亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

分?jǐn)?shù)乘整數(shù)的教學(xué)反思

時間:2024-08-03 11:51:12 教學(xué)反思 我要投稿

分?jǐn)?shù)乘整數(shù)的教學(xué)反思

  作為一位剛到崗的人民教師,我們要在教學(xué)中快速成長,對學(xué)到的教學(xué)技巧,我們可以記錄在教學(xué)反思中,那么大家知道正規(guī)的教學(xué)反思怎么寫嗎?以下是小編收集整理的分?jǐn)?shù)乘整數(shù)的教學(xué)反思,歡迎大家分享。

分?jǐn)?shù)乘整數(shù)的教學(xué)反思

分?jǐn)?shù)乘整數(shù)的教學(xué)反思1

  我從復(fù)習(xí)同分母分?jǐn)?shù)加法引入,得出整數(shù)乘法的意義和分?jǐn)?shù)乘整數(shù)的意義相同都是求幾個相同加數(shù)和的簡便運(yùn)算,由此進(jìn)入分?jǐn)?shù)乘整數(shù)方法的計(jì)算教學(xué)。在教學(xué)中,我充分利用學(xué)生已有的`知識經(jīng)驗(yàn),努力結(jié)合現(xiàn)實(shí)的問題情境,將計(jì)算學(xué)習(xí)與解決問題有機(jī)結(jié)合,放手讓學(xué)生自主探究分?jǐn)?shù)乘法的意義。創(chuàng)設(shè)學(xué)生喜歡的實(shí)際情境,讓學(xué)生根據(jù)實(shí)際問題的數(shù)量關(guān)系,列出算式。學(xué)生很容易結(jié)合整數(shù)乘法的意義,列出乘法算式。這樣處理,既有利于學(xué)生主動地把整數(shù)乘法的意義推廣到分?jǐn)?shù)中來,即分?jǐn)?shù)和整數(shù)相乘的意義與整數(shù)乘法的意義相同,都是求幾個相同加數(shù)和的簡便運(yùn)算。存在的問題就是約分的環(huán)節(jié),有些學(xué)生喜歡算出結(jié)果以后再約分,對計(jì)算過程約分還不愿意采用?赡軐τ谶@種在計(jì)算過程當(dāng)中的約分,還是一知半解,對這樣約分的道理理解得不夠清楚。我在介紹這種辦法的時候還特意把要約分的分?jǐn)?shù)改寫成分母和分子分別由幾個數(shù)相乘的形式,幫助學(xué)生理解。

分?jǐn)?shù)乘整數(shù)的教學(xué)反思2

  本節(jié)課我從復(fù)習(xí)同分母分?jǐn)?shù)加法引入,得出整數(shù)乘法的意義和分?jǐn)?shù)乘整數(shù)的意義相同都是求幾個相同加數(shù)和的簡便運(yùn)算,由此進(jìn)入分?jǐn)?shù)乘整數(shù)方法的計(jì)算教學(xué)。教學(xué)方法時我注重算理的講解、注重圖形和算式的聯(lián)系?梢哉f這節(jié)課的內(nèi)容很簡單,但作業(yè)反饋的情況看正確率卻很低。存在的問題就是約分的環(huán)節(jié),有些學(xué)生喜歡算出結(jié)果以后再約分,就比較愛出錯。再由于上學(xué)期的約分知識很多學(xué)生就不熟練,有不少學(xué)生仍不斷出現(xiàn)約分錯誤和忘記約分的情況。

  作為分?jǐn)?shù)乘法的第一節(jié)課——分?jǐn)?shù)乘整數(shù),形成先約分后計(jì)算的`良好計(jì)算習(xí)慣,對于提高學(xué)生計(jì)算的正確率和計(jì)算速度,有著很重要的作用。

分?jǐn)?shù)乘整數(shù)的教學(xué)反思3

  分?jǐn)?shù)乘整數(shù)的知識基礎(chǔ)在于同分母分?jǐn)?shù)加法的計(jì)算方法及分?jǐn)?shù)的意義及整數(shù)乘法的意義等知識。在課堂的開始環(huán)節(jié),我對這些內(nèi)容進(jìn)了一定的復(fù)習(xí),再進(jìn)入分?jǐn)?shù)乘整數(shù)的教學(xué)。分?jǐn)?shù)乘整數(shù)的算法很簡單,在相乘時,分母不變,只把整數(shù)和分?jǐn)?shù)的分子相乘作分子。在教學(xué)這個內(nèi)容時,我關(guān)注到新教材在算理方面的重視,注意到圖形和算式之間的聯(lián)系,在計(jì)算前充分讓學(xué)生感知涂圖形的過程。

  一、關(guān)注學(xué)生的學(xué)習(xí)狀態(tài)

  從學(xué)生已有的知識經(jīng)驗(yàn)出發(fā),復(fù)習(xí)幾個相同分?jǐn)?shù)和的計(jì)算方法。從而讓學(xué)生感知分?jǐn)?shù)乘法的意義-----求幾個相同分?jǐn)?shù)和的簡便運(yùn)算。在此基礎(chǔ)上學(xué)生很容易從加法的角度聯(lián)想到分?jǐn)?shù)乘整數(shù)的方法,這種順向遷移,對學(xué)生的.學(xué)習(xí)作用很大。在學(xué)生研究分?jǐn)?shù)乘法的計(jì)算方法中,用以前所學(xué)的知識來解釋和理解分?jǐn)?shù)乘整數(shù)的計(jì)算方法,學(xué)生理解起來也很容易。教師運(yùn)用新知與舊識的密切聯(lián)系,讓學(xué)生在認(rèn)知的最近發(fā)展領(lǐng)域自由學(xué)習(xí)并有所收獲,學(xué)生的學(xué)習(xí)是積極有效的。

  二、讓學(xué)生感受,學(xué)生才會感悟

  對于學(xué)生而言,計(jì)算方法沒有難度。但是形成先約分后計(jì)算的計(jì)算習(xí)慣確實(shí)在教學(xué)中的難點(diǎn)。來自學(xué)生的困惑:為什么一定要先約分,不約分也可以計(jì)算出結(jié)果。只有讓學(xué)生真正感受到約分的優(yōu)勢,以及不約分計(jì)算的弊端,學(xué)生才會自發(fā)的先約分后計(jì)算。先設(shè)計(jì)簡單的數(shù)據(jù),學(xué)生既可以先約分再計(jì)算,也可以先計(jì)算再約分。因?yàn)閿?shù)據(jù)簡單,所以無論哪一種學(xué)生都可以得到正確答案。再設(shè)計(jì)7/22×33這道題,學(xué)生先計(jì)算后數(shù)據(jù)比較大,看不出公因數(shù)沒有辦法約分。所以學(xué)生中出現(xiàn)兩種答案。這時兩種方法進(jìn)行比較,感受先約分?jǐn)?shù)據(jù)小容易,先計(jì)算數(shù)據(jù)大很難約分。只有經(jīng)歷過這種錯誤的學(xué)生才有深刻的感受------先約分再計(jì)算,計(jì)算更方便。

  三、掌握方法、提高計(jì)算能力

  在這節(jié)課上,重點(diǎn)讓學(xué)生理解和掌握的分?jǐn)?shù)乘整數(shù)的計(jì)算方法,但是學(xué)生的計(jì)算能力的訓(xùn)練體現(xiàn)的不多。如果學(xué)生在課堂上的計(jì)算能力能夠有所提高,這樣一節(jié)計(jì)算課的效果就更好了。

分?jǐn)?shù)乘整數(shù)的教學(xué)反思4

  在課前的備課中,我覺得這一課時主要解決的是三個方面的問題:

 。1)分?jǐn)?shù)乘整數(shù)的意義;

 。2)分?jǐn)?shù)乘整數(shù)的計(jì)算法則;

 。3)計(jì)算時能約分的一定要約分;谝陨系哪繕(biāo),我給自己設(shè)計(jì)了如下教學(xué)流程予以實(shí)施,下面想和大家交流解決的第一個問題:

  一、分?jǐn)?shù)乘整數(shù)的意義部分:

  師:上課之前,請同學(xué)們先來做一道思考題。

  (在黑板上板書算式:2×3= 下面的學(xué)生本來神情緊張,看到我出的“思考題”是這樣一個題目,都忍不住笑了,有幾個口快的早已喊出了答案:6!6!…)

  師:是啊,答案是6,看來這個思考題難不倒大家!其實(shí),對于這一題來說,不用乘法,用加法我們也可以把它計(jì)算出來,知道算式是多少嗎?

  生1:2+2+2

  生2:3+3

  生3:1+1+1+1+1+1

  生4:1+2+3

 。ㄏ旅嬗袔讉同學(xué)舉手還要說,有一個學(xué)生在下面嘀咕:這不成湊得數(shù)的了嗎?我也知道學(xué)生開始錯誤地“發(fā)揮”了,我把他們拉回來,讓學(xué)生思考,如果是用2×3這個算式來表示的,黑板上老師板書的算式哪幾個是對的,哪幾個是錯的?然后在學(xué)生的糾錯中擦去錯誤的算式。在實(shí)際的教學(xué)中,我也經(jīng)常會遇到這種情況,學(xué)生由于過分的“激動”而忘乎所以,所思所想偏離了我的教學(xué)課堂,在學(xué)生偏離了課堂之后及時地把學(xué)生拉回來固然重要,但如何讓學(xué)生在思考問題不偏離課堂呢?我真應(yīng)該好好研究這個問題。)

  師:(指著2+2+2)知道這個算式的意義嗎?

  生:表示3個2是多少?

  師:那這一個呢?

  生:表示2個3是多少?

  師:同學(xué)們說的很好,不過通過這個題目,我覺得學(xué)不學(xué)乘法無所謂。(下邊的學(xué)生一愣)因?yàn)槲矣X得加法計(jì)算也行,沒必要用乘法來計(jì)算啊?

  (下面的學(xué)生開始議論紛紛,有幾個學(xué)生把手舉的高高的,要求發(fā)言。我請了翟卓起來說。)

  生:不對!那要是1000×1000就不能用加法算。

  師:不能,怎么不能?我也可以列加法算式。

 。ㄓ谑俏揖烷_始在黑板上板書:1000+1000+1000+1000+1000+1000+…,寫了不多個,下面的學(xué)生就開始叫了,老師,不寫了!老師,不寫了!…于是我也裝作疲勞狀,向?qū)W生承認(rèn):看來還是乘法簡便!在此基礎(chǔ)上和學(xué)生一起回憶整數(shù)乘法的意義。)

  師:現(xiàn)在大家都已經(jīng)知道了整數(shù)乘法的意義,那分?jǐn)?shù)乘法呢?下面就我們一起來研究。

  (師出示例1,審題后)

  師:你會列式嗎?

  生1: ×3

  生2: + +

  師:看第一個算式,這個算式與我們以前學(xué)過的.算式不同,它是分?jǐn)?shù)乘整數(shù)。聯(lián)系剛才回憶的整數(shù)乘法的意義,你能知道這個算式表示什么意義嗎?

  (生稍思考后)

  生:表示3個是多少?

  師:你是怎么知道的?

  生:我是看第二個算式的。

 。◣熂皶r總結(jié),溝通分?jǐn)?shù)乘整數(shù)與整數(shù)乘法之間的聯(lián)系。)

  思考:教學(xué)分?jǐn)?shù)乘整數(shù)的意義,我兜了這么大的一個圈子,有沒有必要?對于分?jǐn)?shù)乘整數(shù)的意義這一個知識點(diǎn),是教師講授性教學(xué),還是在學(xué)生的回憶探究中獲得?我這樣兜了一個圈子之后,學(xué)生就已經(jīng)理解了分?jǐn)?shù)乘整數(shù)的意義,還是從整數(shù)乘法的意義中“套”過來的?我覺得,這么一大堆問題,我似乎都回答不了。但值得肯定的是,在后來的練習(xí)中進(jìn)行檢驗(yàn)的時候,學(xué)生回答的都還是不錯的。

分?jǐn)?shù)乘整數(shù)的教學(xué)反思5

  反思本節(jié)課,無論是教學(xué)目標(biāo)的定位,還是教學(xué)過程的組織,都反映出一種新的教學(xué)理念。我認(rèn)為主要有以下幾個方面:

  一、關(guān)注學(xué)生的學(xué)習(xí)狀態(tài)新課程標(biāo)準(zhǔn)指出:"要關(guān)注學(xué)生數(shù)學(xué)學(xué)習(xí)的水平,更要關(guān)注他們在教學(xué)活動中所表現(xiàn)出來的情感和態(tài)度。"為此,教師在教學(xué)中為了讓學(xué)生能真正主動地、投入地參與到探究過程中來,就應(yīng)該設(shè)法讓其在一開始就產(chǎn)生探究的內(nèi)在需要,這是非常關(guān)鍵的。因此,這就需要老師既兼顧知識本身的特點(diǎn),又兼顧學(xué)生的認(rèn)知和學(xué)生已有的水平,尋找合適的切入口,讓學(xué)生感受到眼前問題的挑戰(zhàn)性和可探索性,從而產(chǎn)生"我也來研究研究這個問題"的興趣。這節(jié)課一開始,我就讓學(xué)生經(jīng)歷折紙操作——合作交流——尋找計(jì)算方法這一過程,使學(xué)生發(fā)現(xiàn)并掌握分?jǐn)?shù)單位乘分?jǐn)?shù)單位的計(jì)算方法。由于在這個過程中討論的素材都來源于學(xué)生,他們討論自己的`學(xué)習(xí)材料,熱情特別高漲,興趣特別濃厚,都想通過自己的努力,尋找出"我的發(fā)現(xiàn)",而對自己尋找出的法則印象特別深,同時又產(chǎn)生了繼續(xù)探索、驗(yàn)證兩個一般分?jǐn)?shù)相乘的計(jì)算方法的欲望。

  二、關(guān)注結(jié)論,更關(guān)注過程傳統(tǒng)教學(xué)是教師利用復(fù)合投影片等手段,讓學(xué)生理解"分?jǐn)?shù)乘分?jǐn)?shù)"的算理,再利用其計(jì)算法則進(jìn)行大量練習(xí),以實(shí)現(xiàn)"熟能生巧"。"新課程標(biāo)準(zhǔn)"指出:

  "數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),是師生之間、學(xué)生之間交往互動與共同發(fā)展的過程。"這一新的理念說明:數(shù)學(xué)教學(xué)活動將是學(xué)生經(jīng)歷的一個數(shù)學(xué)化的過程,是學(xué)生自己建構(gòu)數(shù)學(xué)知識的活動。因此,教學(xué)本課時力圖讓學(xué)生親自經(jīng)歷學(xué)習(xí)過程,即讓學(xué)生在動手操作——探究算法-舉例驗(yàn)證——交流評價(jià)——法則整理等一系列活動中經(jīng)歷"分?jǐn)?shù)乘分?jǐn)?shù)"計(jì)算法則的形成過程。這里實(shí)現(xiàn)了讓學(xué)生自己去做、去悟、去經(jīng)歷、去體驗(yàn)、去創(chuàng)造,同時也考慮了學(xué)生解題策略的自主選擇,顧及了合作意識的培養(yǎng),我深信這比單純掌握計(jì)算方法再熟練生巧更有意義。三、科學(xué)的學(xué)習(xí)方法的滲透新課程標(biāo)準(zhǔn)指出:"幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗(yàn)。"所以教師在引導(dǎo)學(xué)生經(jīng)過不斷思考獲得規(guī)律的過程中,著眼點(diǎn)不能知識規(guī)律的本身,更重要的是一種"發(fā)現(xiàn)"的體驗(yàn)。在這種體驗(yàn)中感受數(shù)學(xué)的思維方法,體會科學(xué)的學(xué)習(xí)方法。本課從教學(xué)的整體設(shè)計(jì)上是由"特殊"去引發(fā)學(xué)生的猜想,再來舉例驗(yàn)證,然后歸納概括,力圖讓學(xué)生體會從特殊到一般的不完全歸納思想。首先讓學(xué)生通過活動概括得出"分?jǐn)?shù)乘分?jǐn)?shù)"只要"分子不變,分母相乘"或"分子相乘,分母相乘"即可的計(jì)算方法,再由學(xué)生自己用折紙、化小數(shù)、分?jǐn)?shù)的意義等方法來驗(yàn)證這種計(jì)算方法,發(fā)現(xiàn)了"分?jǐn)?shù)乘分?jǐn)?shù),分子不變,分母相乘"特殊性,以及"分?jǐn)?shù)乘分?jǐn)?shù),分子相乘,分母相乘"的普遍性。這其間滲透了科學(xué)的學(xué)習(xí)方法和實(shí)事求是的科學(xué)精神。四、困惑之處如何關(guān)注全體?本課第一階段研究"幾分之幾乘幾分之幾"時,由于學(xué)生是在自己操作的基礎(chǔ)上去發(fā)現(xiàn)規(guī)律的,所以全體學(xué)生興趣高漲,都積極主動地參與到了探究的過程。而到第二階段去驗(yàn)證交

  流"幾分之幾乘幾分之幾"中,除了用折紙法驗(yàn)證交流外,其余的環(huán)節(jié)幾乎都被幾名"優(yōu)等生""占領(lǐng)",雖然教師多次這樣引導(dǎo):"誰能聽懂他的意思?你能再解釋一下嗎?","用他的方法去試試看。"但部分學(xué)生還是不能參與其中,成了"伴學(xué)者"。所以,如何面對學(xué)生的差異,促使學(xué)生人人都能在原有的基礎(chǔ)上得到不同的發(fā)展,是課堂教學(xué)中值得探索的一個課題。

分?jǐn)?shù)乘整數(shù)的教學(xué)反思6

  分?jǐn)?shù)乘整數(shù)的知識基礎(chǔ)在于同分母分?jǐn)?shù)加法的計(jì)算方法及分?jǐn)?shù)的意義及整數(shù)乘法的意義等知識。在課堂的開始環(huán)節(jié),我對這些內(nèi)容進(jìn)行了一定的復(fù)習(xí),再進(jìn)入分?jǐn)?shù)乘整數(shù)的教學(xué)。

  分?jǐn)?shù)乘整數(shù)的算法很簡單,在相乘時,分母不變,只把整數(shù)和分?jǐn)?shù)的分子相乘作分子。在教學(xué)這個內(nèi)容時,我關(guān)注到新教材在算理方面的重視,注意到圖形和算式之間的聯(lián)系,在計(jì)算前充分讓學(xué)生感知畫、涂圖形的過程。因此,在后面計(jì)算方法的得出就水到渠成,比較容易了。再者,對“分?jǐn)?shù)乘整數(shù)表示的意義”也有機(jī)的滲透,為后面的知識打好鋪墊。

  一堂課上下來,由于學(xué)生對內(nèi)容比較容易接受,課堂上有了空余時間。學(xué)生對算理的理解比較清晰,但還存在的問題就是約分的環(huán)節(jié),有些學(xué)生喜歡算出結(jié)果以后再約分,對計(jì)算過程約分還不愿意采用,教學(xué)反思《分?jǐn)?shù)乘整數(shù)教學(xué)反思》。這一環(huán)節(jié)還應(yīng)講深講透。學(xué)生可能對于這種在計(jì)算過程當(dāng)中的約分,還是一知半解,對這樣約分的道理理解得不夠清楚。學(xué)習(xí)分?jǐn)?shù)乘整數(shù),學(xué)生在計(jì)算時肯定會遇到先約分后乘還是先乘后約分的.問題。如果僅僅是為得到一個正確的結(jié)果,那么無論前者,還是后者,都無關(guān)緊要,只要不出差錯,最后都能得到正確結(jié)果。顯然,我們還需要學(xué)生養(yǎng)成良好的計(jì)算習(xí)慣,較高的計(jì)算速度和計(jì)算正確率!那么我們就必須讓學(xué)生明白到底哪種思路更合理,更有助于自己的后續(xù)學(xué)習(xí)。作為分?jǐn)?shù)乘法的第一節(jié)課——分?jǐn)?shù)乘整數(shù),形成先約分后計(jì)算的良好計(jì)算習(xí)慣,對于提高學(xué)生計(jì)算的正確率和計(jì)算速度,有著很重要的作用。在教學(xué)分?jǐn)?shù)乘法在過程中約分時,我給學(xué)生練習(xí)的題目是: ×5,并且列出兩種做法讓學(xué)生進(jìn)行比較。但我覺得這道題并不能體現(xiàn)在計(jì)算過程中先約分的優(yōu)越性。應(yīng)該將題目改得稍復(fù)雜些,變成“13× 5/26”,并且和同學(xué)們一起比賽誰做得快。如果哪位學(xué)生是用整數(shù)直接乘以分子的,速度當(dāng)然會很慢,當(dāng)做得最快的同學(xué)展示自己的做法時,其他同學(xué)恍然大悟,深刻體會到計(jì)算過程中先約分,可以化繁為簡。這樣,學(xué)生在做分?jǐn)?shù)乘法時,不僅僅滿足于“分子和整數(shù)相乘的積作分子,分母不變”,而是記住“能約分的要約分”這一要點(diǎn)。

分?jǐn)?shù)乘整數(shù)的教學(xué)反思7

  分?jǐn)?shù)乘整數(shù)是“分?jǐn)?shù)乘法”教學(xué)的第一課時,是學(xué)生理解分?jǐn)?shù)乘法意義的起點(diǎn)。這部分教材是在學(xué)生已學(xué)的整數(shù)乘法的意義和分?jǐn)?shù)加法計(jì)算的基礎(chǔ)上進(jìn)行教學(xué)的。

  在教學(xué)中,我充分利用學(xué)生已有的知識經(jīng)驗(yàn),努力結(jié)合現(xiàn)實(shí)的`問題情境,將計(jì)算學(xué)習(xí)與解決問題有機(jī)結(jié)合,放手讓學(xué)生自主探究分?jǐn)?shù)乘法的意義。創(chuàng)設(shè)學(xué)生喜歡的實(shí)際情境,讓學(xué)生根據(jù)實(shí)際問題的數(shù)量關(guān)系,列出算式。學(xué)生很容易結(jié)合整數(shù)乘法的意義,列出乘法算式。這樣處理,既有利于學(xué)生主動地把整數(shù)乘法的意義推廣到分?jǐn)?shù)中來,即分?jǐn)?shù)和整數(shù)相乘的意義與整數(shù)乘法的意義相同,都是求幾個相同加數(shù)和的簡便運(yùn)算。

  在教學(xué)分?jǐn)?shù)和整數(shù)相乘的計(jì)算法則時,我指導(dǎo)學(xué)生從讀一讀,說一說,練一練,想一想,議一議五個方面入手,例如:教學(xué)3/10×5,首先讓學(xué)生明確,要求3/10×5,也就是求3/10+3/10?3/10+3/10+3/10是多少,并聯(lián)系同分母分?jǐn)?shù)加法的計(jì)算得出3+3+3+3+3/10,然后讓學(xué)生分析分子部分5個3連加就是35,并算出結(jié)果,在此基礎(chǔ)上,引導(dǎo)學(xué)生觀察計(jì)算過程,特別是3/10×5與35/10之間的聯(lián)系,從而理解為什么“同分子和整數(shù)相乘的積作分子,分母不變”。接著讓學(xué)生自己嘗試練一練7/10×5,然后進(jìn)行集體交流,看一看能不能在相乘之前的那一步先約分,比一比在什么時候約分計(jì)算可以簡便一些,從而明白為了簡便,能約分的先約分。

  總之,本節(jié)課我能盡量調(diào)動學(xué)生的多種感官,改變以例題、示范、講解為主的教學(xué)方式,改變以記憶法則、機(jī)械訓(xùn)練為主的學(xué)習(xí)方式,引導(dǎo)學(xué)生投入到探索與交流的學(xué)習(xí)活動之中,讓學(xué)生變被動為主動,參與到算理的探討、運(yùn)算規(guī)律的歸納中來。

分?jǐn)?shù)乘整數(shù)的教學(xué)反思8

  分?jǐn)?shù)乘整數(shù)的知識基礎(chǔ)在于同分母分?jǐn)?shù)加法的計(jì)算方法及分?jǐn)?shù)的意義及整數(shù)乘法的意義等知識。在課堂的開始環(huán)節(jié),我對這些內(nèi)容進(jìn)行了一定的復(fù)習(xí),再進(jìn)入分?jǐn)?shù)乘整數(shù)的教學(xué)。

  分?jǐn)?shù)乘整數(shù)的算法很簡單,在相乘時,分母不變,只把整數(shù)和分?jǐn)?shù)的分子相乘作分子。在教學(xué)這個內(nèi)容時,我關(guān)注到新教材在算理方面的重視,注意到圖形和算式之間的聯(lián)系,在計(jì)算前充分讓學(xué)生感知涂圖形的過程。因此,在后面計(jì)算方法的得出就水到渠成,比較容易了。

  三堂課上下來,學(xué)生對算理的.理解比較清晰。目前還存在的問題就是約分的環(huán)節(jié),有些學(xué)生喜歡算出結(jié)果以后再約分,對計(jì)算過程約分還不愿意采用?赡軐τ谶@種在計(jì)算過程當(dāng)中的約分,還是一知半解,對這樣約分的道理理解得不夠清楚。我在介紹這種辦法的時候還特意把要約分的分?jǐn)?shù)改寫成分母和分子分別由幾個數(shù)相乘的形式,幫助學(xué)生理解?赡苓@樣做,還做得不夠吧?再由于上學(xué)期的約分知識很多學(xué)生就不熟練,有不少學(xué)生仍不斷出現(xiàn)約分錯誤和忘記約分的情況。

  不知改進(jìn)這些問題的辦法有哪些?是不是只能是讓學(xué)生多做一些練習(xí)題,通過不斷強(qiáng)化的辦法,讓他們掌握計(jì)算時各個環(huán)節(jié)應(yīng)注意的問題?

分?jǐn)?shù)乘整數(shù)的教學(xué)反思9

  一、利用已有知識引導(dǎo)學(xué)生實(shí)現(xiàn)正遷移。

  《分?jǐn)?shù)乘整數(shù)》是分?jǐn)?shù)乘法單元的第一課時,本課主要讓學(xué)生通過自主探索,了解分?jǐn)?shù)與整數(shù)相乘的意義,知道“求幾個幾分之幾相加的和”可以用乘法計(jì)算,初步理解并掌握分?jǐn)?shù)與整數(shù)相乘的計(jì)算方法。而分?jǐn)?shù)與整數(shù)相乘的意義與整數(shù)相乘的意義相同,這節(jié)課在引入課題時,葛文娟老師設(shè)計(jì)了下面的兩道習(xí)題:

 。1)做一朵綢花要30厘米綢帶,小麗做3朵這樣的綢花,一共用多少厘米綢帶?

 。2)做一朵綢花要0.3米綢帶,小紅做3朵這樣的綢花,一共用多少米綢帶?

  通過讓學(xué)生列式并追問為什么都用乘法計(jì)算,激活學(xué)生已有的對整數(shù)乘法意義的認(rèn)識。然后再通過改題呈現(xiàn)例1:做一朵綢花要米綢帶,小芳做3朵這樣的綢花,一共用幾分之幾米綢帶?學(xué)生順理成章地列出了例1的乘法算式,通過我追問這題為什么也用乘法計(jì)算?學(xué)生自然地將整數(shù)乘法的`意義遷移到分?jǐn)?shù)乘整數(shù)的意義中,實(shí)現(xiàn)了知識的正遷移。

  二、尊重學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”,加強(qiáng)算法的探究。

  在學(xué)習(xí)本課之前,其實(shí)已經(jīng)有許多學(xué)生大概知道了分?jǐn)?shù)乘整數(shù)的計(jì)算方法,但對于為什么要這樣算就不清楚了。如果再按照一般的教學(xué)程序(呈現(xiàn)問題——探討研究——得出結(jié)論)進(jìn)行教學(xué),學(xué)生就會覺得“這些知識我早就知道了,沒什么可學(xué)的了。”,從而失去探究的興趣。教師的主導(dǎo)作用在于設(shè)計(jì)恰當(dāng)?shù)慕虒W(xué)形式,調(diào)動不同層次的學(xué)生的學(xué)習(xí)興趣。于是在教學(xué)時×3的算法時,小葛老師問:你知道怎么乘嗎,你認(rèn)為整數(shù)3與分?jǐn)?shù)的什么相乘呢?重點(diǎn)讓學(xué)生明白為什么要這樣乘。抓住這一質(zhì)疑點(diǎn),提出:“為什么只把分子與整數(shù)相乘,分母不變”接下來的教學(xué)就引導(dǎo)學(xué)生帶著“為什么”去探索。由質(zhì)疑開始的探索是學(xué)生為滿足自身需要而進(jìn)行的主動探索,因此學(xué)生在課堂上迫不及待地,積極主動地進(jìn)行討論,從不同的角度解決疑問。

  二、實(shí)現(xiàn)教學(xué)的個性化,發(fā)展學(xué)生的思維。

  每個學(xué)生都有各自的生活經(jīng)驗(yàn)和知識基礎(chǔ),面對需要解決的問題,他們都是從自己特有的數(shù)學(xué)現(xiàn)實(shí)出發(fā)來構(gòu)建知識的,這就決定了不同的孩子在解決同一問題時會有不同的視角。在本節(jié)課中,葛老師放手讓學(xué)生用自己思維方式進(jìn)行自由的、多角度的思考,學(xué)生自主地構(gòu)建知識,充分體現(xiàn)了“不同的人學(xué)習(xí)不同的數(shù)學(xué)”的理念。有的學(xué)生通過對分?jǐn)?shù)乘整數(shù)的意義的理解,將分?jǐn)?shù)乘整數(shù)與分?jǐn)?shù)加法的計(jì)算方法聯(lián)系起來思考;有的學(xué)生通過計(jì)算分?jǐn)?shù)單位的個數(shù)來理解;有的學(xué)生講清了分母不能與整數(shù)相乘,只能將分子與整數(shù)相乘的道理;還有的學(xué)生將分?jǐn)?shù)轉(zhuǎn)換為小數(shù),同樣得到了正確的結(jié)果。由此我深深地體會到,包括教師在內(nèi)的任何人,都不能要求學(xué)生按照我們成人的或者教材編寫者的意圖去思考和解決問題,那些單一的、刻板的要求只會阻礙學(xué)生的思維發(fā)展。

分?jǐn)?shù)乘整數(shù)的教學(xué)反思10

  反思本節(jié)課,無論是教學(xué)目標(biāo)的定位,還是教學(xué)過程的組織,都反映出一種新的教學(xué)理念。我認(rèn)為主要有以下幾個方面:

  一、關(guān)注學(xué)生的學(xué)習(xí)狀態(tài)

  新課程標(biāo)準(zhǔn)指出:“要關(guān)注學(xué)生數(shù)學(xué)學(xué)習(xí)的水平,更要關(guān)注他們在教學(xué)活動中所表現(xiàn)出來的情感和態(tài)度!睘榇耍處熢诮虒W(xué)中為了讓學(xué)生能真正主動地、投入地參與到探究過程中來,就應(yīng)該設(shè)法讓其在一開始就產(chǎn)生探究的內(nèi)在需要,這是非常關(guān)鍵的。因此,這就需要老師既兼顧知識本身的特點(diǎn),又兼顧學(xué)生的認(rèn)知和學(xué)生已有的水平,尋找合適的切入口,讓學(xué)生感受到眼前問題的挑戰(zhàn)性和可探索性,從而產(chǎn)生“我也來研究研究這個問題”的興趣。這節(jié)課一開始,我就讓學(xué)生經(jīng)歷折紙操作——合作交流——尋找計(jì)算方法這一過程,使學(xué)生發(fā)現(xiàn)并掌握分?jǐn)?shù)單位乘分?jǐn)?shù)單位的計(jì)算方法。由于在這個過程中討論的素材都來源于學(xué)生,他們討論自己的學(xué)習(xí)材料,熱情特別高漲,興趣特別濃厚,都想通過自己的努力,尋找出“我的發(fā)現(xiàn)”,而對自己尋找出的法則印象特別深,同時又產(chǎn)生了繼續(xù)探索、驗(yàn)證兩個一般分?jǐn)?shù)相乘的計(jì)算方法的欲望。

  二、關(guān)注結(jié)論,更關(guān)注過程

  傳統(tǒng)教學(xué)是教師利用復(fù)合投影片等手段,讓學(xué)生理解“分?jǐn)?shù)乘分?jǐn)?shù)”的算理,再利用其計(jì)算法則進(jìn)行大量練習(xí),以實(shí)現(xiàn)“熟能生巧”。“新課程標(biāo)準(zhǔn)”指出:“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),是師生之間、學(xué)生之間交往互動與共同發(fā)展的過程!边@一新的理念說明:數(shù)學(xué)教學(xué)活動將是學(xué)生經(jīng)歷的一個數(shù)學(xué)化的過程,是學(xué)生自己建構(gòu)數(shù)學(xué)知識的活動。因此,教學(xué)本課時力圖讓學(xué)生親自經(jīng)歷學(xué)習(xí)過程,即讓學(xué)生在動手操作——探究算法—舉例驗(yàn)證——交流評價(jià)——法則整理等一系列活動中經(jīng)歷“分?jǐn)?shù)乘分?jǐn)?shù)”計(jì)算法則的形成過程。這里實(shí)現(xiàn)了讓學(xué)生自己去做、去悟、去經(jīng)歷、去體驗(yàn)、去創(chuàng)造,同時也考慮了學(xué)生解題策略的自主選擇,顧及了合作意識的培養(yǎng),我深信這比單純掌握計(jì)算方法再熟練生巧更有意義。

  三、科學(xué)的學(xué)習(xí)方法的滲透

  新課程標(biāo)準(zhǔn)指出:“幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗(yàn)!彼越處熢谝龑(dǎo)學(xué)生經(jīng)過不斷思考獲得規(guī)律的.過程中,著眼點(diǎn)不能知識規(guī)律的本身,更重要的是一種“發(fā)現(xiàn)”的體驗(yàn)。在這種體驗(yàn)中感受數(shù)學(xué)的思維方法,體會科學(xué)的學(xué)習(xí)方法。本課從教學(xué)的整體設(shè)計(jì)上是由“特殊”去引發(fā)學(xué)生的猜想,再來舉例驗(yàn)證,然后歸納概括,力圖讓學(xué)生體會從特殊到一般的不完全歸納思想。首先讓學(xué)生通過活動概括得出“分?jǐn)?shù)乘分?jǐn)?shù)”只要“分子不變,分母相乘”或“分子相乘,分母相乘”即可的計(jì)算方法,再由學(xué)生自己用折紙、化小數(shù)、分?jǐn)?shù)的意義等方法來驗(yàn)證這種計(jì)算方法,發(fā)現(xiàn)了“分?jǐn)?shù)乘分?jǐn)?shù),分子不變,分母相乘”特殊性,以及“分?jǐn)?shù)乘分?jǐn)?shù),分子相乘,分母相乘”的普遍性。這其間滲透了科學(xué)的學(xué)習(xí)方法和實(shí)事求是的科學(xué)精神。

  四、困惑之處

  如何關(guān)注全體?本課第一階段研究“幾分之幾乘幾分之幾”時,由于學(xué)生是在自己操作的基礎(chǔ)上去發(fā)現(xiàn)規(guī)律的,所以全體學(xué)生興趣高漲,都積極主動地參與到了探究的過程。而到第二階段去驗(yàn)證交流“幾分之幾乘幾分之幾”中,除了用折紙法驗(yàn)證交流外,其余的環(huán)節(jié)幾乎都被幾名“優(yōu)等生”“占領(lǐng)”,雖然教師多次這樣引導(dǎo):“誰能聽懂他的意思?你能再解釋一下嗎?”,“用他的方法去試試看!钡糠謱W(xué)生還是不能參與其中,成了“伴學(xué)者”。所以,如何面對學(xué)生的差異,促使學(xué)生人人都能在原有的基礎(chǔ)上得到不同的發(fā)展,是課堂教學(xué)中值得探索的一個課題。

分?jǐn)?shù)乘整數(shù)的教學(xué)反思11

  “分?jǐn)?shù)乘整數(shù)”在練習(xí)中,50%的學(xué)生喜歡用分?jǐn)?shù)加法的計(jì)算方法來做分?jǐn)?shù)乘法。學(xué)生利用式題,不但總結(jié)出了分?jǐn)?shù)乘整數(shù)的計(jì)算方法,而且知道了算理(也就是分?jǐn)?shù)乘整數(shù)的意義),真正做到了算理與算法相結(jié)合。

  基于這兩者天壤之別,筆者有了深深的感觸,上述兩個案例讓我想到一個相同的問題,就是我們常說的備課之先“備學(xué)生”到底備到什么程度?對于學(xué)生的知識前測,教師心中有多大的把握?沒有對學(xué)情準(zhǔn)確的偵察”,便絕對不會”打贏”有效教學(xué)乃至高效教學(xué)這一勝仗。很多教師在備學(xué)生的時候,是借用別人的眼光來估計(jì)自己的學(xué)生,看教參上是怎么說的。教參說這時的學(xué)生應(yīng)該具有什么樣的知識經(jīng)驗(yàn),教師便堅(jiān)信自己的學(xué)生也定是如此了。沒有或者很少考慮到雖然是同一個年齡段的孩子,但還有諸多不同的因素:也許你的學(xué)生是后進(jìn)的,他的基礎(chǔ)沒你想象的那么牢固;也許他是絕頂聰明的,學(xué)習(xí)進(jìn)度已經(jīng)超過好多課業(yè)了。

  如上述案例中,關(guān)注學(xué)生轉(zhuǎn)化的思想就是本課時教學(xué)的重中之重.數(shù)學(xué)知識有著本身固有的結(jié)構(gòu)體系,往往是新知孕伏于舊知,舊知識點(diǎn)是新知識點(diǎn)的生長點(diǎn),數(shù)學(xué)教學(xué)如何讓知識體系由點(diǎn)到線,線到面,使知識結(jié)構(gòu)“見木又見林”是十分必要的。案例1從整數(shù)乘法遷移到分?jǐn)?shù)乘整數(shù),想法是可取的,但整數(shù)乘法的意義在二上年級就已經(jīng)出現(xiàn),而且教材中沒有出現(xiàn)整數(shù)乘法的抽象表達(dá)方式(即整數(shù)乘法表示求幾個相同加數(shù)的和),對于五下年級的學(xué)生來說,遺忘程度可想而知。而案例2中,以五上年級的分?jǐn)?shù)加法為基礎(chǔ),讓學(xué)生自由探索,效果是非常明顯的。轉(zhuǎn)化是需要條件的,只要“跳一跳”,就能摘到“桃子”,學(xué)生才會去嘗試。

  今天這節(jié)課的算理看似簡單,其實(shí)理解還是有困難的.根據(jù)學(xué)生的認(rèn)知心理,在遇到一個陌生的問題,如”1/5×3=?”時,學(xué)生對算法的興趣遠(yuǎn)遠(yuǎn)勝于算理.因?yàn)樗惴ǹ梢灾苯拥玫浇Y(jié)果。一旦知道算法,多數(shù)學(xué)生會對算理失去興趣。甚至為了考試成績?nèi)ニ烙浻脖乘憷恚惴ㄅc算理完全脫離。那么我們實(shí)際上不是教數(shù)學(xué),而是在教一門計(jì)算程序:不是在培養(yǎng)研究者,而是在訓(xùn)練操作工。這與”學(xué)生能夠獲得適應(yīng)未來社會生活和進(jìn)一步發(fā)展所必需的重要數(shù)學(xué)知識以及基本的思想方法和必要的`應(yīng)用技能”相違背的。

  數(shù)學(xué)思想方法內(nèi)容十分豐富,學(xué)生一接觸到數(shù)學(xué)知識,就聯(lián)系上許多數(shù)學(xué)思想方法。寓理于算的思想就是小學(xué)數(shù)學(xué)中的基本思想方法。在教學(xué)時,把重點(diǎn)放在讓學(xué)生充分體驗(yàn)由直觀算理到抽象算法的過渡和演變過程,從而達(dá)到對算理的深層理解和對算法的切實(shí)把握。小學(xué)是打基礎(chǔ)的教育,有了算理的支撐,算法才會多樣化,課堂才會更開放。

  課標(biāo)中,原來講“雙基”,現(xiàn)在變成“四基”,多了基本思想、基本活動經(jīng)驗(yàn),筆者認(rèn)為,只有具備了基本思想、基本活動經(jīng)驗(yàn),才能在思維上促進(jìn)基本知識、基本技能的發(fā)展。不但教給學(xué)生一個表層的知識,更要給學(xué)生思維的方法與思想。

分?jǐn)?shù)乘整數(shù)的教學(xué)反思12

  教學(xué)片斷:

  師:哪些同學(xué)知道3/103的計(jì)算結(jié)果?

 。ń^大多數(shù)學(xué)生舉起了手,部分同學(xué)迫不及待地說出了答案:9/10。)

  師:說一說你是怎么計(jì)算的?

  生1:我從書上看到,分?jǐn)?shù)與整數(shù)相乘時,只要把分子與整數(shù)相乘就可以了,分母不變。所以,33=9,分子是9,分母仍然是10,結(jié)果就是9/10。

 。ㄅe手的學(xué)生都點(diǎn)頭表示同意生1的發(fā)言,有個別學(xué)生表示是從課外數(shù)學(xué)班的學(xué)習(xí)中了解到的。)

  師:老師也同意用這個方法進(jìn)行分?jǐn)?shù)與整數(shù)相乘的計(jì)算。對于這個內(nèi)容,大家還有什么疑問?

  生2:為什么只把分子與整數(shù)相乘,分母10不和3相乘?

  師:多好的`問題!(這個問題正是理解算理的關(guān)鍵。)大家有什么想法?可以在小組內(nèi)交流。

 。◣追昼娨院,許多同學(xué)舉起了手。)

  生3:我是這么想的:3/10表示3個1/10相加,同分母分?jǐn)?shù)加減法的計(jì)算法則是,分母不變,只把分子相加減。所以分母不變,只計(jì)算分子3+3+3,也就是33就可以了。

  師:你能抓住分?jǐn)?shù)乘整數(shù)的意義,從而將分?jǐn)?shù)乘整數(shù)與分?jǐn)?shù)加法的計(jì)算方法聯(lián)系起來思考,真好!

  生4:3/10里面有3個1/10,3/10的3倍就是有9個1/10,也就是9/10。

  師:你對分?jǐn)?shù)的計(jì)算單位以及分?jǐn)?shù)單位的個數(shù)理解得很透徹!

  生5:如果將3/10的分子和分母都乘3,根據(jù)分?jǐn)?shù)的基本性質(zhì),結(jié)果還是3/10,而不是3個3/10。

  師:生5從反面給我們講明了分母不能與整數(shù)相乘的道理,謝謝你。

  生6:我認(rèn)為3/10等于0.3,0.33等于0.9,也就是9/10。所以,3/103等于9/10。

  生7:我想給大家舉個例子說明3/103等于9。老師拿來10支粉筆,每天用去3/10,也就是3支,三天用去9支,也就是用去這些粉筆的9/10。

  師:用日常生活中的實(shí)例來理解數(shù)學(xué),也是一種非常好的學(xué)習(xí)方法。

分?jǐn)?shù)乘整數(shù)的教學(xué)反思13

  本單元有很重要的地位,它既在學(xué)生掌握了整數(shù)乘法、分?jǐn)?shù)的意義和性質(zhì)、分?jǐn)?shù)加減法以及約分等知識的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,又是學(xué)生學(xué)習(xí)分?jǐn)?shù)除法、比、分?jǐn)?shù)四則混合運(yùn)算及百分?jǐn)?shù)知識的重要基礎(chǔ)。于是,我教學(xué)時就從學(xué)生的已有知識基礎(chǔ)和生活經(jīng)驗(yàn)出發(fā),引導(dǎo)學(xué)生在解決實(shí)際問題的情境中,理解分?jǐn)?shù)乘整數(shù)的意義。

  一、尊重學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”。

  開頭依據(jù)知識的遷移,進(jìn)行很必要的鋪墊,利用知識間的聯(lián)系,精心設(shè)置復(fù)習(xí)題,為教學(xué)重點(diǎn)服務(wù),使學(xué)生順利掌握“分?jǐn)?shù)乘整數(shù)的意義與整數(shù)乘法意義相同”。同時復(fù)習(xí)相同分?jǐn)?shù)加法,為推導(dǎo)計(jì)算方法進(jìn)行鋪墊。

  在第一次教學(xué)《分?jǐn)?shù)乘整數(shù)》之后,其實(shí)班里已經(jīng)有許多學(xué)生知道了分?jǐn)?shù)乘整數(shù)的計(jì)算方法。如果再按照一般的教學(xué)程序(呈現(xiàn)問題——探討研究——得出結(jié)論)進(jìn)行教學(xué),學(xué)生就會覺得“這些知識我早就知道了,沒什么可學(xué)的了。”,從而失去探究的興趣。教師的主導(dǎo)作用在于設(shè)計(jì)恰當(dāng)?shù)慕虒W(xué)形式,調(diào)動不同層次的學(xué)生的學(xué)習(xí)興趣。于是在教學(xué)時,我故意將分?jǐn)?shù)乘整數(shù)的結(jié)論“灌輸”給學(xué)生,省去了獲取結(jié)論的研究過程,意在讓學(xué)生問“為什么”。這時學(xué)生抓住這一質(zhì)疑點(diǎn),提出:“為什么只把分子與整數(shù)相乘,分母10不和3相乘?”接下來的教學(xué)就引導(dǎo)學(xué)生帶著“為什么”去探索。將例1進(jìn)一步作為驗(yàn)證計(jì)算方法的題材。由質(zhì)疑開始的探索是學(xué)生為滿足自身需要而進(jìn)行的主動探索,因此學(xué)生在課堂上迫不及待地,積極主動地進(jìn)行討論,從不同的角度解決疑問。

  二、實(shí)現(xiàn)教學(xué)學(xué)習(xí)的個性化。

  每個學(xué)生都有各自的生活經(jīng)驗(yàn)和知識基礎(chǔ),面對需要解決的問題,他們都是從自己特有的數(shù)學(xué)現(xiàn)實(shí)出發(fā)來構(gòu)建知識的,這就決定了不同的孩子在解決同一問題時會有不同的視角。在本節(jié)課中,教師放手讓學(xué)生用自己思維方式進(jìn)行自由的、多角度的思考,學(xué)生自主地構(gòu)建知識,充分體現(xiàn)了“不同的人學(xué)習(xí)不同的數(shù)學(xué)”的理念。有的學(xué)生通過對分?jǐn)?shù)乘整數(shù)的意義的理解,將分?jǐn)?shù)乘整數(shù)與分?jǐn)?shù)加法的計(jì)算方法聯(lián)系起來思考;有的學(xué)生通過計(jì)算分?jǐn)?shù)單位的個數(shù)來理解;有的學(xué)生講清了分母不能與整數(shù)相乘,只能將分子與整數(shù)相乘的道理;還有的學(xué)生將分?jǐn)?shù)轉(zhuǎn)換為小數(shù),同樣得到了正確的.結(jié)果;也有的學(xué)生通過生動的數(shù)學(xué)實(shí)例進(jìn)行了分析。由此我深深地體會到,包或教師在內(nèi)的任何人,都不能要求學(xué)生按照我們成人的或者教材編寫者的意圖去思考和解決問題,那些單一的、刻板的要求只會阻礙學(xué)生的思維發(fā)展。

  三、反思不足,提煉經(jīng)驗(yàn)。

  本節(jié)課的重點(diǎn)是得出分?jǐn)?shù)乘整數(shù)的計(jì)算方法,約分時,只能將分母與整數(shù)約分。我還沒有完全放手讓學(xué)生自己總結(jié)出計(jì)算方法,沒時間多練。對學(xué)生還是不放心,老師講得太多,強(qiáng)調(diào)的主題太多,一些注意事項(xiàng)沒有變成學(xué)生的語言,讓學(xué)生去發(fā)現(xiàn),去解決,從而記憶不是很深刻。我覺得補(bǔ)充的內(nèi)容較多,各種題型的練習(xí),讓課堂顯得時間太緊張,其實(shí)我太注重題海戰(zhàn)術(shù),沒有讓學(xué)生充分掌握好,跑得太快。只顧及到了成績好的學(xué)生,從這一點(diǎn),我深深體會到什么是“備教材”,“備學(xué)生”。課前要把知識點(diǎn)吃透把握住重點(diǎn)、難點(diǎn),哪些要補(bǔ)充,哪些地方要創(chuàng)造性使用教材。學(xué)生以一個什么樣的方式更容易接受,老師哪些地方該講不該講,都需要我們深思熟慮。

分?jǐn)?shù)乘整數(shù)的教學(xué)反思14

  一、尊重學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”。

  在教學(xué)分?jǐn)?shù)乘整數(shù)之前,其實(shí)班里已經(jīng)有不少學(xué)生知道了分?jǐn)?shù)乘整數(shù)的計(jì)算方法。如果再按照一般的教學(xué)程序進(jìn)行教學(xué),學(xué)生就會覺得“這些知識我早就知道了,沒什么可學(xué)的了!,從而失去探究的興趣。于是在教學(xué)時,我提出:“為什么結(jié)果是9/10?為什么要把分子與整數(shù)相乘?”接下來的教學(xué)就引導(dǎo)學(xué)生帶著“為什么”去探索。

  二、實(shí)現(xiàn)教學(xué)學(xué)習(xí)的個性化。

  每個學(xué)生都有各自的生活經(jīng)驗(yàn)和知識基礎(chǔ),面對需要解決的問題,他們都是從自己特有的數(shù)學(xué)現(xiàn)實(shí)出發(fā)來構(gòu)建知識的,這就決定了不同的孩子在解決同一問題時會有不同的視角。在本節(jié)課中,我放手讓學(xué)生用自己思維方式進(jìn)行自由的、多角度的思考,學(xué)生自主地構(gòu)建知識,充分體現(xiàn)了“不同的人學(xué)習(xí)不同的數(shù)學(xué)”的理念。有的學(xué)生通過對分?jǐn)?shù)乘整數(shù)的意義的理解,將分?jǐn)?shù)乘整數(shù)與分?jǐn)?shù)加法的計(jì)算方法聯(lián)系起來思考;有的學(xué)生通過在老師給的`練習(xí)紙上涂色來得到結(jié)果;有的學(xué)生講清了為什么將分子與整數(shù)相乘的道理;還有的學(xué)生將分?jǐn)?shù)轉(zhuǎn)換為小數(shù),同樣得到了正確的結(jié)果。由此我深深地體會到,包括教師在內(nèi)的任何人,都不能要求學(xué)生按照我們成人的或者教材編寫者的意圖去思考和解決問題,那些單一的、刻板的要求只會阻礙學(xué)生的思維發(fā)展。

  三、對教材進(jìn)行重組。

  本節(jié)課時一節(jié)枯燥乏味的計(jì)算課,因此我利用烏龜和兔子進(jìn)行智力比賽的方式來刺激學(xué)生求知解題的欲望,讓孩子們在充滿競爭和挑戰(zhàn)的環(huán)境氛圍下,不知不覺地完成書本上的基本練習(xí)。當(dāng)然我也對教材的聯(lián)系題目進(jìn)行了重組和改編。如練一練第一題,我就把4個改成了3個,這樣就使得這題避免約分,先解決不用約分的計(jì)算方法,再進(jìn)行約分的教學(xué)。使整節(jié)課自然分成兩部分來進(jìn)行。

  四、存在的一些問題。

  本節(jié)課總體來說比較成功,課堂上的內(nèi)容都比較順利的完成了,但是在讓學(xué)生體會先約分比較簡單時,出現(xiàn)了些問題。在做完例題第二個問題之后,依然有不少學(xué)生依然覺得先計(jì)算好,于是我就出示了四道題目,其中最后一題數(shù)據(jù)較大,可以很好的引導(dǎo)學(xué)生得出正確的結(jié)論。但我現(xiàn)在覺得,如果在例題教學(xué)完之后就直接完成那個8/11×99,這樣就更加直接了,學(xué)生立刻就能體會到先約分的好處了,那么再做其它需要進(jìn)行約分的題目就方便了。

分?jǐn)?shù)乘整數(shù)的教學(xué)反思15

  高中語文新課程標(biāo)準(zhǔn)對古代詩文閱讀教學(xué)這一模塊的要求是:提高學(xué)生閱讀古詩文的能力、學(xué)會解決閱讀中的障礙、了解作品的社會影響等等!犊兹笘|南飛》是我國古代第一首長篇敘事詩。該詩敘述的故事有人物,有情節(jié),有以白描手法刻畫的準(zhǔn)確、生動的人物形象。如何在本課教學(xué)中達(dá)到新課程標(biāo)準(zhǔn)對學(xué)生提出的這些要求,我的初步設(shè)想是讓學(xué)生通過對本課詩句的理解,從中學(xué)習(xí)人物形象的刻畫手法;通過對主題的理解,了解作品的社會影響。于是,本課教學(xué)圍繞這個思想展開。

  全篇教學(xué)安排為三課時。第一課時將學(xué)生不懂的字音、字義梳理通順。這一課除了個別字音比較難懂之外,一些基礎(chǔ)知識學(xué)生可以通過課本的注釋閱讀去了解與掌握。在疏通的同時初步了解故事的`梗概。

  第二課時讓學(xué)生通篇朗讀,理出層次之后,再分角色朗讀。雖然篇幅較長,但學(xué)生通過朗讀加上老師對個別語段的點(diǎn)撥,學(xué)生基本可以弄懂文義。

  第三課時是人物形象分析,達(dá)到揭示主題的目的。這節(jié)課學(xué)生掌握起來難度較大,我的教學(xué)環(huán)節(jié)主要是:

  首先讓學(xué)生從全文中找出能表現(xiàn)劉蘭芝人物形象的詩句,通過學(xué)生朗讀初步體會文中人物的性格。其次由學(xué)生分析人物的性格,進(jìn)而歸納出人物的形象,再通過故事情節(jié)認(rèn)識人物的悲劇結(jié)局。學(xué)生通過對文中詩句的分析,從不同側(cè)面了解到文中人物的性格,勾畫出人物的形象:從“雞鳴外欲曙,新婦起嚴(yán)妝。著我繡夾裙,事事四五通。足下躡絲履,頭上玳瑁光。腰若流紈素,耳著明月珰。指如削蔥根,口如含朱丹。纖纖做細(xì)步,精妙世無雙”這些詩句中,學(xué)生看到了劉蘭芝的美麗;從“雞鳴入雞織,夜夜不得息。三日斷五匹,大人故嫌遲”這一詩句中,學(xué)生體會到了劉蘭芝的勤勞能干;從“十三能織素,十四學(xué)裁衣,十五彈箜篌,十六誦詩書”這一詩句中,學(xué)生悟出了劉蘭芝的聰明、知書達(dá)理;從“勤心事公姥,好自相扶將”、“今日還家去,念母勞家里”、“念母勞家里,好自相扶將”等詩句中,學(xué)生讀出了劉蘭芝的善良、懂禮;從“感君區(qū)區(qū)懷!君既若見錄,不久望君來。君當(dāng)做磐石,妾當(dāng)做蒲葦,蒲葦韌如絲,磐石無轉(zhuǎn)移”、“蘭芝初還時,府吏見叮嚀,結(jié)誓不別離。今日違情意,恐此事非奇。自可斷來信,徐徐更謂之”等詩句中,學(xué)生品味出劉蘭芝對待愛情的忠貞。學(xué)生對詩句進(jìn)行以上的分析、思考,都能得出文章是通過人物的外貌描寫、語言描寫得出人物性格這樣的結(jié)論。在此基礎(chǔ)上,啟發(fā)學(xué)生思考造成劉蘭芝悲劇結(jié)局的根本原因是什么。這樣的問題對學(xué)生來說難度較大,即使學(xué)生能夠說出封建家長制是悲劇根源的話語,但不一定是真正意義上的理解,畢竟他們?nèi)狈Ξ?dāng)時生活與社會的體驗(yàn)。后來在學(xué)生的發(fā)言、教師的啟發(fā)下,班里大多數(shù)同學(xué)逐漸都能夠明白這一點(diǎn)。最后,讓學(xué)生運(yùn)用教師教的方法分析其他人物形象。學(xué)生通過練習(xí),基本掌握了這個方法。

  我在最后設(shè)計(jì)了一道開放式思考題:假如在今天,這個悲劇是否會發(fā)生?剛開始學(xué)生們無從答起。后來我啟發(fā)到,假如你就是故事中的主人公,你會怎么辦。有的男同學(xué)說,會做好母親和妻子的工作。有的女同學(xué)說,我會努力讓婆婆喜歡我。雖然學(xué)生的回答還很膚淺,離我預(yù)設(shè)的答案相差很遠(yuǎn),但他們畢竟對這個問題進(jìn)行了認(rèn)真思考,他們還是有所收獲的。

【分?jǐn)?shù)乘整數(shù)的教學(xué)反思】相關(guān)文章:

分?jǐn)?shù)乘整數(shù)教學(xué)反思02-26

數(shù)學(xué)分?jǐn)?shù)乘整數(shù)教學(xué)反思02-25

分?jǐn)?shù)乘整數(shù)教學(xué)設(shè)計(jì)01-17

《小數(shù)乘整數(shù)》教學(xué)反思10-20

分?jǐn)?shù)乘分?jǐn)?shù)教學(xué)反思05-17

《小數(shù)乘整數(shù)》數(shù)學(xué)教學(xué)反思08-04

小數(shù)乘整數(shù)教學(xué)反思15篇01-15

《小數(shù)乘整數(shù)》教學(xué)設(shè)計(jì)12-08

《小數(shù)乘整數(shù)》教學(xué)設(shè)計(jì)15篇05-20