):教師引導(dǎo)學(xué)生說(shuō)出每一個(gè)式子的含義.
【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)非負(fù)數(shù)的算術(shù)平方根的平方.
問(wèn)題2 根據(jù)算術(shù)平方根的'意義填空,并說(shuō)出得到結(jié)論的依據(jù).
師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過(guò)程,說(shuō)出得到結(jié)論的依據(jù).
【設(shè)計(jì)意圖】學(xué)生通過(guò)計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.
問(wèn)題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?
師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0).
【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過(guò)程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.
例2 計(jì)算
。1)
。2)
師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.
【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)1,學(xué)會(huì)靈活運(yùn)用.
2.探究性質(zhì)2
問(wèn)題4 你能解釋下列式子的含義嗎?
師生活動(dòng):教師引導(dǎo)學(xué)生說(shuō)出每一個(gè)式子的含義.
【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)數(shù)的平方的算術(shù)平方根.
問(wèn)題5 根據(jù)算術(shù)平方根的意義填空,并說(shuō)出得到結(jié)論的依據(jù).
師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過(guò)程,說(shuō)出得到結(jié)論的依據(jù).
【設(shè)計(jì)意圖】學(xué)生通過(guò)計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.
問(wèn)題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?
師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)
【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過(guò)程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.
例3 計(jì)算
。1)
。2)
師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.
【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)2,學(xué)會(huì)靈活運(yùn)用.
3.歸納代數(shù)式的概念
問(wèn)題7 回顧我們學(xué)過(guò)的式子,如 ___________ ( ≥0),這些式子有哪些共同特征?
師生活動(dòng):學(xué)生概括式子的共同特征,得得出代數(shù)式的概念.
【設(shè)計(jì)意圖】學(xué)生通過(guò)觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.
4.綜合運(yùn)用
。1)算一算:
【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號(hào).
。2)想一想: 中, 的取值范圍是什么?當(dāng) ≥0時(shí), 等于多少?當(dāng) 時(shí), 又等于多少?
【設(shè)計(jì)意圖】通過(guò)此問(wèn)題的設(shè)計(jì),加深學(xué)生對(duì) 的理解,開(kāi)闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.
。3)談一談你對(duì) 與 的認(rèn)識(shí).
【設(shè)計(jì)意圖】加深學(xué)生對(duì)二次根式性質(zhì)的理解.
5.總結(jié)反思
。1)你知道了二次根式的哪些性質(zhì)?
。2)運(yùn)用二次根式性質(zhì)進(jìn)行化簡(jiǎn)需要注意什么?
。3)請(qǐng)談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過(guò)程?
。4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類(lèi)字母表示數(shù)得到的式子?說(shuō)說(shuō)你對(duì)代數(shù)式的認(rèn)識(shí).
6.布置作業(yè):教科書(shū)習(xí)題16.1第2,4題.
二次根式教案 篇5
一、復(fù)習(xí)引入
學(xué)生活動(dòng):請(qǐng)同學(xué)們完成下列各題:
1.計(jì)算
。1)(2x+y)·zx(2)(2x2y+3xy2)÷xy
二、探索新知
如果把上面的x、y、z改寫(xiě)成二次根式呢?以上的運(yùn)算規(guī)律是否仍成立呢?仍成立.
整式運(yùn)算中的x、y、z是一種字母,它的意義十分廣泛,可以代表所有一切,當(dāng)然也可以代表二次根式,所以,整式中的運(yùn)算規(guī)律也適用于二次根式.
例1.計(jì)算:
。1)(+)×(2)(4-3)÷2分析:剛才已經(jīng)分析,二次根式仍然滿足整式的運(yùn)算規(guī)律,所以直接可用整式的運(yùn)算規(guī)律.
解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.計(jì)算
(1)(+6)(3-)(2)(+)(-)
分析:剛才已經(jīng)分析,二次根式的.多項(xiàng)式乘以多項(xiàng)式運(yùn)算在乘法公式運(yùn)算中仍然成立.
解:(1)(+6)(3-)
=3-()2+18-6=13-3(2)(+)(-)=()2-()2
=10-7=3
三、鞏固練習(xí)
課本P20練習(xí)1、2.
四、應(yīng)用拓展
例3.已知=2-,其中a、b是實(shí)數(shù),且a+b≠0,
化簡(jiǎn)+,并求值.
分析:由于(+)(-)=1,因此對(duì)代數(shù)式的化簡(jiǎn),可先將分母有理化,再通過(guò)解含有字母系數(shù)的一元一次方程得到x的值,代入化簡(jiǎn)得結(jié)果即可?
二次根式教案 篇6
活動(dòng)1、提出問(wèn)題
一個(gè)運(yùn)動(dòng)場(chǎng)要修兩塊長(zhǎng)方形草坪,第一塊草坪的長(zhǎng)是10米,寬是米,第二塊草坪的長(zhǎng)是20米,寬也是米。你能告訴運(yùn)動(dòng)場(chǎng)的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?
問(wèn)題:10+20是什么運(yùn)算?
活動(dòng)2、探究活動(dòng)
下列3個(gè)小題怎樣計(jì)算?
問(wèn)題:1)-還能繼續(xù)往下合并嗎?
2)看來(lái)二次根式有的能合并,有的不能合并,通過(guò)對(duì)以上幾個(gè)題的觀察,你能說(shuō)說(shuō)什么樣的二次根式能合并,什么樣的'不能合并嗎?
二次根式加減時(shí),先將二次根式化簡(jiǎn)成最簡(jiǎn)二次根式后,再將被開(kāi)方數(shù)相同的進(jìn)行合并。
活動(dòng)3
練習(xí)1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))
創(chuàng)設(shè)問(wèn)題情景,引起學(xué)生思考。
學(xué)生回答:這個(gè)運(yùn)動(dòng)場(chǎng)要準(zhǔn)備(10+20)平方米的草皮。
教師提問(wèn):學(xué)生思考并回答教師出示課題并說(shuō)明今天我們就共同來(lái)研究該如何進(jìn)行二次根式的加減法運(yùn)算。
我們可以利用已學(xué)知識(shí)或已有經(jīng)驗(yàn)來(lái)分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。
教師引導(dǎo)驗(yàn)證:
①設(shè)=,類(lèi)比合并同類(lèi)項(xiàng)或面積法;
、趯W(xué)生思考,得出先化簡(jiǎn),再合并的解題思路
、巯然(jiǎn),再合并
學(xué)生觀察并歸納:二次根式化為最簡(jiǎn)二次根式后,被開(kāi)方數(shù)相同的能合并。
教師巡視、指導(dǎo),學(xué)生完成、交流,師生評(píng)價(jià)。
提醒學(xué)生注意先化簡(jiǎn)成最簡(jiǎn)二次根式后再判斷。
二次根式教案 篇7
目 標(biāo)
1. 熟練地運(yùn)用二次根式的性質(zhì)化簡(jiǎn)二次根式;
2. 會(huì)運(yùn)用二次根式解決簡(jiǎn)單的實(shí)際問(wèn)題;
3. 進(jìn)一步體驗(yàn)二次根式及其運(yùn)算的實(shí)際意義和應(yīng)用價(jià)值。
教學(xué)設(shè)想
本節(jié)課的重點(diǎn)是:二次根式及其運(yùn)算的實(shí)際應(yīng)用;難點(diǎn)是:例7涉及多方面的.知識(shí)和綜合運(yùn)用,思路比較復(fù)雜。
教 學(xué) 程序 與 策 略
一、預(yù)習(xí)檢測(cè):
1.解決節(jié)前問(wèn)題:
如圖,架在消防車(chē)上的云梯AB長(zhǎng)為15m,AD:BD=1 :0.6,云梯底部離地面的距離BC為2m。你能求出云梯的頂端離地面的距離AE嗎?
歸納:
在日常生活和生產(chǎn)實(shí)際中,我們?cè)诮鉀Q一 些問(wèn)題,尤其是涉及直角三角形邊長(zhǎng)計(jì)算的問(wèn)題時(shí)經(jīng)常用到二次根式及其運(yùn)算。
二、合作交流:
1、:如圖,扶梯AB的坡比(BE與AE的長(zhǎng)度之比)為1:0.8,滑梯CD的坡比為1:1.6,AE= 米,BC= CD。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過(guò)了多少路程(結(jié)果要求先化簡(jiǎn),再取近似值,精確到0.01米)
讓學(xué)生有充分的時(shí)間閱讀問(wèn)題,并結(jié)合圖形分析問(wèn)題:(1)所求的路程實(shí)際上是哪些線段的和?哪些線段的長(zhǎng)是已知的?哪些線段的長(zhǎng)是未知的?它們之間有什么關(guān)系?(2)列出的算式中有哪些運(yùn)算?能化簡(jiǎn)嗎?
注意解題格式
教 學(xué) 程 序 與 策 略
三、鞏固練習(xí):
完成課本P17、1,組長(zhǎng)檢查反饋;
四、拓展提高:
1:如圖是一張等腰三角形彩色紙,AC=BC=40cm,將斜邊上的高CD四等分,然后裁出3張寬度相等的長(zhǎng)方形紙條。(1)分別求出3張長(zhǎng)方形紙條的長(zhǎng)度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過(guò)多少cm。
師生共同分析解題思路,請(qǐng)學(xué)生寫(xiě)出解題過(guò)程。
五、課堂小結(jié):
1.談一談:本節(jié)課你有什么收獲?
2.運(yùn)用二次根式解決簡(jiǎn)單的實(shí)際問(wèn)題時(shí)應(yīng)注意的的問(wèn)題
六、堂堂清
1: 作業(yè)本(2)
2:課本P17頁(yè):第4、5題選做。
二次根式教案 篇8
教學(xué)目的:
1、在二次根式的混合運(yùn)算中,使學(xué)生掌握應(yīng)用有理化分母的方法化簡(jiǎn)和計(jì)算二次根式;
2、會(huì)求二次根式的代數(shù)的值;
3、進(jìn)一步提高學(xué)生的綜合運(yùn)算能力。
教學(xué)重點(diǎn):在二次根式的混合運(yùn)算中,靈活選擇有理化分母的方法化簡(jiǎn)二次根式
教學(xué)難點(diǎn):正確進(jìn)行二次根式的混合運(yùn)算和求含有二次根式的代數(shù)式的值
教學(xué)過(guò)程:
一、二次根式的混合運(yùn)算
例1 計(jì)算:
分析:(1)題是二次根式的加減運(yùn)算,可先把前三個(gè)二次根式化最簡(jiǎn)二次根式,把第四式的分母有理化,然后再進(jìn)行二次根式的加減運(yùn)算。
(2)題是含乘方、加、減和除法的混合運(yùn)算,應(yīng)按運(yùn)算的順序進(jìn)行計(jì)算,先算括號(hào)內(nèi)的式子,最后進(jìn)行除法運(yùn)算。注意的`計(jì)算。
練習(xí)1:P206 / 8--① P207 / 1①②
例2 計(jì)算
問(wèn):計(jì)算思路是什么?
答:先把第一人的括號(hào)內(nèi)的式子通分,把第二個(gè)括號(hào)內(nèi)的式子的分母有理化,再進(jìn)行計(jì)算。
二、求代數(shù)式的值。 注意兩點(diǎn):
(1)如果已知條件為含二次根式的式子,先把它化簡(jiǎn);
(2)如果代數(shù)式是含二次根式的式子,應(yīng)先把代數(shù)式化簡(jiǎn),再求值。
例3 已知,求的值。
分析:多項(xiàng)式可轉(zhuǎn)化為用與表示的式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計(jì)算中,先把及的式了有理化分母?墒褂(jì)算簡(jiǎn)便。
例4 已知,求的值。
觀察代數(shù)式的特點(diǎn),請(qǐng)說(shuō)出求這個(gè)代數(shù)式的值的思路。
答:所求的代數(shù)式中,相減的兩個(gè)式子的分母都含有二次根式,為化去它們的分母中的根號(hào),可以分別先把各自的分母有理化或進(jìn)行]通分,把這個(gè)代數(shù)式化簡(jiǎn)后,再求值。
三、小結(jié)
1、對(duì)于二次根式的混合混合運(yùn)算。應(yīng)根據(jù)二次根式的加、減、乘除和乘方運(yùn)算的順序進(jìn)行,即先進(jìn)行乘方運(yùn)算,再進(jìn)行乘、除運(yùn)算,最后進(jìn)行加、減運(yùn)算。如果有括號(hào),先進(jìn)行括號(hào)內(nèi)的式子的運(yùn)算,運(yùn)算結(jié)果要化為最簡(jiǎn)二次根式。
2、在代數(shù)式求值問(wèn)題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應(yīng)先把它們化簡(jiǎn),然后再求值。
3、在進(jìn)行二次根式的混合運(yùn)算時(shí),要根據(jù)題目特點(diǎn),靈活選擇解題方法,目的在于使計(jì)算更簡(jiǎn)捷。
四、作業(yè)
P206 / 7 P206 / 8---②③
二次根式教案 篇9
一、教學(xué)目標(biāo)
1.了解二次根式的意義;
2. 掌握用簡(jiǎn)單的一元一次不等式解決二次根式中字母的取值問(wèn)題;
3. 掌握二次根式的性質(zhì) 和 ,并能靈活應(yīng)用;
4.通過(guò)二次根式的計(jì)算培養(yǎng)學(xué)生的邏輯思維能力;
5. 通過(guò)二次根式性質(zhì) 和 的介紹滲透對(duì)稱(chēng)性、規(guī)律性的數(shù)學(xué)美.
二、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):(1)二次根的意義;(2)二次根式中字母的取值范圍.
難點(diǎn):確定二次根式中字母的取值范圍.
三、教學(xué)方法
啟發(fā)式、講練結(jié)合.
四、教學(xué)過(guò)程
(一)復(fù)習(xí)提問(wèn)
1.什么叫平方根、算術(shù)平方根?
2.說(shuō)出下列各式的意義,并計(jì)算:
通過(guò)練習(xí)使學(xué)生進(jìn)一步理解平方根、算術(shù)平方根的概念.
觀察上面幾個(gè)式子的特點(diǎn),引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中 ,
表示的是算術(shù)平方根.
(二)引入新課
我們已遇到的`這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:
新課:二次根式
定義: 式子 叫做二次根式.
對(duì)于 請(qǐng)同學(xué)們討論論應(yīng)注意的問(wèn)題,引導(dǎo)學(xué)生總結(jié):
(1)式子 只有在條件a0時(shí)才叫二次根式, 是二次根式嗎? 呢?
若根式中含有字母必須保證根號(hào)下式子大于等于零,因此字母范圍的限制也是根式的一部分.
(2) 是二次根式,而 ,提問(wèn)學(xué)生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的外在形態(tài).請(qǐng)學(xué)生舉出幾個(gè)二次根式的例子,并說(shuō)明為什么是二次根式.下面例題根據(jù)二次根式定義,由學(xué)生分析、回答.
例1 當(dāng)a為實(shí)數(shù)時(shí),下列各式中哪些是二次根式?
分析: , , , 、 、 、 四個(gè)是二次根式. 因?yàn)閍是實(shí)數(shù)時(shí),a+10、a2-1不能保證是非負(fù)數(shù),即a+10、a2-1可以是負(fù)數(shù)(如當(dāng)a-10時(shí),a+10又如當(dāng)0
例2 x是怎樣的實(shí)數(shù)時(shí),式子 在實(shí)數(shù)范圍有意義?
解:略.
說(shuō)明:這個(gè)問(wèn)題實(shí)質(zhì)上是在x是什么數(shù)時(shí),x-3是非負(fù)數(shù),式子 有意義.
例3 當(dāng)字母取何值時(shí),下列各式為二次根式:
(1) (2) (3) (4)
分析:由二次根式的定義 ,被開(kāi)方數(shù)必須是非負(fù)數(shù),把問(wèn)題轉(zhuǎn)化為解不等式.
解:(1)∵a、b為任意實(shí)數(shù)時(shí),都有a2+b20,當(dāng)a、b為任意實(shí)數(shù)時(shí), 是二次根式.
(2)-3x0,x0,即x0時(shí), 是二次根式.
(3) ,且x0,x0,當(dāng)x0時(shí), 是二次根式.
(4) ,即 ,故x-20且x-20, x2.當(dāng)x2時(shí), 是二次根式.
例4 下列各式是二次根式,求式子中的字母所滿足的條件:
(1) ; (2) ; (3) ; (4)
分析:這個(gè)例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,.即: 只有在條件a0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開(kāi)方數(shù)都大于等于零.
解:(1)由2a+30,得 .
(2)由 ,得3a-10,解得 .
(3)由于x取任何實(shí)數(shù)時(shí)都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實(shí)數(shù).
(4)由-b20得b20,只有當(dāng)b=0時(shí),才有b2=0,因此,字母b所滿足的條件是:b=0.
(三)小結(jié)(引導(dǎo)學(xué)生做出本節(jié)課學(xué)習(xí)內(nèi)容小結(jié))
1.式子 叫做二次根式,實(shí)際上是一個(gè)非負(fù)的實(shí)數(shù)a的算術(shù)平方根的表達(dá)式.
2.式子中,被開(kāi)方數(shù)(式)必須大于等于零.
(四)練習(xí)和作業(yè)
練習(xí):
1.判斷下列各式是否是二次根式
分析:(2) 中, , 是二次根式;(5)是二次根式. 因?yàn)閤是實(shí)數(shù)時(shí),x、x+1不能保證是非負(fù)數(shù),即x、x+1可以是負(fù)數(shù)(如x0時(shí),又如當(dāng)x-1時(shí)=,因此(1)(3)(4)不是二次根式,(6)無(wú)意義.
2.a是怎樣的實(shí)數(shù)時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義?
五、作業(yè)
教材P.172習(xí)題11.1;A組1;B組1.
六、板書(shū)設(shè)計(jì)
【二次根式教案】相關(guān)文章:
二次根式教案11-10
二次根式教案6篇02-21
二次根式教案三篇04-12
二次根式教案(15篇)02-16
二次根式教案15篇02-15
二次根式數(shù)學(xué)教案11-26
精選二次根式教案(通用10篇)09-27
【推薦】二次根式教案3篇10-16
二次根式教案模板10篇10-18
二次根式教案合集9篇10-22