亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

高一數(shù)學(xué)教學(xué)計(jì)劃

時(shí)間:2024-07-12 15:06:57 教學(xué)計(jì)劃 我要投稿

高一數(shù)學(xué)教學(xué)計(jì)劃(15篇)

  人生天地之間,若白駒過隙,忽然而已,我們的工作同時(shí)也在不斷更新迭代中,是時(shí)候開始制定計(jì)劃了。擬起計(jì)劃來就毫無頭緒?下面是小編精心整理的高一數(shù)學(xué)教學(xué)計(jì)劃,歡迎大家分享。

高一數(shù)學(xué)教學(xué)計(jì)劃(15篇)

高一數(shù)學(xué)教學(xué)計(jì)劃1

  一.指導(dǎo)思想:

  (1)隨著素質(zhì)教育的深入展開,《新課程標(biāo)準(zhǔn)》提出了“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會(huì)主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動(dòng)相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會(huì)主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想和課程理念和改革要點(diǎn)。使學(xué)生掌握從事社會(huì)主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識(shí)和基本技能。其內(nèi)容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來的思想方法,概率、統(tǒng)計(jì)的初步知識(shí),計(jì)算機(jī)的使用等。

  (2)培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間想象能力,以及綜合運(yùn)用有關(guān)數(shù)學(xué)知識(shí)分析問題和解決問題的能力。使學(xué)生逐步地學(xué)會(huì)觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運(yùn)用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過程的能力。

  (3) 根據(jù)數(shù)學(xué)的學(xué)科特點(diǎn),加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索創(chuàng)新的精神。

  (4) 使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運(yùn)動(dòng)、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。

  (5)學(xué)會(huì)通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實(shí)際問題的思維方法和操作方法。

  (6)本學(xué)期是高一的重要時(shí)期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實(shí)基礎(chǔ),加強(qiáng)綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。

  二.學(xué)情分析:

  我校高一學(xué)生在數(shù)學(xué)學(xué)習(xí)上存在不少問題,這些問題主要表現(xiàn)在以下方面: 1、進(jìn)一步學(xué)習(xí)條件不具備.高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識(shí)的深度、

  廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識(shí)與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高.如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實(shí)根分布與參變量方程,三角公式的變形與靈活運(yùn)用,空間概念的形成,排列組合應(yīng)用題及實(shí)際應(yīng)用問題等.客觀上這些觀點(diǎn)就是分化點(diǎn),有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補(bǔ)救措施,查缺補(bǔ)漏,分化是不可避免的。

  2、被動(dòng)學(xué)習(xí).許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強(qiáng)的依賴心理,跟隨老師慣性運(yùn)轉(zhuǎn),沒有掌握學(xué)習(xí)主動(dòng)權(quán).表現(xiàn)在不定計(jì)劃,坐等上課,課前沒有預(yù)習(xí),對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學(xué)內(nèi)容。不知道或不明確學(xué)習(xí)數(shù)學(xué)應(yīng)具有哪些學(xué)習(xí)方法和學(xué)習(xí)策略;老師上課一般都要講清知識(shí)的來龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法.而一部分同學(xué)上課沒能專心聽課,對要點(diǎn)沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時(shí)鞏固、總結(jié)、尋找知識(shí)間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背.也有的晚上加班加點(diǎn),白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。

  3、對自己學(xué)習(xí)數(shù)學(xué)的好差(或成敗)不了解,更不會(huì)去進(jìn)行反思總結(jié),甚至根本不關(guān)心自己的成敗。

  4、不能計(jì)劃學(xué)習(xí)行動(dòng),不會(huì)安排學(xué)習(xí)生活,更不能調(diào)節(jié)控制學(xué)習(xí)行為,不能隨時(shí)監(jiān)控每一步驟,對學(xué)習(xí)結(jié)果不會(huì)正確地自我評價(jià)。

  5、不重視基礎(chǔ).一些“自我感覺良好”的.同學(xué),常輕視基本知識(shí)、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海.到正規(guī)作業(yè)或考試中不是演算出錯(cuò)就是中途“卡殼”。 此外,還有許多學(xué)生數(shù)學(xué)學(xué)習(xí)興趣不濃厚,不具備應(yīng)用數(shù)學(xué)的意識(shí)和能力,對數(shù)學(xué)思想方法重視不夠或掌握情況不好,缺乏將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力,缺乏準(zhǔn)確運(yùn)用數(shù)學(xué)語言來分析問題和表達(dá)思想的能力,思維缺乏靈活性、批判性和發(fā)散性等。所有這些都嚴(yán)重制約著學(xué)生數(shù)學(xué)成績的提高

  三、教學(xué)目標(biāo)與要求

  必修1,主要涉及兩章內(nèi)容:

  第一章:集合

  通過本章學(xué)習(xí),使學(xué)生感受到用集合表示數(shù)學(xué)內(nèi)容時(shí)的簡潔性、準(zhǔn)確性,幫助學(xué)生學(xué)會(huì)用集合語言表示數(shù)學(xué)對象,為以后的學(xué)習(xí)奠定基礎(chǔ)。

  1.了解集合的含義,體會(huì)元素與集合的屬于關(guān)系,并初步掌握集合的表示方法;

  2.理解集合間的包含與相等關(guān)系,能識(shí)別給定集合的子集,了解全集與空集的含義;

  3.理解補(bǔ)集的含義,會(huì)求在給定集合中某個(gè)集合的補(bǔ)集;

  4.理解兩個(gè)集合的并集和交集的含義,會(huì)求兩個(gè)簡單集合的并集和交集;

  5.滲透數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法;

  6.在引導(dǎo)學(xué)生觀察、分析、抽象、類比得到集合與集合間的關(guān)系等數(shù)學(xué)知識(shí)的過程中,培養(yǎng)學(xué)生的思維能力。

  第二章:函數(shù)的概念與基本初等函數(shù)Ⅰ

  教學(xué)本章時(shí)應(yīng)立足于現(xiàn)實(shí)生活從具體問題入手,以問題為背景,按照“問題情境—數(shù)學(xué)活動(dòng)—意義建構(gòu)—數(shù)學(xué)理論—數(shù)學(xué)應(yīng)用—回顧反思”的順序結(jié)構(gòu),引導(dǎo)學(xué)生通過實(shí)驗(yàn)、觀察、歸納、抽象、概括,數(shù)學(xué)地提出、分析和解決問題。通過本章學(xué)習(xí),使學(xué)生進(jìn)一步感受函數(shù)是探索自然現(xiàn)象、社會(huì)現(xiàn)象基本規(guī)律的工具和語言,學(xué)會(huì)用函數(shù)的思想、變化的觀點(diǎn)分析和解決問題,達(dá)到培養(yǎng)學(xué)生的創(chuàng)新思維的目的。

  1.了解函數(shù)概念產(chǎn)生的背景,學(xué)習(xí)和掌握函數(shù)的概念和性質(zhì),能借助函數(shù)的知識(shí)表述、刻畫事物的變化規(guī)律;

  2.理解有理指數(shù)冪的意義,掌握有理指數(shù)冪的運(yùn)算性質(zhì);掌握指數(shù)函數(shù)的概念、圖象和性質(zhì);理解對數(shù)的概念,掌握對數(shù)的運(yùn)算性質(zhì),掌握對數(shù)函數(shù)的概念、圖象和性質(zhì);了解冪函數(shù)的概念和性質(zhì),知道指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)時(shí)描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型;

  第三章:函數(shù)的應(yīng)用

  函數(shù)的應(yīng)用是學(xué)習(xí)函數(shù)的一個(gè)重要方面,學(xué)生學(xué)習(xí)函數(shù)的應(yīng)用,目的就

  是利用已有的函數(shù)知識(shí)分析問題和解決問題.通過函數(shù)的應(yīng)用,對完善函數(shù)思想,激發(fā)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),培養(yǎng)分析問題、解決問題的能力,增強(qiáng)進(jìn)行實(shí)踐的能力等,都有很大的幫助。

  1.了解函數(shù)與方程之間的關(guān)系;會(huì)用二分法求簡單方程的近似解;了解函數(shù)模型及其意義;

  2.培養(yǎng)學(xué)生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創(chuàng)新意識(shí)與探究能力、數(shù)學(xué)建模能力以及數(shù)學(xué)交流的能力。

  必修4:主要涉及三章內(nèi)容:

  第一章:三角函數(shù)

  通過本章學(xué)習(xí),有助于學(xué)生認(rèn)識(shí)三角函數(shù)與實(shí)際生活的緊密聯(lián)系,以及三角函數(shù)在解決實(shí)際問題中的廣泛應(yīng)用,從中感受數(shù)學(xué)的價(jià)值,學(xué)會(huì)用數(shù)學(xué)的思維方式觀察、分析現(xiàn)實(shí)世界、解決日常生活和其他學(xué)科學(xué)習(xí)中的問題,發(fā)展數(shù)學(xué)應(yīng)用意識(shí)。

  1.了解任意角的概念和弧度制;

  2.掌握任意角三角函數(shù)的定義,理解同角三角函數(shù)的基本關(guān)系及誘導(dǎo)公式;

  3.了解三角函數(shù)的周期性;

  4.掌握三角函數(shù)的圖像與性質(zhì)。

  第二章:平面向量

  在本章中讓學(xué)生了解平面向量豐富的實(shí)際背景,理解平面向量及其運(yùn)算的意義,能用向量的語言和方法表述和解決數(shù)學(xué)和物理中的一些問題,發(fā)展運(yùn)算能力和解決實(shí)際問題的能力。

  1.理解平面向量的概念及其表示;

  2.掌握平面向量的加法、減法和向量數(shù)乘的運(yùn)算;

  3.理解平面向量的正交分解及其坐標(biāo)表示,掌握平面向量的坐標(biāo)運(yùn)算;

  4.理解平面向量數(shù)量積的含義,會(huì)用平面向量的數(shù)量積解決有關(guān)角度和垂直的問題。

  第三章:三角恒等變換

  通過推導(dǎo)兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦

高一數(shù)學(xué)教學(xué)計(jì)劃2

  一 指導(dǎo)思想

  為了使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。具體目標(biāo)如下:

  1.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。

  2.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力

  3.發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。

  4.提高學(xué)習(xí)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

  二 學(xué)情分析

  1. 基本情況:班共人,男生人,女生人;本班相對而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約 人,后進(jìn)生約人。

  2.我所執(zhí)教的215班均屬普高班,學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺性。同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),其底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實(shí)一個(gè)知識(shí)點(diǎn),掌握一個(gè)知識(shí)點(diǎn)。

  三 教材分析

  我們采用的教材是人教版必修教材,本冊教材共分兩章:第四章《三角函數(shù)》和第五章《平面向量》。三角函數(shù)的主要內(nèi)容有:任意角的三角函數(shù)概念、弧度制、同角三角函數(shù)間的關(guān)系、誘導(dǎo)公式、兩角和與差的三角函數(shù)、二倍角的三角函數(shù)以及三角函數(shù)的圖象和性質(zhì)、已知三角函數(shù)值求角等。難點(diǎn)是弧度制的概念、綜合運(yùn)用本章公式進(jìn)行簡單三角函數(shù)式的化簡及恒等式的證明周期函數(shù)的概念,函數(shù)y=Asin(x+)的圖象與正弦曲線的關(guān)系。平面向量主要內(nèi)容是向量及其運(yùn)算和解斜三角形,向量的幾何表示和坐標(biāo)表示、向量的線性運(yùn)算,平面向量的數(shù)量積,平面兩點(diǎn)間的距離公式,線段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,平移公式,解斜三角形是本章的重點(diǎn),而向量運(yùn)算法則的理解和運(yùn)用,已知兩邊和其中一邊的對角解斜三角形等是本章的難點(diǎn)。

  四 教法分析

  在教學(xué)過程中盡量做到以下幾個(gè)方面:

  1. 選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的'。

  2. 通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。

  3. 在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。

  五 教學(xué)及輔導(dǎo)措施

  1. 激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。

  2. 注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。

  3. 加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。

  4. 抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。

  5. 自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。

  6. 重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。

  六 優(yōu)、差生名單及輔導(dǎo)措施

  1. 對于優(yōu)生:學(xué)生自愿成立興趣小組,興趣小組可以在老師的指導(dǎo)下由學(xué)生自己不定期的開展活動(dòng),圍繞數(shù)學(xué)競賽拓展他們的知識(shí)面,加深對所學(xué)知識(shí)的理解和應(yīng)用,在原有基礎(chǔ)上,穩(wěn)定班級在數(shù)學(xué)學(xué)習(xí)鐘的尖子學(xué)生,進(jìn)一步培養(yǎng)他們自主學(xué)習(xí)的意識(shí)。

  2. 對于待發(fā)展生:對于成績較差的學(xué)生,針對他們的基礎(chǔ)差異和個(gè)性差異,耐心細(xì)致的進(jìn)行個(gè)別輔導(dǎo),有問題隨時(shí)解決,并多予以鼓勵(lì)。在作業(yè)中體現(xiàn)分層。盡量做到因材施教。

  七 教學(xué)進(jìn)度安排

周 次




課時(shí)




內(nèi) 容




重 點(diǎn)、難 點(diǎn)




第1周




5




任意角和弧度制(2)




任意角的三角函數(shù)(3)




了解任意角的概念和弧度制,能進(jìn)行弧度與角度的互化。任意角三角函數(shù)的定義。




第2周




5




同角三角函數(shù)的基本關(guān)系式(3)




三角函數(shù)的誘導(dǎo)公式(2)




誘導(dǎo)公式的探究。運(yùn)用誘導(dǎo)公式。




第3周




5




兩角和與差的正弦、余弦、正切 (5)




兩角和與差的公式及其應(yīng)用與求值、化簡




第4周




5




二倍角的正弦、余弦、正切 (3)




正、余弦函數(shù)的圖象(2)




三角函數(shù)的倍角公式、和差化積公式




正、余弦函數(shù)圖象的畫法




第5周




5




三角函數(shù)圖象與性質(zhì)(4)




三角函數(shù)的圖象及其性質(zhì)。函數(shù)思想。




第6周




5




函數(shù)y=sin(+)的圖象(2)、三角函數(shù)模型的簡單應(yīng)用(2)




用參數(shù)思想討論圖象的變換過程。用三角模型解決一些具有周期變化規(guī)律的實(shí)際問題。難點(diǎn):實(shí)際問題抽象為三角函數(shù)模型




第7周




5




正切函數(shù)的圖象和性質(zhì)(3)




已知三角函數(shù)值求角(2)




正切函數(shù)的圖象和性質(zhì)




反三角函數(shù)的表示




第8周




5




三角函數(shù)單元復(fù)習(xí)




知識(shí)點(diǎn)的復(fù)習(xí)+練習(xí)卷




第9周




5




平面向量的實(shí)際背景及基本概念(2)、平面向量的線性運(yùn)算(2)




向量的概念。相等向量的概念。向量的幾何表示。向量加、減法的運(yùn)算及幾何意義。向量數(shù)乘運(yùn)算及幾何意義。




第10周




5




平面向量的基本定理及坐標(biāo)表示(2)




平面向量的數(shù)量積(2)




平面向量基本定理。會(huì)用平面向量數(shù)量積的表示向量的模與夾角。




第11周




5




平面向量的應(yīng)用舉例(2)




用向量方法解決實(shí)際問題的方法。向量方法解決幾何問題的三步曲。




第12周




5




向量平移、正弦定理、余弦定理




向量平移的公式




第13周




5




簡單的三角恒等變換(3)




第三章小結(jié)(1)




以11個(gè)公式為依據(jù),推導(dǎo)和差化積、積化和差等公式,會(huì)進(jìn)行三角變換。




第14周




5




期末復(fù)習(xí)





第15周




5




期末復(fù)習(xí)




分章歸納復(fù)習(xí)+3套模擬測試




高一數(shù)學(xué)教學(xué)計(jì)劃3

  一、基本情況分析:

  1、學(xué)生情況分析:4個(gè)重點(diǎn)班的學(xué)生,基礎(chǔ)比較好,學(xué)習(xí)積極性高。普通班學(xué)生在基礎(chǔ)、學(xué)習(xí)習(xí)慣、學(xué)習(xí)自覺性等方面都有一定差距,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺性。學(xué)生存在的最大問題是計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點(diǎn)在于強(qiáng)化基礎(chǔ)知識(shí),培養(yǎng)學(xué)生的計(jì)算能力,提高思維能力,爭取每堂課教學(xué)一個(gè)知識(shí)點(diǎn),掌握一個(gè)知識(shí)點(diǎn)。

  2、教材分析:本學(xué)期時(shí)間短,教學(xué)任務(wù)是必修4第二章,必修5,必修2涉及平面向量,解三角形,數(shù)列,空間幾何體,點(diǎn),線面的位置關(guān)系,直線與方程,圓與方程。

  二、教學(xué)內(nèi)容:

  本學(xué)期的數(shù)學(xué)教學(xué)內(nèi)容是高一數(shù)學(xué)下冊,包括第四章《三角函數(shù)》和第五章《平面向量》。按照數(shù)學(xué)教學(xué)大綱的要求,第四章教學(xué)需要36個(gè)課時(shí)(不包含考試與測驗(yàn)的時(shí)間);第五章的教學(xué)需要22個(gè)課時(shí),共計(jì)需要58個(gè)課時(shí)。本學(xué)期有兩次月考和五一長假,實(shí)際授課時(shí)間為18周,按每周6課時(shí)計(jì)算,數(shù)學(xué)課時(shí)達(dá)到110課時(shí)左右,時(shí)間相當(dāng)充足。這為我們數(shù)學(xué)組全面貫徹“低切入、慢節(jié)奏”的教學(xué)方針提供了保障,也是我們提高學(xué)生數(shù)學(xué)水平的又一次極好的機(jī)會(huì)。

  三、本學(xué)期教學(xué)目標(biāo)

  在基礎(chǔ)知識(shí)方面讓學(xué)生掌握高一有關(guān)的概念、性質(zhì)、法則、公式、定理以及由其內(nèi)容反映出來的數(shù)學(xué)思想和方法。在基本技能方面能按照一定的程序與步驟進(jìn)行運(yùn)算、處理數(shù)據(jù)、能使用計(jì)數(shù)器及簡單的推理、畫圖。

  能運(yùn)用數(shù)學(xué)概念、思想方法,辨明數(shù)學(xué)關(guān)系,形成良好的思維品質(zhì);會(huì)根據(jù)法則、公式正確的進(jìn)行運(yùn)算、處理數(shù)據(jù),并能根據(jù)問題的情景設(shè)計(jì)運(yùn)算途徑;會(huì)提出、分析和解決簡單的帶有實(shí)際意義的或在相關(guān)學(xué)科、生產(chǎn)和生活的數(shù)學(xué)問題,并進(jìn)行交流,形成數(shù)學(xué)的意思;從而通過獨(dú)立思考,會(huì)從數(shù)學(xué)的角度發(fā)現(xiàn)和提出問題,進(jìn)行探索和研究。

  培養(yǎng)學(xué)生,學(xué)習(xí)數(shù)學(xué)的興趣、信心和毅力及實(shí)事求是的科學(xué)態(tài)度,勇于探索創(chuàng)新的精神,及欣賞數(shù)學(xué)的美學(xué)價(jià)值,并懂的數(shù)學(xué)來源于實(shí)踐又反作用于實(shí)踐的觀點(diǎn);數(shù)學(xué)中普遍存在的對立統(tǒng)一、運(yùn)動(dòng)變化、相互聯(lián)系、相互轉(zhuǎn)化等觀點(diǎn)。

  四、教學(xué)計(jì)劃

  本學(xué)期的'期中考試(預(yù)計(jì)在4月14號至4月17號進(jìn)行)涵蓋的內(nèi)容為第四章的前9節(jié),由于課時(shí)量充足,第10節(jié)“正切函數(shù)的圖像和性質(zhì)”以及第11節(jié)“已知三角函數(shù)值求角”將在上半學(xué)期講授,這樣下半個(gè)學(xué)期的教學(xué)任務(wù)為30個(gè)課時(shí)。

  我們備課組經(jīng)過認(rèn)真的思索、充分的討論,將期中考試前的教學(xué)進(jìn)度安排如下:

  (一單元)任意角的三角函數(shù)

  §4.1角的概念的推廣3課時(shí)

  §4.2弧度制3課時(shí)

  §4.3任意角的三角函數(shù)3~4課時(shí)

  §4.4同角三角函數(shù)的基本關(guān)系4課時(shí)

  §4.5正弦、余弦的誘導(dǎo)公式4課時(shí)

  復(fù)習(xí)課(習(xí)題課)4課時(shí)

  單元測試及講評2課時(shí)

 。ǘ䥺卧﹥山呛团c差的三角函數(shù)

  §4.6兩角和與差的正弦、余弦、正切7課時(shí)

  習(xí)題課3課時(shí)

  §4.7兩倍角的正弦、余弦、正切4課時(shí)

  習(xí)題課2課時(shí)

  單元測試及講評2課時(shí)

  (三單元)三角函數(shù)的圖象及性質(zhì)

  §4.8正弦、余弦函數(shù)的圖象和性質(zhì)5課時(shí)

  習(xí)題課2課時(shí)

  §4.9函數(shù)的圖象4課時(shí)總計(jì)授課53課時(shí),余下課時(shí)可安排期中復(fù)習(xí)。

  期中考試后的授課計(jì)劃:

  §4.10正切函數(shù)的圖象和性質(zhì)3課時(shí)

  §4.11已知三角函數(shù)值求角4課時(shí)

  習(xí)題課2課時(shí)

  第四章復(fù)習(xí)4課時(shí)

  第五章

 。ㄒ粏卧┫蛄考捌溥\(yùn)算

  §5.1向量1課時(shí)

  §5.2向量的加減法2課時(shí)

  §5.3實(shí)數(shù)與向量的積3課時(shí)

  §5.4平面向量的坐標(biāo)計(jì)算3課時(shí)

  §5.5線段的定比分點(diǎn)2課時(shí)

  §5.6平面向量的數(shù)量積及運(yùn)算律3課時(shí)

  §5.7平面向量數(shù)量積的坐標(biāo)表示2課時(shí)

  §5.8平移2課時(shí)

  習(xí)題課3課時(shí)

  單元測試與講評(隨堂)2課時(shí)

  §5.9正弦、余弦定理5課時(shí)

  §5.10解斜三角形應(yīng)用舉例2課時(shí)

  實(shí)習(xí)與研究性課題4課時(shí)

  習(xí)題課3課時(shí)

  單元測試與講評2課時(shí)

  總結(jié):以上就是本學(xué)期的數(shù)學(xué)教學(xué)計(jì)劃,希望能對你有所幫助,如有不足之處,請批評指正!

高一數(shù)學(xué)教學(xué)計(jì)劃4

  本學(xué)期我擔(dān)任高一(3)、(4)兩班的數(shù)學(xué)教學(xué)工作,兩班學(xué)生共有138人。大部分學(xué)生初中的基礎(chǔ)較差,整體水平不高。從上課兩周來看,學(xué)生的學(xué)習(xí)進(jìn)取性還比較高,愛問問題的學(xué)生比較多;但由于基礎(chǔ)知識(shí)不太牢固,沒有良好的學(xué)習(xí)習(xí)慣,自控本事較差,不能正確地定位自我;所以上課效率一般,教學(xué)工作有必須的難度,為把本學(xué)期教學(xué)工作做好,制定如下教學(xué)工作計(jì)劃。

  一、教學(xué)質(zhì)量目標(biāo)

  (1)獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會(huì)數(shù)學(xué)思想和方法。

  (2)培養(yǎng)學(xué)生的邏輯思維本事、運(yùn)算本事、空間想象本事,以及綜合運(yùn)用有關(guān)數(shù)學(xué)知識(shí)分析問題和解決問題的本事。使學(xué)生逐步地學(xué)會(huì)觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的本事;運(yùn)用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過程的本事。

 。3)根據(jù)數(shù)學(xué)的學(xué)科特點(diǎn),加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索創(chuàng)新的精神。

  (4)使學(xué)生具有必須的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的`科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,構(gòu)成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運(yùn)動(dòng)、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。

 。5)學(xué)會(huì)經(jīng)過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實(shí)際問題的思維方法和操作方法。

 。6)本學(xué)期是高一的重要時(shí)期,教師承擔(dān)著雙重職責(zé),既要不斷夯實(shí)基礎(chǔ),加強(qiáng)綜合本事的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。

  二、教學(xué)目標(biāo)、

 。ㄒ唬┣楦心繕(biāo)

 。1)經(jīng)過分析問題的方法的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。

  (2)供給生活背景,經(jīng)過數(shù)學(xué)建模,讓學(xué)生體會(huì)數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識(shí)。

 。3)在探究基本函數(shù)的性質(zhì),體驗(yàn)獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會(huì)交流、相互評價(jià),提高學(xué)生的合作意識(shí)。

 。4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅(jiān)定學(xué)習(xí)信念和學(xué)習(xí)信心。

 。5)還時(shí)間和空間給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機(jī)會(huì),在發(fā)展他們思維本事的同時(shí),發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。

 。6)讓學(xué)生體驗(yàn)發(fā)現(xiàn)挫折矛盾頓悟新的發(fā)現(xiàn)這一科學(xué)發(fā)現(xiàn)歷程法。

 。ǘ┍臼乱

  1、培養(yǎng)學(xué)生記憶本事。

 。1)經(jīng)過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點(diǎn)和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實(shí)及具體數(shù)據(jù)的記憶。

 。2)經(jīng)過揭示立體集合、函數(shù)、數(shù)列有關(guān)概念、公式和圖形的對應(yīng)關(guān)系,培養(yǎng)記憶本事。

  2、培養(yǎng)學(xué)生的運(yùn)算本事。

  (1)經(jīng)過概率的訓(xùn)練,培養(yǎng)學(xué)生的運(yùn)算本事。

 。2)加強(qiáng)對概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運(yùn)算本事。

 。3)經(jīng)過函數(shù)、數(shù)列的教學(xué),提高學(xué)生是運(yùn)算過程具有明晰性、合理性、簡捷性本事。

 。4)經(jīng)過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運(yùn)算本事,促使知識(shí)間的滲透和遷移。

 。5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運(yùn)算本事。

  三、學(xué)情分析

  高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,夢想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的生成等等矛盾沖突伴隨著高一新生的成長,應(yīng)對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實(shí)在課堂教學(xué)的各個(gè)環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識(shí)水平和實(shí)際本事出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫忙學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一齊就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。

  四、促進(jìn)目標(biāo)達(dá)成的重點(diǎn)工作及措施

  重點(diǎn)工作:

  認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹立新的教學(xué)理念,以雙基教學(xué)為主要資料,堅(jiān)持抓兩頭、帶中間、整體推進(jìn),使每個(gè)學(xué)生的數(shù)學(xué)本事都得到提高和發(fā)展。

  分層推進(jìn)措施

  1、重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵(lì)學(xué)生,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。

  2、合理引入課題,由數(shù)學(xué)活動(dòng)、故事、提問、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用比較的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。

  3、培養(yǎng)學(xué)生解答考題的本事,經(jīng)過例題,從形式和資料兩方應(yīng)對所學(xué)知識(shí)進(jìn)行本事方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些本事要求。

  4、讓學(xué)生經(jīng)過單元考試,檢測自我的實(shí)際應(yīng)用本事,從而及時(shí)總結(jié)經(jīng)驗(yàn),找出不足,做好充分的準(zhǔn)備

  5、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的本事。

  6、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維本事和解決實(shí)際問題的本事,以及培養(yǎng)提高學(xué)生的自學(xué)本事,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育;同時(shí)重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用本事的培養(yǎng)。

  7、自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對不一樣的教材資料選擇不一樣教法,提倡創(chuàng)新教學(xué)方法,把學(xué)生被動(dòng)理解知識(shí)轉(zhuǎn)化主動(dòng)學(xué)習(xí)知識(shí)。

  8、注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。集中精力打好基礎(chǔ),分項(xiàng)突破難點(diǎn)、所列基礎(chǔ)知識(shí)依據(jù)課程標(biāo)準(zhǔn)設(shè)計(jì),著眼于基礎(chǔ)知識(shí)與重點(diǎn)資料,要充分重視基礎(chǔ)知識(shí)、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅(jiān)實(shí)的基礎(chǔ),切勿忙于過早的拔高,上難題。同時(shí)應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識(shí)要求,本事要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機(jī)結(jié)合。

高一數(shù)學(xué)教學(xué)計(jì)劃5

  一、高考要求

  ①了解映射的概念,理解函數(shù)的概念;

 、诹私夂瘮(shù)的單調(diào)性和奇偶性的概念,掌握判斷一些簡單函數(shù)單調(diào)性奇偶性的方法;

 、哿私夥春瘮(shù)的概念及互為反函數(shù)的函數(shù)圖象間的關(guān)系,會(huì)求一些簡單函數(shù)的反函數(shù);

  ④理解分?jǐn)?shù)指數(shù)冪的.概念,掌握有理數(shù)冪的運(yùn)算性質(zhì),掌握指數(shù)函數(shù)的概念、圖像和性質(zhì);

 、堇斫鈱(shù)函數(shù)的概念、圖象和性質(zhì);⑥能夠應(yīng)用函數(shù)的性質(zhì)、指數(shù)函數(shù)和對數(shù)函數(shù)性質(zhì)解決某些簡單實(shí)際問題.

  二、兩點(diǎn)解讀

  重點(diǎn):①求函數(shù)定義域;②求函數(shù)的值域或最值;③求函數(shù)表達(dá)式或函數(shù)值;④二次函數(shù)與二次方程、二次不等式相結(jié)合的有關(guān)問題;⑤指數(shù)函數(shù)與對數(shù)函數(shù);⑥求反函數(shù);⑦利用原函數(shù)和反函數(shù)的定義域值域互換關(guān)系解題.

  難點(diǎn):①抽象函數(shù)性質(zhì)的研究;②二次方程根的分布.

  三、課前訓(xùn)練

  1.函數(shù)的定義域是 ( D )

  (A) (B) (C) (D)

  2.函數(shù)的反函數(shù)為 ( B )

  (A) (B)

  (C) (D)

  3.設(shè)則 .

  4.設(shè),函數(shù)是增函數(shù),則不等式的解集為 (2,3)

  四、典型例題

  例1 設(shè),則的定義域?yàn)?( )

  (A) (B)

  (C) (D)

  解:∵在中,由,得, ∴,

  ∴在中,.

  故選B

  例2 已知是上的減函數(shù),那么a的取值范圍是 ( )

  (A) (B) (C) (D)

  解:∵是上的減函數(shù),當(dāng)時(shí),,∴;又當(dāng)時(shí),,∴,∴,且,解得:.∴綜上,,故選C

  例3 函數(shù)對于任意實(shí)數(shù)滿足條件,若,則

  解:∵函數(shù)對于任意實(shí)數(shù)滿足條件,

  ∴,即的周期為4,

高一數(shù)學(xué)教學(xué)計(jì)劃6

  一、學(xué)生情景分析

  本學(xué)期擔(dān)任高一森林班的數(shù)學(xué)教學(xué)工作,學(xué)生共有66人,大部分學(xué)生學(xué)習(xí)習(xí)慣好,學(xué)習(xí)目標(biāo)明確、勤奮、主動(dòng),學(xué)習(xí)動(dòng)力足,少數(shù)同學(xué)質(zhì)疑“學(xué)習(xí)是否有用”;另外,少數(shù)學(xué)生不能正確評價(jià)自我,這給教學(xué)工作帶來了必須的難度,在學(xué)習(xí)中取得長足的提高,必須要引導(dǎo)他們,擺正學(xué)習(xí)態(tài)度,讓他們體會(huì)到學(xué)習(xí)的樂趣,學(xué)習(xí)給他們帶來的成就感,提高他們學(xué)習(xí)的進(jìn)取性,還要不斷的鼓勵(lì)他們,培養(yǎng)他們良好的學(xué)習(xí)習(xí)慣。

  二、教學(xué)目標(biāo)

  1、由數(shù)學(xué)活動(dòng)、故事等等,經(jīng)過分析問題的方法的教學(xué),提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,構(gòu)成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

  2、注意從實(shí)例出發(fā),從感性提高到理性,供給生活背景,經(jīng)過動(dòng)手建立幾何模型,讓學(xué)生體會(huì)數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識(shí)。

  3、獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。經(jīng)過不一樣形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。

  4、提高空間想象、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本本事。

  5、提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的本事,數(shù)學(xué)表達(dá)和交流的本事,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的本事。

  6、經(jīng)過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點(diǎn)和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的.背景事實(shí)及具體數(shù)據(jù)的記憶。發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出確定。

  7、加強(qiáng)知識(shí)的橫向聯(lián)系,培養(yǎng)學(xué)生的數(shù)形結(jié)合的本事。

  8、具有必須的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,構(gòu)成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。

  三、教材分析

  本學(xué)期學(xué)習(xí)的資料主要有集合,函數(shù)和空間幾何體,這些都是高中數(shù)學(xué)的基礎(chǔ)知識(shí),其中函數(shù)更是高中數(shù)學(xué)的學(xué)習(xí)重點(diǎn),也是學(xué)習(xí)其他資料的必備基礎(chǔ),空間幾何是高考中不可忽略的重要部分,在教學(xué)上要注重學(xué)生的邏輯思維本事、空間想象本事的培養(yǎng)及自學(xué)本事的逐步構(gòu)成。

  四、教學(xué)措施

  1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和提高。

  2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用比較的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。

  3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維本事就解決實(shí)際問題的本事,以及培養(yǎng)提高學(xué)生的自學(xué)本事,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。

  4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的本事。

  5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不一樣的教材資料選擇不一樣教法。

  6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用本事的培養(yǎng)。

高一數(shù)學(xué)教學(xué)計(jì)劃7

  一、指導(dǎo)思想:

  使學(xué)生學(xué)好從事社會(huì)主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代科學(xué)技術(shù)所必需的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力和空間想象能力,以逐步形成運(yùn)用數(shù)學(xué)知識(shí)來分析和解決實(shí)際問題的能力。要培養(yǎng)學(xué)生對數(shù)學(xué)的興趣,激勵(lì)學(xué)生為實(shí)現(xiàn)四個(gè)現(xiàn)代化學(xué)好數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的科學(xué)態(tài)度和辨證唯物主義的觀點(diǎn)。

  二、基本情況分析:

  1、4班共xx人,男生xx人,女生xx人;本班相對而言,數(shù)學(xué)尖子約xx人,中上等生約xx人,中等生約xx人,中下生約xx人,差生約xx人。

  5班共xx人,男生xx人,女生xx人;本班相對而言,數(shù)學(xué)尖子約xx人,中上等生約xx人,中等生約xx人,中下生約xx人,差生約xx人。

  2、4班在初中升入高中的升學(xué)考試中,數(shù)學(xué)成績在100及以上的有xx人,80—99有xx人,60—79有xx人,40—59有xx人,40以下有xx人,其中最高分為xx,最低分為xx。

  5班在初中升入高中的升學(xué)考試中,數(shù)學(xué)成績在100及以上的有xx人,80—99有xx人,60—79有xx人,40—59有xx人,40以下有xx人,其中最高分為xx,最低分為xx。

  3、4/5班分別為高一年級9個(gè)班中編排一個(gè)普高班和一個(gè)普高班之后的體育班,整體分析的結(jié)果是:

  三、教材分析:

  1、教材內(nèi)容:集合、一元二次不等式、簡易邏輯、映射與函數(shù)、指數(shù)函數(shù)和對數(shù)函數(shù)、數(shù)列、等差數(shù)列、等比數(shù)列。

  2、集合概念及其基本理論,是近代數(shù)學(xué)最基本的內(nèi)容之一;函數(shù)是中學(xué)數(shù)學(xué)中最重要的基本概念之一;數(shù)列有著廣泛的應(yīng)用,是進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。

  3、教材重點(diǎn):幾種函數(shù)的圖像與性質(zhì)、不等式的解法、數(shù)列的概念、等差數(shù)列與等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和的公式。

  4、教材難點(diǎn):關(guān)于集合的各個(gè)基本概念的涵義及其相互之間的'區(qū)別和聯(lián)系、映射的概念以及用映射來刻畫函數(shù)概念、反函數(shù)、一些代數(shù)命題的證明、

  5、教材關(guān)鍵:理解概念,熟練、牢固掌握函數(shù)的圖像與性質(zhì)。

  6、采用了由淺入深、減緩坡度、分散難點(diǎn),逐步展開教材內(nèi)容的做法,符合從有限到無限的認(rèn)識(shí)規(guī)律,體現(xiàn)了從量變到質(zhì)變和對立統(tǒng)一的辯證規(guī)律。每階段的內(nèi)容相對獨(dú)立,方法比較單一,有助于掌握每一階段內(nèi)容。

  7、各部分知識(shí)之間的聯(lián)系較強(qiáng),每一階段的知識(shí)都是以前一階段為基礎(chǔ),同時(shí)為下階段的學(xué)習(xí)作準(zhǔn)備。

  8、全期教材重要的內(nèi)容是:集合運(yùn)算、不等式解法、函數(shù)的奇偶性與單調(diào)性、等差與等比數(shù)列的通項(xiàng)和前n項(xiàng)和。

  四、教學(xué)要求:

  1、理解集合、子集、交集、并集、補(bǔ)集的概念。了解空集和全集的意義,了解屬于、包含、相等關(guān)系的意義,能掌握有關(guān)的術(shù)語和符號,能正確地表示一些簡單的集合。

  2、掌握一元二次不等式的解法和絕對值不等式的解法,并能熟練求解。

  3、了解命題的概念、邏輯聯(lián)結(jié)詞的含義,掌握四種命題及其關(guān)系,掌握充分、必要、充要條件,初步掌握反證法。

  4、了解映射的概念,在此基礎(chǔ)上理解函數(shù)及其有關(guān)的概念,掌握互為反函數(shù)的函數(shù)圖象間的關(guān)系。

  5、理解函數(shù)的單調(diào)性和奇偶性的概念,并能判斷一些簡單函數(shù)的單調(diào)性和奇偶性,能利用函數(shù)的奇偶性與圖象的對稱性的關(guān)系描繪圖象。

  6、掌握指數(shù)函數(shù)、對數(shù)函數(shù)的概念及其圖象和性質(zhì),并會(huì)解簡單的函數(shù)應(yīng)用問題。

  7、使學(xué)生理解數(shù)列的有關(guān)概念,掌握等差數(shù)列與等比數(shù)列的概念、通項(xiàng)公式、前n項(xiàng)和的公式,并能夠運(yùn)用這些知識(shí)解決一些問題。

  五、教學(xué)措施:

  1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。

  2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。

  3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。

  4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。

  5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。

高一數(shù)學(xué)教學(xué)計(jì)劃8

、

 、瘢虒W(xué)內(nèi)容解析

  本節(jié)課的教學(xué)內(nèi)容,是指數(shù)函數(shù)的概念、性質(zhì)及其簡單應(yīng)用.教學(xué)重點(diǎn)是指數(shù)函數(shù)的圖像與性質(zhì).

  這是指數(shù)函數(shù)在本章的位置.

  指數(shù)函數(shù)是學(xué)生在學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì)后,學(xué)習(xí)的第一個(gè)新的初等函數(shù).它是一種新的函數(shù)模型,也是應(yīng)用研究函數(shù)的一般方法研究函數(shù)的一次實(shí)踐.指數(shù)函數(shù)的學(xué)習(xí),一方面可以進(jìn)一步深化對函數(shù)概念的理解,另一方面也為研究對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等初等函數(shù)打下基礎(chǔ).因此,本節(jié)課的學(xué)習(xí)起著承上啟下的作用,也是學(xué)生體驗(yàn)數(shù)學(xué)思想與方法應(yīng)用的過程.

  指數(shù)函數(shù)模型在貸款利率的計(jì)算以及考古中年代的測算等方面有著廣泛地應(yīng)用,與我們的日常生活、生產(chǎn)和科學(xué)研究有著緊密的聯(lián)系,因此,學(xué)習(xí)這部分知識(shí)還有著一定的現(xiàn)實(shí)意義.

  Ⅱ.教學(xué)目標(biāo)設(shè)置

  1.學(xué)生能從具體實(shí)例中概括指數(shù)函數(shù)典型特征,并用數(shù)學(xué)符號表示,建構(gòu)指數(shù)函數(shù)的概念.

  2.學(xué)生通過自主探究,掌握指數(shù)函數(shù)的圖象特征與性質(zhì),能夠利用指數(shù)函數(shù)的性質(zhì)比較兩個(gè)冪的大小.

  3.學(xué)生運(yùn)用數(shù)形結(jié)合的思想,經(jīng)歷從特殊到一般、具體到抽象的研究過程,體驗(yàn)研究函數(shù)的一般方法.

  4.在探究活動(dòng)中,學(xué)生通過獨(dú)立思考和合作交流,發(fā)展思維,養(yǎng)成良好思維習(xí)慣,提升自主學(xué)習(xí)能力.

 、螅畬W(xué)生學(xué)情分析

  授課班級學(xué)生為南京師大附中實(shí)驗(yàn)班學(xué)生.

  1.學(xué)生已有認(rèn)知基礎(chǔ)

  學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),對函數(shù)有了初步的認(rèn)識(shí).學(xué)生已經(jīng)完成了指數(shù)取值范圍的擴(kuò)充,具備了進(jìn)行指數(shù)運(yùn)算的能力.學(xué)生已有研究一次函數(shù)、二次函數(shù)等初等函數(shù)的直接經(jīng)驗(yàn).學(xué)生數(shù)學(xué)基礎(chǔ)與思維能力較好,初步養(yǎng)成了獨(dú)立思考、合作交流、反思質(zhì)疑等學(xué)習(xí)習(xí)慣.

  2.達(dá)成目標(biāo)所需要的認(rèn)知基礎(chǔ)

  學(xué)生需要對研究的目標(biāo)、方法和途徑有初步的認(rèn)識(shí),需要具備較好的歸納、猜想和推理能力.

  3.難點(diǎn)及突破策略

  難點(diǎn):1. 對研究函數(shù)的一般方法的認(rèn)識(shí).

  2. 自主選擇底數(shù)不當(dāng)導(dǎo)致歸納所得結(jié)論片面.

  突破策略:

  1.教師引導(dǎo)學(xué)生先明確研究的內(nèi)容與方法,從總體上認(rèn)識(shí)研究的目標(biāo)與手段.

  2.組織匯報(bào)交流活動(dòng),展現(xiàn)思維過程,相互評價(jià),相互啟發(fā),促進(jìn)反思.

  3.對猜想進(jìn)行適當(dāng)?shù)刈C明或說明,合情推理與演繹推理相結(jié)合.

 、簦虒W(xué)策略設(shè)計(jì)

  根據(jù)學(xué)生已有學(xué)習(xí)基礎(chǔ),為提升學(xué)生的學(xué)習(xí)能力,本節(jié)課的教學(xué),采用自主學(xué)習(xí)方式.通過教師引領(lǐng)學(xué)生經(jīng)歷研究函數(shù)及其性質(zhì)的過程,認(rèn)識(shí)研究的目標(biāo)與策略,在研究的過程中逐漸完善研究的方法與手段.

  學(xué)生的自主學(xué)習(xí),具體落實(shí)在三個(gè)環(huán)節(jié):

  (1)建構(gòu)指數(shù)函數(shù)概念時(shí),學(xué)生自主舉例,歸納特征,并用符號表示,討論底數(shù)的取值范圍,完善概念.

  (2)探究指數(shù)函數(shù)圖象特征與性質(zhì)時(shí),學(xué)生自選底數(shù),開展自主研究,并通過匯報(bào)交流相互提升.

  (3)性質(zhì)應(yīng)用階段,學(xué)生自主舉例說明指數(shù)函數(shù)性質(zhì)的應(yīng)用.

  研究函數(shù)的性質(zhì),可以從形和數(shù)兩個(gè)方面展開.從圖形直觀和數(shù)量關(guān)系兩個(gè)方面,經(jīng)歷從特殊到一般、具體到抽象的過程。借助具體的指數(shù)函數(shù)的圖象,觀察特征,發(fā)現(xiàn)函數(shù)性質(zhì),進(jìn)而猜想、歸納一般指數(shù)函數(shù)的圖象特征與性質(zhì),并適時(shí)應(yīng)用函數(shù)解析式輔以必要的說明和證明.

 、酰虒W(xué)過程設(shè)計(jì)

  1.創(chuàng)設(shè)情境建構(gòu)概念

  師:我們已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),大家都知道函數(shù)可以刻畫兩個(gè)變量之間的關(guān)系.你能用函數(shù)的觀點(diǎn)分析下面的例子嗎?

  師:大家知道細(xì)胞分裂的規(guī)律嗎?(出示情境問題)

  [情境問題1]某細(xì)胞分裂時(shí),由一個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),4個(gè)分裂成8個(gè),……如果細(xì)胞分裂x次,相應(yīng)的細(xì)胞個(gè)數(shù)為y,如何描述這兩個(gè)變量的關(guān)系?

  [情境問題2]某種放射性物質(zhì)不斷變化為其他物質(zhì),每經(jīng)過一年,這種物質(zhì)剩余的質(zhì)量是原來的84%.如果經(jīng)過x年,該物質(zhì)剩余的質(zhì)量為y,如何描述這兩個(gè)變量的關(guān)系?

  [師生活動(dòng)]引導(dǎo)學(xué)生分析,找到兩個(gè)變量之間的.函數(shù)關(guān)系,并得到解析式y(tǒng)=2x和y=0.84x.

  師:這樣的函數(shù)你見過嗎?是一次函數(shù)嗎?二次函數(shù)?這樣的函數(shù)有什么特點(diǎn)?你能再舉幾個(gè)例子嗎?

  〖問題1類似的函數(shù),你能再舉出一些例子嗎?這些函數(shù)有什么共同特點(diǎn)?能否寫成一般形式?

  [設(shè)計(jì)意圖]通過列舉生活中指數(shù)函數(shù)的具體例子,感受指數(shù)函數(shù)與實(shí)際生活的聯(lián)系.引導(dǎo)學(xué)生從具體實(shí)例中概括典型特征,初步形成指數(shù)函數(shù)的概念,并用數(shù)學(xué)符號表示.初步得到y(tǒng)=ax這個(gè)形式后,引導(dǎo)學(xué)生關(guān)注底數(shù)的取值范圍,完成概念建構(gòu).指數(shù)范圍擴(kuò)充到實(shí)數(shù)后,關(guān)注x∈R時(shí),y=ax是否始終有意義,因此規(guī)定a>0.a≠1并不是必須的,常函數(shù)在高等數(shù)學(xué)里是基本函數(shù),也有重要的意義.為了使指數(shù)函數(shù)與對數(shù)函數(shù)能構(gòu)成反函數(shù),規(guī)定a≠1.此處不需對此解釋,只要補(bǔ)充說“1的任何次方總是1,所以通常還規(guī)定a≠1”.

  [師生活動(dòng)]學(xué)生舉例,教師引導(dǎo)學(xué)生觀察,其共同特點(diǎn)是自變量在指數(shù)位置,從而初步建立函數(shù)模型y=ax.

  [教學(xué)預(yù)設(shè)]學(xué)生能舉出具體的例子——y=3x,y=0.5x….如出現(xiàn)y=(-2)x最好,更便于引發(fā)對a的討論,但一般不會(huì)出現(xiàn).進(jìn)而提出這類函數(shù)一般形式y(tǒng)=ax.

  方案1:

  生:(舉例)函數(shù)y=3x,y=4x,…(函數(shù)y=ax(a>1))

  師:板書學(xué)生舉例(稍停頓),能舉一個(gè)不太一樣的例子嗎?(提示:底數(shù)非得大于1嗎?)

  生:函數(shù)y=0.5x,y= x,y=(-2)x,y=1x…

  師:板書學(xué)生舉例(停頓),好像有不同意見.

  生:底數(shù)不能取負(fù)數(shù).

  師:為什么?

  生:如果底數(shù)取負(fù)數(shù)或0,x就不能取任意實(shí)數(shù)了.

  師:我們已經(jīng)將指數(shù)的取值范圍擴(kuò)充到了R,我們希望這些函數(shù)的定義域就是R.

  (若沒有學(xué)生注意到底數(shù)的取值范圍,可引導(dǎo)學(xué)生關(guān)注例舉函數(shù)的定義域.若有同學(xué)提出情境中函數(shù)的定義域應(yīng)為N+,師:我們已經(jīng)將指數(shù)的取值范圍擴(kuò)充到了R,函數(shù)y=2x和y=0.84x中,能否將定義域擴(kuò)充為R?你們所舉的例子中,定義域是否為R?)

  師:這些函數(shù)有什么共同特點(diǎn)?

  生:都有指數(shù)運(yùn)算.底數(shù)是常數(shù),自變量在指數(shù)位置.

  (若有學(xué)生舉出類似y=max的例子,引導(dǎo)學(xué)生觀察,它依然具有自變量在指數(shù)位置的特征.而刻畫這一特點(diǎn)的最簡單形式就是y=ax,從而初步建立函數(shù)模型y=ax,初步體會(huì)基本初等函數(shù)的作用.)

  師:具備上述特征的函數(shù)能否寫成一般形式?

  生:可以寫成y=ax(a>0).

  師:當(dāng)a=1時(shí),函數(shù)就是常數(shù)函數(shù)y=1.對于這個(gè)函數(shù),我們已經(jīng)比較了解了.通常我們還規(guī)定a≠1.今天我們就來了解一下這個(gè)新函數(shù).(出示指數(shù)函數(shù)定義)

  方案2:

  生:(舉例)函數(shù)y=3x,y=4x,…(函數(shù)y=ax(a>1))

  師:板書學(xué)生舉例(稍停頓),能舉一個(gè)不太一樣的例子嗎?(提示:底數(shù)非得大于1嗎?)

  生:函數(shù)y=0.5x,y= x,…

  師:這些函數(shù)的自變量是什么?它們有什么共同特點(diǎn)?

  生:(可用文字語言或符號語言概括)都有指數(shù)運(yùn)算.底數(shù)是常數(shù),自變量在指數(shù)位置.可以寫成y=ax.

  師:y=ax中,自變量是x,底數(shù)a是常數(shù).以上例子的不同之處,是底數(shù)不同.那你覺得底數(shù)的取值范圍是什么呢?

  生:底數(shù)不能取負(fù)數(shù).

  師:為什么?

  生:如果底數(shù)取負(fù)數(shù)或0,x就不能取任意實(shí)數(shù)了.

  師:為了研究的方便,我們要求底數(shù)a>0.當(dāng)a=1時(shí),函數(shù)就是常數(shù)函數(shù)y=1.對于這個(gè)函數(shù),我們已經(jīng)比較了解了.通常我們還規(guī)定a≠1.今天我們就來了解一下這個(gè)新函數(shù).(出示指數(shù)函數(shù)定義)

  [階段小結(jié)]一般地,函數(shù)y=ax(a>0且a≠1)稱為指數(shù)函數(shù).它的定義域是R.

  [意圖分析]概念教學(xué)應(yīng)當(dāng)讓學(xué)生感受形成過程,了解知識(shí)的來龍去脈,那種直接拋出定義后輔以“三項(xiàng)注意”的做法剝奪了學(xué)生參與概念形成的過程.此處不宜糾纏于y=22x是否為指數(shù)函數(shù)等細(xì)枝末節(jié).指數(shù)函數(shù)的基本特征是自變量出現(xiàn)在指數(shù)上,應(yīng)促使學(xué)生對概念本質(zhì)的理解.指數(shù)函數(shù)概念的形成,經(jīng)歷了一個(gè)由粗到細(xì),由特殊到一般,由具體到抽象的漸進(jìn)過程,這樣更加符合人們的認(rèn)知心理.

  2.實(shí)驗(yàn)探索匯報(bào)交流

  (1)構(gòu)建研究方法

  師:我們定義了一個(gè)新的函數(shù),接下來,我們研究什么呢?

  生:研究函數(shù)的性質(zhì).

  〖問題2你打算如何研究指數(shù)函數(shù)的性質(zhì)?

  [設(shè)計(jì)意圖]學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念、函數(shù)的表示方法與函數(shù)的一般性質(zhì),對函數(shù)有了初步的認(rèn)識(shí).在此認(rèn)知基礎(chǔ)上,引導(dǎo)學(xué)生自己提出所要研究的問題,尋找研究問題的方法.開始的問題較寬泛,教師要縮小問題范圍,用提示語口頭提問啟發(fā).教師應(yīng)充分尊重學(xué)生的思維個(gè)性,提供自主探究的平臺(tái),通過匯報(bào)交流活動(dòng)達(dá)成共識(shí)實(shí)現(xiàn)殊途同歸.中學(xué)階段,特別是高一新授課階段,提倡學(xué)生以形象思維作為抽象思維的支撐.

  [師生活動(dòng)]師生經(jīng)過討論,解決啟發(fā)性提示問題,確定研究的內(nèi)容與方法.

  [教學(xué)預(yù)設(shè)]學(xué)生能夠根據(jù)已有知識(shí)和經(jīng)驗(yàn),在教師的啟發(fā)引導(dǎo)下,明確研究的內(nèi)容以及研究的方法.部分學(xué)生會(huì)提出先作出具體函數(shù)圖象,觀察圖象,概括性質(zhì),并進(jìn)而歸納出一般函數(shù)的圖象的分布特征等性質(zhì).另一部分學(xué)生可能從具體函數(shù)的解析式出發(fā),研究函數(shù)性質(zhì),猜想一般函數(shù)的性質(zhì),然后再作出圖象加以驗(yàn)證.

  師:(稍等片刻)我們一般要研究哪些性質(zhì)呢?

  生:變量取值范圍(定義域、值域)、單調(diào)性、奇偶性.

  師:(板書學(xué)生回答)怎樣研究這些性質(zhì)呢?

  生:先畫出函數(shù)圖象,觀察圖象,分析函數(shù)性質(zhì).

  生:先研究幾個(gè)具體的指數(shù)函數(shù),再研究一般情況.

  師:板書“畫圖觀察”,“取特殊值”

  (若沒有學(xué)生提出從特殊到一般的思路.師:底數(shù)a的取值不同,函數(shù)的性質(zhì)可能也會(huì)有不同.一次函數(shù)y=kx(k≠0)中,一次項(xiàng)系數(shù)k不同,函數(shù)性質(zhì)就不同.底數(shù)a可以取無數(shù)多個(gè)值,那我們怎么辦呢?)

  (若有學(xué)生通過對y=2x解析式的分析,得到了性質(zhì),并提出從具體函數(shù)的解析式出發(fā),研究函數(shù)性質(zhì),猜想一般函數(shù)的性質(zhì),然后再作出圖象加以驗(yàn)證.師:你的想法也很有道理,不妨試一試.(仍引導(dǎo)學(xué)生從具體指數(shù)函數(shù)圖象入手.))

  [意圖分析]學(xué)習(xí)的過程就是一個(gè)不斷地提出問題、解決問題的過程.提出問題比解決問題更重要,給學(xué)生提供由自己提出問題、確定研究方法的機(jī)會(huì),逐漸學(xué)會(huì)研究問題,促進(jìn)能力發(fā)展.

  (2)自主探究匯報(bào)交流

  師:我們確定了要研究的對象和具體做法,下面可以開始研究指數(shù)函數(shù)的性質(zhì)了.

  〖問題3選取數(shù)據(jù),畫出圖象,觀察特點(diǎn),歸納性質(zhì).

  [設(shè)計(jì)意圖]若直接規(guī)定底數(shù)取值,對于為什么要以y=2x,y=3x,y=0.5x為例,為什么要根據(jù)底數(shù)的大小分類討論,缺乏合理的解釋,學(xué)生對于圖象的認(rèn)識(shí)是被動(dòng)的.若在探究前經(jīng)討論確定底數(shù)取值,由于學(xué)生認(rèn)知水平的差異,仍可能會(huì)造成部分學(xué)生被動(dòng)接受.學(xué)生自主選擇底數(shù),雖有得到片面認(rèn)識(shí)的可能,但通過討論交流,學(xué)生能相互驗(yàn)證結(jié)論,仍能得到正確認(rèn)識(shí).并且學(xué)生能在過程中體會(huì)數(shù)據(jù)如何選擇,了解研究方法.

  由于描點(diǎn)作圖時(shí)列舉點(diǎn)的個(gè)數(shù)的限制,學(xué)生對x→∞時(shí)函數(shù)圖象特征缺乏直觀感受.而且由于所舉例子個(gè)數(shù)的限制,學(xué)生對于歸納的結(jié)論缺乏一般性的認(rèn)識(shí).教師應(yīng)利用繪圖軟件作出底數(shù)連續(xù)變化的圖象 ,驗(yàn)證猜想.

  數(shù)形結(jié)合、從特殊到一般的思維方法是概括歸納抽象對象的一般思維方法,本節(jié)課的重點(diǎn)是通過對指數(shù)函數(shù)圖象性質(zhì)的研究,總結(jié)研究函數(shù)的一般方法,應(yīng)充分發(fā)動(dòng)學(xué)生參與研究的每個(gè)過程,得到直接體驗(yàn).

  [師生活動(dòng)]學(xué)生選取不同的a的值,作出圖象,觀察它們之間的異同,總結(jié)指數(shù)函數(shù)的圖象特征與函數(shù)性質(zhì).

  [教學(xué)預(yù)設(shè)]學(xué)生通過觀察圖象,發(fā)現(xiàn)指數(shù)函數(shù)y=ax(a>0且a≠1)的性質(zhì).教師用實(shí)物投影儀展示學(xué)生所畫圖象,學(xué)生根據(jù)具體函數(shù)圖象說明具體函數(shù)性質(zhì).在學(xué)生說明過程中,教師引導(dǎo)學(xué)生對結(jié)論進(jìn)行適當(dāng)?shù)恼f明,進(jìn)而引導(dǎo)學(xué)生歸納一般指數(shù)函數(shù)的性質(zhì).教師引導(dǎo)學(xué)生關(guān)注列表描點(diǎn)作圖的過程,引導(dǎo)學(xué)生通過反思過程,并通過動(dòng)態(tài)圖象驗(yàn)證猜想,促進(jìn)學(xué)生體會(huì)數(shù)形結(jié)合的分析方法.教師尊重生成,但需引導(dǎo)學(xué)生區(qū)別指數(shù)函數(shù)本身的性質(zhì)與指數(shù)函數(shù)之間的性質(zhì).其中⑥⑦不強(qiáng)加于學(xué)生.對于⑥,要引導(dǎo)學(xué)生在同一坐標(biāo)系中畫出圖象,啟發(fā)學(xué)生觀察底數(shù)互為倒數(shù)的指數(shù)函數(shù)的圖象,先得到具體的例子.對于⑦,在例1第3小題中,會(huì)有學(xué)生提出利用不同底數(shù)指數(shù)函數(shù)圖象解決,可順勢利導(dǎo),也可布置為課后作業(yè),繼續(xù)研究.

  生:自主選擇數(shù)據(jù),在坐標(biāo)紙上列表作圖,列出函數(shù)性質(zhì).

  師:(巡視,必要時(shí)參與討論,及時(shí)提示任務(wù),待大部分學(xué)生有結(jié)論后,鼓勵(lì)學(xué)生交流,請學(xué)生匯報(bào).)有條理地整理一下結(jié)論,討論交流所得.(同時(shí)用實(shí)物投影儀展示學(xué)生所畫圖象.若沒有投影儀,用幾何畫板作出圖象.)

  生:(可能出現(xiàn)的情況)(1)在兩個(gè)坐標(biāo)系中畫圖;(2)所取底數(shù)均大于1;(3)兩個(gè)底數(shù)大于1,一個(gè)底數(shù)小于1;(4)關(guān)于y軸對稱的兩個(gè)指數(shù)函數(shù).

  師:(過程性引導(dǎo))底數(shù)你是怎么取的?你是怎樣觀察出結(jié)論的?在列表過程中,你有什么發(fā)現(xiàn)嗎?為什么要在兩個(gè)坐標(biāo)系中畫圖?為什么不也取兩個(gè)底數(shù)小于1?

  師:(用彩筆描粗圖象,故意出錯(cuò))錯(cuò)在哪里?為什么?

  生:指數(shù)函數(shù)是單調(diào)遞增的,過定點(diǎn)(0, 1).

  師:(引導(dǎo)學(xué)生規(guī)范表述,并板書)指數(shù)函數(shù)在(-∞, +∞)上單調(diào)遞增,圖象過定點(diǎn)(0, 1).

  師:指數(shù)函數(shù)還有其它性質(zhì)嗎?

  師:也就是說值域?yàn)?0, +∞).

  生:指數(shù)函數(shù)是非奇非偶函數(shù).

  師:有不同意見嗎?

  生:當(dāng)0

  (其它預(yù)設(shè):

  (1)當(dāng)a>1時(shí),若x>0,則y>1;若x<0,則y<1.

  當(dāng)00,則y<1;若x<0 y="">1.

  (2)學(xué)生畫出y=2x和y=3x圖象,得出函數(shù)遞增速度的差異.

  (3)畫出y=2x和y=0.5x圖象,得到底數(shù)互為倒數(shù)的指數(shù)函數(shù)圖象關(guān)于y軸對稱.)

  師:(板書學(xué)生交流結(jié)果,整理成表格.注意區(qū)分“函數(shù)性質(zhì)”與“函數(shù)之間的關(guān)系”.若有學(xué)生試圖說明結(jié)論的合理性,可提供機(jī)會(huì).)大家認(rèn)為底數(shù)a>1或0

  [階段小結(jié)] 指數(shù)函數(shù)y=ax(a>0且a≠1)具有以下性質(zhì):

  ①定義域?yàn)镽.

 、谥涤?yàn)?0, +∞).

 、蹐D象過定點(diǎn)(0, 1).

  ④非奇非偶函數(shù).

 、莓(dāng)a>1時(shí),函數(shù)y=ax在(-∞, +∞)上單調(diào)遞增;

  當(dāng)0

 、藓瘮(shù)y=ax與y=()x (a>0且a≠1)圖象關(guān)于y軸對稱.

 、咧笖(shù)函數(shù)y=ax與y=bx(a>b)的圖象有如下關(guān)系:

  x∈(-∞, 0)時(shí),y=ax圖象在y=bx圖象下方;

  x=0時(shí),兩圖象相交;

  x∈(0,+∞)時(shí),y=ax圖象在y=bx圖象上方.

  [意圖分析]通過探究活動(dòng),使學(xué)生獲得對指數(shù)函數(shù)圖象的直觀認(rèn)識(shí).學(xué)生觀察圖象,是對圖形語言的理解;根據(jù)圖象描述性質(zhì),是將圖形語言轉(zhuǎn)化為符號或文字語言.對函數(shù)的理解,是建立在三種語言相互轉(zhuǎn)化的基礎(chǔ)上的.在交流匯報(bào)過程中,一方面要通過對探究較深入學(xué)生的具體研究過程的剖析,總結(jié)提升學(xué)習(xí)方法,優(yōu)化學(xué)習(xí)策略;另一方面要關(guān)注部分探究意識(shí)與能力都薄弱的學(xué)生的表現(xiàn),鼓勵(lì)他們大膽發(fā)言,激勵(lì)他們主動(dòng)參與活動(dòng),讓全體學(xué)生成為真正的學(xué)習(xí)主體.自主探究活動(dòng)能充分激發(fā)學(xué)生的相互學(xué)習(xí)能力,能有效幫助學(xué)生突破難點(diǎn).

  3.新知運(yùn)用鞏固深化

  (方案一)(分析函數(shù)性質(zhì)的用途)

  師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質(zhì),它們有什么用處呢?

  師:函數(shù)的定義域是函數(shù)的基礎(chǔ),是運(yùn)用性質(zhì)的前提.值域是研究函數(shù)最值的前提.具備奇偶性的函數(shù),可以利用對稱性簡化研究.指數(shù)函數(shù)過定點(diǎn)(0, 1),說明可以將常數(shù)1轉(zhuǎn)化為指數(shù)式,即1=20=30=…那么函數(shù)單調(diào)性有什么用呢?

  生:可以求最值,可以比較兩個(gè)函數(shù)值的大小.

  師:那你能舉出運(yùn)用指數(shù)函數(shù)單調(diào)性比大小的例子嗎?(提示:既然是運(yùn)用指數(shù)函數(shù)單調(diào)性,那應(yīng)該有指數(shù)式.)

  生:(舉例并判斷大小.)

  師:你考察了哪個(gè)指數(shù)函數(shù)?怎么想到的?(規(guī)范表述)

  師:以往我們計(jì)算出冪的值來比大小,現(xiàn)在我們指數(shù)函數(shù)的單調(diào)性,不用計(jì)算就可以比較兩個(gè)冪的大小.(出示例1)

  (方案二)

  師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質(zhì),它們有什么用處呢?

  師:(口述并板書)你能比較32與33的大小嗎?

  生:直接計(jì)算比較.

  師:那比較30.2與30.3的大小呢?能不能不計(jì)算呢?

  生:利用函數(shù)y=3x的單調(diào)性.

  師:能具體說明嗎?(引導(dǎo)學(xué)生規(guī)范表達(dá))我們再試一試.

  (出示例1)

  【例1】比較下列各組數(shù)中兩個(gè)值的大。

  ①1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.

  [設(shè)計(jì)意圖] 引導(dǎo)學(xué)生運(yùn)用指數(shù)函數(shù)性質(zhì).對于 32與33的大小比較,學(xué)生更可能計(jì)算出冪的值直接比較.變式后,學(xué)生可能作差或作商比較,轉(zhuǎn)化為比較30.1與1的大小,進(jìn)而運(yùn)用指數(shù)函數(shù)單調(diào)性,也可能直接運(yùn)用單調(diào)性.初步運(yùn)用新知解決問題,注重題意理解,擴(kuò)大知識(shí)遷移,感悟解題方法,達(dá)到對新知鞏固記憶,加深理解.

  [師生活動(dòng)]學(xué)生板演,教師組織學(xué)生點(diǎn)評.

  [教學(xué)預(yù)設(shè)] ①②兩題,學(xué)生能運(yùn)用指數(shù)函數(shù)單調(diào)性解決.②題學(xué)生可能得到錯(cuò)誤答案,教師可組織相互點(diǎn)評,規(guī)范表達(dá),正確運(yùn)用性質(zhì).③學(xué)生可能運(yùn)用不同方法,應(yīng)給予充分的時(shí)間,并在具體問題解決后引導(dǎo)學(xué)生總結(jié)一般方法.

  師:(引導(dǎo)學(xué)生規(guī)范表達(dá))你考察了哪個(gè)指數(shù)函數(shù)?根據(jù)函數(shù)的什么性質(zhì)?

  師:(對③的引導(dǎo))你考慮利用哪個(gè)函數(shù)?是y=1.5x還是y=0.8x?這兩個(gè)函數(shù)有什么關(guān)聯(lián)?(引導(dǎo)學(xué)生畫出圖象,從形上提示:圖象有什么關(guān)聯(lián)?)

  生:它們都過點(diǎn)(0, 1).

  師:也就是說,可以將1轉(zhuǎn)化為指數(shù)形式,即1=1.50=0.80.那接下來呢?

  生:比較1.50.3,0.81.2和1的大小.

  師:我們找到了一個(gè)比大小的中間量.以往我們計(jì)算出冪的值來比大小,現(xiàn)在我們指數(shù)函數(shù)的單調(diào)性,不用計(jì)算就可以比較兩個(gè)冪的大小.

  【例2】

  ①已知3x≥30.5,求實(shí)數(shù)x的取值范圍;

 、谝阎0.2x<25,求實(shí)數(shù)x的取值范圍.

  [設(shè)計(jì)意圖]指數(shù)函數(shù)單調(diào)性的逆用,同時(shí)考查指數(shù)函數(shù)的定義域.

  4.概括知識(shí)總結(jié)方法

  〖問題4本節(jié)課我們學(xué)習(xí)了哪些知識(shí)?你還學(xué)會(huì)了哪些方法?

  [設(shè)計(jì)意圖] 回顧所學(xué)內(nèi)容,深化認(rèn)知.開放式小結(jié),不同學(xué)生有不同的收獲.

  [師生活動(dòng)]學(xué)生發(fā)言總結(jié),交流所得.

  [教學(xué)預(yù)設(shè)]

  通過本節(jié)課對指數(shù)函數(shù)圖象和性質(zhì)的研究,我們獲得了以下知識(shí)和方法:

 、僦笖(shù)函數(shù)的定義與性質(zhì);

  ②研究函數(shù)的一般方法和步驟.

  師:本節(jié)課我們學(xué)習(xí)了什么知識(shí)?

  生:指數(shù)函數(shù)的定義和性質(zhì).

  師:回顧我們的研究過程,我們是怎樣研究指數(shù)函數(shù)的?

  生:先確定研究的內(nèi)容:定義域、值域、單調(diào)性、奇偶性和其它性質(zhì).

  生:然后從幾個(gè)具體的指數(shù)函數(shù)開始,畫出圖象,列出性質(zhì),最后得到一般情況.

  師:這是一種從特殊到一般的研究方法.研究指數(shù)函數(shù)的方法,也是研究函數(shù)的一般方法,今后我們還會(huì)運(yùn)用這樣的方法研究新的函數(shù).

  [意圖分析]課堂總結(jié)不是對所學(xué)知識(shí)的簡單回顧,應(yīng)讓學(xué)生在知識(shí)、方法和策略上多層次地整理,促進(jìn)學(xué)生理解所用學(xué)習(xí)方法的合理性與普遍性,使學(xué)生獲得知識(shí)與能力的共同進(jìn)步.

  5.分層作業(yè),因材施教

  (1)感受理解:課本第54頁,習(xí)題2.2(2):1,2,3,4;

  (2)思考運(yùn)用:運(yùn)用今天的研究方法,你還能得到指數(shù)函數(shù)的其它性質(zhì)嗎?

  [設(shè)計(jì)意圖]分層布置作業(yè),“感受理解”面向全體學(xué)生,旨在掌握指數(shù)函數(shù)的圖象與性質(zhì).“思考運(yùn)用”提供學(xué)生運(yùn)用函數(shù)研究的一般方法自主研究的機(jī)會(huì).

 、觯毯蠓此蓟仡

  一、對于指數(shù)函數(shù)概念的認(rèn)識(shí)

  指數(shù)函數(shù)是一種函數(shù)模型,其基本特征是自變量在指數(shù)位置.底數(shù)取值范圍有規(guī)定,使得這一模型形式簡單又不失本質(zhì).不必糾結(jié)于“y=22x是否為指數(shù)函數(shù)”,把重點(diǎn)放在概念的合理性的理解以及體會(huì)模型思想.

  二、對于培養(yǎng)學(xué)生思維習(xí)慣的考慮

  在學(xué)生自主探索的過程中,教師應(yīng)注意培養(yǎng)學(xué)生良好的思維習(xí)慣.實(shí)際上,選擇底數(shù)a的數(shù)據(jù)的大小和數(shù)量,需要對指數(shù)函數(shù)的性質(zhì)有預(yù)判;從列表到作圖的過程中,都可以感受到指數(shù)函數(shù)單調(diào)性等性質(zhì);觀察并歸納性質(zhì),既需要特殊到一般的推理模式,也應(yīng)養(yǎng)成有序進(jìn)行觀察和歸納的良好的思維習(xí)慣.對所歸納的指數(shù)函數(shù)的性質(zhì),應(yīng)根據(jù)學(xué)生已有的知識(shí)水平或教學(xué)要求進(jìn)行證明或合理的說明.學(xué)生不僅學(xué)到了數(shù)學(xué)知識(shí),也初步體驗(yàn)了研究問題的基本方法.

  三、關(guān)于設(shè)計(jì)定位的反思

  本節(jié)課的教學(xué)設(shè)計(jì),力圖體現(xiàn)因材施教原則。不同的學(xué)情下,教師應(yīng)采用不同的教學(xué)策略.如果學(xué)生基礎(chǔ)相對薄弱,問題的提出可以分層次進(jìn)行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什么”等問話形式,促使學(xué)生暴露思維過程.、

高一數(shù)學(xué)教學(xué)計(jì)劃9

  教材教法分析

  本節(jié)課是蘇教版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修(2)第2章第三節(jié)的第一節(jié)課.該課是在二維平面直角坐標(biāo)系基礎(chǔ)上的推廣,是空間立體幾何的代數(shù)化.教材通過一個(gè)實(shí)際問題的分析和解決,讓學(xué)生感受建立空間直角坐標(biāo)系的必要性,內(nèi)容由淺入深、環(huán)環(huán)相扣,體現(xiàn)了知識(shí)的發(fā)生、發(fā)展的過程,能夠很好的誘導(dǎo)學(xué)生積極地參與到知識(shí)的探究過程中.同時(shí),通過對《空間直角坐標(biāo)系》的學(xué)習(xí)和掌握將對今后學(xué)習(xí)本節(jié)內(nèi)容《空間兩點(diǎn)間的距離》和選修2-1內(nèi)容《空間中的向量與立體幾何》有著鋪墊作用.由此,本課打算通過師生之間的合作、交流、討論,利用類比建立起空間直角坐標(biāo)系.

  學(xué)情分析

  一方面學(xué)生通過對空間幾何體:柱、錐、臺(tái)、球的學(xué)習(xí),處理了空間中點(diǎn)、線、面的關(guān)系,初步掌握了簡單幾何體的直觀圖畫法,因此頭腦中已建立了一定的空間思維能力.另一方面學(xué)生剛剛學(xué)習(xí)了解析幾何的基礎(chǔ)內(nèi)容:直線和圓,對建立平面直角坐標(biāo)系,根據(jù)坐標(biāo)利用代數(shù)的方法處理問題有了一定的認(rèn)識(shí),因此也建立了一定的轉(zhuǎn)化和數(shù)形結(jié)合的思想.這兩方面都為學(xué)習(xí)本課內(nèi)容打下了基礎(chǔ).

  教學(xué)目標(biāo)

  1.知識(shí)與技能

 、偻ㄟ^具體情境,使學(xué)生感受建立空間直角坐標(biāo)系的必要性

  ②了解空間直角坐標(biāo)系,掌握空間點(diǎn)的坐標(biāo)的確定方法和過程

  ③感受類比思想在探究新知識(shí)過程中的作用

  2.過程與方法

 、俳Y(jié)合具體問題引入,誘導(dǎo)學(xué)生探究

 、陬惐葘W(xué)習(xí),循序漸進(jìn)

  3.情感態(tài)度與價(jià)值觀

  通過用類比的數(shù)學(xué)思想方法探究新知識(shí),使學(xué)生感受新舊知識(shí)的聯(lián)系和研究事物從低維到高維的一般方法.通過實(shí)際問題的引入和解決,讓學(xué)生體會(huì)數(shù)學(xué)的實(shí)踐性和應(yīng)用性,感受數(shù)學(xué)刻畫生活的.作用,不斷地拓展自己的思維空間.

  教學(xué)重點(diǎn)

  本課是本節(jié)第一節(jié)課,關(guān)鍵是空間直角坐標(biāo)系的建立,對今后相關(guān)內(nèi)容的學(xué)習(xí)有著直接的影響作用,所以本課教學(xué)重點(diǎn)確立為空間直角坐標(biāo)系的理解.

  教學(xué)難點(diǎn)

  通過建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,確定空間點(diǎn)的坐標(biāo)。

  先通過具體問題回顧平面直角坐標(biāo)系,使學(xué)生體會(huì)用坐標(biāo)刻畫平面內(nèi)任意點(diǎn)的位置的方法,進(jìn)而設(shè)置具體問題情境促發(fā)利用舊知解決問題的局限性,從而尋求新知,根據(jù)已有一定空間思維,所以能較容易得出第三根軸的建立,進(jìn)而感受逐步發(fā)展得到空間直角坐標(biāo)系的建立,再逐步掌握利用坐標(biāo)表示空間任意點(diǎn)的位置.總得來說,關(guān)鍵是具體問題情境的設(shè)立,不斷地讓學(xué)生感受,交流,討論.

高一數(shù)學(xué)教學(xué)計(jì)劃10

  一、設(shè)計(jì)理念

  新課標(biāo)指出:學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不應(yīng)只是接受、記憶、模仿、練習(xí),教師應(yīng)引導(dǎo)學(xué)生自主探究、合作學(xué)習(xí)、動(dòng)手操作、閱讀自學(xué),應(yīng)注重提升學(xué)生的數(shù)學(xué)思維能力,注重發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)。

  二、教材分析

  本節(jié)課選自人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教課書》必修1,第一章1.1.2集合間的基本關(guān)系。集合是數(shù)學(xué)的基本和重要語言之一,在數(shù)學(xué)以及其他的領(lǐng)域都有著廣泛的應(yīng)用,用集合及對應(yīng)的語言來描述函數(shù),是高中階段的一個(gè)難點(diǎn)也是重點(diǎn),因此集合語言作為一種研究工具,它的學(xué)習(xí)非常重要。本節(jié)內(nèi)容主要是集合間基本關(guān)系的學(xué)習(xí),重在讓學(xué)生類比實(shí)數(shù)間的關(guān)系,來進(jìn)行探究,同時(shí)培養(yǎng)學(xué)生用數(shù)學(xué)符號語言,圖形語言進(jìn)行交流的能力,讓學(xué)生在直觀的基礎(chǔ)上,理解抽象的概念,同時(shí)它也是后續(xù)學(xué)習(xí)集合運(yùn)算的知識(shí)儲(chǔ)備,因此有著至關(guān)重要的作用。

  三、學(xué)情分析

  【年齡特點(diǎn)】:

  假設(shè)本次的授課對象是普通高中高一學(xué)生,高一的學(xué)生求知欲強(qiáng),精力旺盛,思維活躍,已經(jīng)具備了一定的觀察、分析、歸納能力,能夠很好的配合教師開展教學(xué)活動(dòng)。

  【認(rèn)知優(yōu)點(diǎn)】

  一方面學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,初步掌握了集合的三種表示法,對于本節(jié)課的學(xué)習(xí)有利一定的認(rèn)知基礎(chǔ)。

  【學(xué)習(xí)難點(diǎn)】

  但是,本節(jié)課這種類比實(shí)數(shù)關(guān)系研究集合間的關(guān)系,這種類比學(xué)習(xí)對于學(xué)生來說還有一定的難度。

  四、教學(xué)目標(biāo)

  ? 知識(shí)與技能:

  1. 理解子集、V圖、真子集、空集的`概念。

  2. 掌握用數(shù)學(xué)符號語言以及V圖語言表示集合間的基本關(guān)系。

  3. 能夠區(qū)分集合間的包含關(guān)系與元素與集合的屬于關(guān)系。

  ? 過程與方法:

  1. 通過類比實(shí)數(shù)間的關(guān)系,研究集合間的關(guān)系,培養(yǎng)學(xué)生類比、觀察、

  分析、歸納的能力。

  2. 培養(yǎng)學(xué)生用數(shù)學(xué)符號語言、圖形語言進(jìn)行交流的能力。

  ? 情感態(tài)度與價(jià)值觀:

  1.激發(fā)學(xué)生學(xué)習(xí)的興趣,圖形、符號所帶來的魅力。

  2.感悟數(shù)學(xué)知識(shí)間的聯(lián)系,養(yǎng)成良好的思維習(xí)慣及數(shù)學(xué)品質(zhì)。

  五、教學(xué)重、難點(diǎn)

  重點(diǎn):

  集合間基本關(guān)系。

  難點(diǎn):

  類比實(shí)數(shù)間的關(guān)系研究集合間的關(guān)系。

  六、教學(xué)手段

  PPT輔助教學(xué)

  七、教法、學(xué)法

  ? 教法:

  探究式教學(xué)、講練式教學(xué)

  遵循“教師主導(dǎo)作用與學(xué)生主體地位相結(jié)合的”教學(xué)規(guī)律,引導(dǎo)學(xué)生自主探究,合作學(xué)習(xí),在教學(xué)中引導(dǎo)學(xué)生類比實(shí)數(shù)間關(guān)系,來研究集合間的關(guān)系,降低了學(xué)生學(xué)習(xí)的難度,同時(shí)也激發(fā)了學(xué)生學(xué)習(xí)的興趣,充分體現(xiàn)了以學(xué)生為本的教學(xué)思想。

  ? 學(xué)法:

  自主探究、類比學(xué)習(xí)、合作交流

  教師的“教”其本質(zhì)是為了“不教”,教師除了讓學(xué)生獲得知識(shí),提高解題能力,還應(yīng)該讓學(xué)生學(xué)會(huì)學(xué)習(xí),樂于學(xué)習(xí),充分體現(xiàn)“以學(xué)定教”的教學(xué)理念。通過引導(dǎo)學(xué)生類比學(xué)習(xí),同學(xué)間的合作交流,讓學(xué)生更好的學(xué)習(xí)集合的知識(shí)。

  八、課型、課時(shí)

  課型:新授課

  課時(shí):一課時(shí)

  九、教學(xué)過程

  (一)教學(xué)流程圖

  (二)教學(xué)詳細(xì)過程

  1..回顧就知,引出新知

  問題一:實(shí)數(shù)間有相等、不等的關(guān)系,例如5=5,3﹤7,那么集合之間會(huì)有什么關(guān)系呢?

  2.合作交流,探究新知

  問題二:大家來仔細(xì)觀察下面幾個(gè)例子,你能發(fā)現(xiàn)集合間的關(guān)系嗎?

  (1)A={1,2,3},B={1,2,3,4,5};

  (2)設(shè)A為新華中學(xué)高一(2)班女生的全體組成集合;B為這個(gè)班學(xué)生的全體組成集合;

  (3)設(shè)C={x∣x是兩條邊相等的三角形},D={x∣x是等腰三角形}

  【師生活動(dòng)】:學(xué)生觀察例子后,得出結(jié)論,在(1)中集合A中的任何一個(gè)元素都是集合B中的元素,教師總結(jié),這時(shí)我們說集合A與集合B 有包含關(guān)系。(2)中的集合也是這種關(guān)一般地,對于兩個(gè)集合A,B,如果集合A中任意一個(gè)元素都是集合B中的元素,我們就說這兩集合有包含關(guān)系,稱集合A為集合B 的子集,記作:A?B(B?A),讀作A含于B或者B包含A.

  在數(shù)學(xué)中我們經(jīng)常用平面上封閉的曲線內(nèi)部代表集合,這樣上述集合A與集合B的包含關(guān)系,可以用下圖來表示:

  問題三:你能舉出幾個(gè)集合,并說出它們之間的包含關(guān)系嗎?

  【師生活動(dòng)】:學(xué)生自己舉出些例子,并加以說明,教師對學(xué)生的回答進(jìn)行補(bǔ)充。

  問題四:對于題目中的第3小題中的集合,你有什么發(fā)現(xiàn)嗎?

  【師生活動(dòng)1】:在(3)由于兩邊相等的三角形是等腰三角形,因此集合C,D都是所有等腰三角形的集合,集合C中任意一個(gè)元素都是集合D的元素 ,同時(shí)集合D任意一個(gè)元素都是集合C的元素,因此集合C與集合D相等,記作:C=D。

  用集合的概念對相等做進(jìn)一步的描述:

  如果集合A是集合B 子集,且集合B是集合A的子集,此時(shí)集合A與集合B的元素一樣,因此集合A與集合B 相等,記作A=B。

  強(qiáng)調(diào):如果集合A?B,但存在元素x∈B, 且x?A,我們稱集合A是集合B的真子集,記作:A?B

  【師生活動(dòng)2】:教師引導(dǎo)學(xué)生以(1)為例,指出A?B,但4∈B, 4?A,教師總結(jié)所以集合A是集合B的真子集。

  【師生活動(dòng)】?,并規(guī)定空集是任何集合的

  4.思維拓展,討論新知

  問題六:包含關(guān)系{a}?A與屬于關(guān)系a∈A有什么區(qū)別?請大家用具體例子來說明

  【師生活動(dòng)1】:學(xué)生以(1)為例{1,2}?A,2∈A,說明前者是集合之間的關(guān)系,后者是

  問題七:經(jīng)過以上集合之間關(guān)系的學(xué)習(xí),你有什么結(jié)論?

  【師生活動(dòng)】:師生討論得出結(jié)論:

  (1)任何一個(gè)集合都是它本身的子集,即A?A

  5.練習(xí)反饋,培養(yǎng)能力

  例1寫出集合{a,b}的所有子集,并指出哪些是真子集

  例2用適當(dāng)?shù)姆柼羁?/p>

  (1)a_{a,b,c}

  (2){0,1}_N

  (3){2,1}_{X∣X2-3X+2=0}

  6.課堂小結(jié),布置作業(yè)

  這節(jié)課你學(xué)到了哪些知識(shí)?

  小結(jié) 知識(shí)上:

  能力上:

  情感上:

  作業(yè):必做題:P8,3

  思考題:實(shí)數(shù)間有運(yùn)算,那集合呢?

  十、板書設(shè)計(jì)

  十一、教學(xué)反思

高一數(shù)學(xué)教學(xué)計(jì)劃11

  教學(xué)計(jì)劃可以幫助教師理清教學(xué)思路,提高課堂效率。

  ●教學(xué)目標(biāo)

  (一)教學(xué)知識(shí)點(diǎn)

  1.了解全集的意義.

  2.理解補(bǔ)集的概念.

  (二)能力訓(xùn)練要求

  1.通過概念教學(xué),提高學(xué)生邏輯思維能力.

  2.通過教學(xué),提高學(xué)生分析、解決問題能力.

  (三)德育滲透目標(biāo) 滲透相對的觀點(diǎn).

  ●教學(xué)重點(diǎn) 補(bǔ)集的概念.

  ●教學(xué)難點(diǎn)

  補(bǔ)集的有關(guān)運(yùn)算.

  ●教學(xué)方法 發(fā)現(xiàn)式教學(xué)法 通過引入實(shí)例,進(jìn)而對實(shí)例的分析,發(fā)現(xiàn)尋找其一般結(jié)果,歸納其普遍規(guī)律.

  ●教具準(zhǔn)備

  第一張:(記作1.2.2 A)

  ●教學(xué)過程 Ⅰ.復(fù)習(xí)回顧

  1.集合的子集、真子集如何尋求?其個(gè)數(shù)分別是多少? 2.兩個(gè)集合相等應(yīng)滿足的.條件是什么?

  Ⅱ.講授新課 [師]事物都是相對的,集合中的部分元素與集合之間關(guān)系就是部分與整體的關(guān)系.

  請同學(xué)們由下面的例子回答問題: 投影片:(1.2.2 A)

  [生]集合B就是集合S中除去集合A之后余下來的集合. 即為如圖陰影部分

  由此借助上圖總結(jié)規(guī)律如下: 投影片:(1.2.2 B)

  Ⅳ.課時(shí)小結(jié)

  1.能熟練求解一個(gè)給定集合的補(bǔ)集.

  2.注意一些特殊結(jié)論在以后解題中的應(yīng)用. Ⅴ.課后作業(yè)

高一數(shù)學(xué)教學(xué)計(jì)劃12

  一、教材資料分析

  函數(shù)是高中數(shù)學(xué)的重要資料,函數(shù)的表示法是“函數(shù)及其表示”這一節(jié)的主要資料之一。學(xué)習(xí)函數(shù)的表示法,不僅僅是研究函數(shù)本身和應(yīng)用函數(shù)解決實(shí)際問題所必須涉及的問題,也是加深對函數(shù)概念理解所必須的。同時(shí),基于高中階段所接觸的許多函數(shù)均可用幾種不一樣的方式表示,因而學(xué)習(xí)函數(shù)的表示也是領(lǐng)悟數(shù)學(xué)思想方法(如數(shù)形結(jié)合、化歸等)、學(xué)會(huì)根據(jù)問題需要選擇表示方法的重要過程。

  學(xué)生在學(xué)習(xí)用集合與對應(yīng)的語言刻畫函數(shù)之前,比較習(xí)慣于用解析式表示函數(shù),但這是對函數(shù)很不全面的認(rèn)識(shí)。在本節(jié)中,從引進(jìn)函數(shù)概念開始,就比較注重函數(shù)的不一樣表示方法:解析法、圖象法、列表法。函數(shù)的不一樣表示法能豐富對函數(shù)的認(rèn)識(shí),幫忙理解抽象的函數(shù)概念。異常是在信息技術(shù)環(huán)境下,能夠使函數(shù)在數(shù)形結(jié)合上得到更充分的表現(xiàn),使學(xué)生更好地體會(huì)這一重要的數(shù)學(xué)思想方法。所以,在研究函數(shù)時(shí),應(yīng)充分發(fā)揮圖象直觀的作用;在研究圖象時(shí)要注意代數(shù)刻畫,以求思考和表述的精確性。

  二、教學(xué)目標(biāo)分析

  根據(jù)《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)》(實(shí)驗(yàn))和新課改的理念,我從知識(shí)、本事和情感三個(gè)方面制訂教學(xué)目標(biāo)。

  1、明確函數(shù)的三種表示方法(圖象法、列表法、解析法),經(jīng)過具體的實(shí)例,了解簡單的分段函數(shù)及其應(yīng)用。

  2、經(jīng)過解決實(shí)際問題的過程,在實(shí)際情境中能根據(jù)不一樣的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù),發(fā)展學(xué)生思維本事。

  3、經(jīng)過一些實(shí)際生活應(yīng)用,讓學(xué)生感受到學(xué)習(xí)函數(shù)表示的必要性;經(jīng)過函數(shù)的解析式與圖象的結(jié)合滲透數(shù)形結(jié)合思想。

  三、教學(xué)問題診斷分析

 。1)初中已經(jīng)接觸過函數(shù)的三種表示法:解析法、列表法和圖象法、高中階段重點(diǎn)是讓學(xué)生在了解三種表示法各自優(yōu)點(diǎn)的基礎(chǔ)上,使學(xué)生會(huì)根據(jù)實(shí)際情境的需要選擇恰當(dāng)?shù)谋硎痉椒。所以,教學(xué)中應(yīng)當(dāng)多給出一些具體問題,讓學(xué)生在比較、選擇函數(shù)模型表示方式的過程中,加深對函數(shù)概念的整體理解,而不再誤以為函數(shù)都是能夠?qū)懗鼋馕鍪降摹?/p>

  (2)分段函數(shù)很多存在,但比較繁瑣。一方面,要加強(qiáng)用分段函數(shù)模型刻畫實(shí)際問題的實(shí)踐,另一方面,還能夠經(jīng)過動(dòng)畫模擬,讓學(xué)生體驗(yàn)到,分段函數(shù)的問題應(yīng)當(dāng)分段解決,然后再綜合。這也為下一步研究分段函數(shù)的單調(diào)性等性質(zhì)打下伏筆。

  四、本節(jié)課的教法特點(diǎn)以及預(yù)期效果分析

 。ㄒ唬⒈竟(jié)課的教法特點(diǎn)

  根據(jù)教學(xué)資料,結(jié)合學(xué)生的具體情景,我采用了學(xué)生自主探究和教師啟發(fā)引導(dǎo)相結(jié)合的`教學(xué)方式。在整個(gè)的教學(xué)過程中讓學(xué)生盡可能地動(dòng)手、動(dòng)腦,調(diào)動(dòng)學(xué)生進(jìn)取性,充分地參與學(xué)習(xí)的全過程。倡導(dǎo)學(xué)生主動(dòng)參與、樂于探究、勤于動(dòng)手,逐步培養(yǎng)學(xué)生能夠利用函數(shù)來處理信息的本事。

 。ǘ、本節(jié)課預(yù)期效果

  1、經(jīng)過具體的實(shí)例,讓學(xué)生體會(huì)函數(shù)三種表示法的優(yōu)、缺點(diǎn)。

  創(chuàng)造問題情景這種情景的創(chuàng)設(shè)以具體事例出發(fā),印象深刻。所以在引入時(shí)先從函數(shù)的三要素入手,強(qiáng)調(diào)要素之一對應(yīng)關(guān)系,然后給出三個(gè)具體實(shí)例:

 。1)炮彈發(fā)射時(shí),距離地面的高度隨時(shí)間變化的情景;

 。2)用圖表的形式給出臭氧層空洞的面積與時(shí)間的關(guān)系;

 。3)恩格爾系數(shù)的變化情景。

  指出每種對應(yīng)分別以怎樣的形式展現(xiàn)。引出函數(shù)的表示方法這一課題。因?yàn)槲覀冞@節(jié)課的重點(diǎn)是讓學(xué)生在實(shí)際情景中,會(huì)根據(jù)不一樣的需要選擇恰當(dāng)?shù)谋硎痉椒。?huì)選擇的前提是理解,這些完全靠學(xué)生的現(xiàn)實(shí)經(jīng)驗(yàn),讓學(xué)生自我去發(fā)現(xiàn)各自的優(yōu)劣。這為第一道例題打下基礎(chǔ)。

  例1經(jīng)過具體例子,讓學(xué)生用三種不一樣的表示方法來表示的同一個(gè)函數(shù),進(jìn)一步理解函數(shù)概念。把問題交給學(xué)生,學(xué)生獨(dú)立完成,并自我檢查發(fā)現(xiàn)問題,加深學(xué)生對三種表示法的深刻理解。學(xué)生思考函數(shù)表示法的規(guī)定。注意本例的設(shè)問,此處“”有三種含義,它能夠是解析表達(dá)式,能夠是圖象,也能夠是對應(yīng)值表。

  由于這個(gè)函數(shù)的圖象由一些離散的點(diǎn)組成,與以前學(xué)習(xí)過的一次函數(shù)、二次函數(shù)的圖象是連續(xù)的曲線不一樣。經(jīng)過本例,進(jìn)一步讓學(xué)生感受到,函數(shù)概念中的對應(yīng)關(guān)系、定義域、值域是一個(gè)整體、函數(shù)y=5x不一樣于函數(shù)y=5x(x∈{1,2,3,4,5}),前者的圖象是(連續(xù)的)直線,而后者是5個(gè)離散的點(diǎn)。由此認(rèn)識(shí)到:“函數(shù)圖象既能夠是連續(xù)的曲線,也能夠是直線、折線、離散的點(diǎn),等等!辈⒚鞔_:如何確定一個(gè)圖形是否是函數(shù)圖象方法

  2、讓學(xué)生會(huì)根據(jù)不一樣的實(shí)例選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù)

  例2用表格法表示了函數(shù)。要“對這三位運(yùn)動(dòng)員的成績做一個(gè)分析”不太方便,所以需要改變函數(shù)表示的方法,選擇圖象法比較恰當(dāng)。教學(xué)中,先不必直接把圖象法告訴學(xué)生,能夠讓學(xué)生說說自我是如何分析的,選擇了什么樣的方法來表示這三個(gè)函數(shù)、經(jīng)過比較各種不一樣的表示方法,達(dá)成共識(shí):用圖象法比較好。培養(yǎng)學(xué)生根據(jù)實(shí)際需要選擇恰當(dāng)?shù)暮瘮?shù)表示法的本事。

  學(xué)生經(jīng)過觀察、思考獲得結(jié)論、比如總體水平(朱啟南成績好)、變化趨勢(劉天佑的成績在逐步提高)、與運(yùn)動(dòng)員的平均分的比較,等等。培養(yǎng)學(xué)生的觀察本事、獲取有用信息的本事。同時(shí)要求學(xué)生注意圖中的虛線不是函數(shù)圖象的組成部分,之所以用虛線連接散點(diǎn),主要是為了區(qū)分這三個(gè)函數(shù),直觀感受三個(gè)函數(shù)的圖象具有整體性,也便于分析成績情景,加以比較。

  3、經(jīng)過具體的實(shí)例,了解分段函數(shù)及其表示

  生活中有很多能夠用分段函數(shù)描述的實(shí)際問題,如出租車的計(jì)費(fèi)、個(gè)人所得稅納稅稅額等等。經(jīng)過例3的教學(xué),讓學(xué)生了解分段函數(shù)及其表示。為了便于學(xué)生理解,給出了實(shí)際情景的模擬。能夠使函數(shù)在數(shù)與形兩方面的結(jié)合得到更充分的表現(xiàn),使學(xué)生經(jīng)過函數(shù)的學(xué)習(xí)更好地體會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想方法。

高一數(shù)學(xué)教學(xué)計(jì)劃13

  (一)教學(xué)目標(biāo)

  1.知識(shí)與技能

  (1)理解兩個(gè)集合的并集與交集的含義,會(huì)求兩個(gè)簡單集合的并集和交集.

  (2)能使用Venn圖表示集合的并集和交集運(yùn)算結(jié)果,體會(huì)直觀圖對理解抽象概念的作用。

  (3)掌握的關(guān)的術(shù)語和符號,并會(huì)用它們正確進(jìn)行集合的并集與交集運(yùn)算。

  2.過程與方法

  通過對實(shí)例的分析、思考,獲得并集與交集運(yùn)算的法則,感知并集和交集運(yùn)算的實(shí)質(zhì)與內(nèi)涵,增強(qiáng)學(xué)生發(fā)現(xiàn)問題,研究問題的創(chuàng)新意識(shí)和能力.

  3.情感、態(tài)度與價(jià)值觀

  通過集合的并集與交集運(yùn)算法則的發(fā)現(xiàn)、完善,增強(qiáng)學(xué)生運(yùn)用數(shù)學(xué)知識(shí)和數(shù)學(xué)思想認(rèn)識(shí)客觀事物,發(fā)現(xiàn)客觀規(guī)律的興趣與能力,從而體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值.

  (二)教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn):交集、并集運(yùn)算的含義,識(shí)記與運(yùn)用.

  難點(diǎn):弄清交集、并集的含義,認(rèn)識(shí)符號之間的區(qū)別與聯(lián)系

  (三)教學(xué)方法

  在思考中感知知識(shí),在合作交流中形成知識(shí),在獨(dú)立鉆研和探究中提升思維能力,嘗試實(shí)踐與交流相結(jié)合.

  (四)教學(xué)過程

  教學(xué)環(huán)節(jié) 教學(xué)內(nèi)容 師生互動(dòng) 設(shè)計(jì)意圖

  提出問題引入新知 思考:觀察下列各組集合,聯(lián)想實(shí)數(shù)加法運(yùn)算,探究集合能否進(jìn)行類似“加法”運(yùn)算.

  (1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}

  (2)A = {x | x是有理數(shù)},

  B = {x | x是無理數(shù)},

  C = {x | x是實(shí)數(shù)}.

  師:兩數(shù)存在大小關(guān)系,兩集合存在包含、相等關(guān)系;實(shí)數(shù)能進(jìn)行加減運(yùn)算,探究集合是否有相應(yīng)運(yùn)算.

  生:集合A與B的元素合并構(gòu)成C.

  師:由集合A、B元素組合為C,這種形式的組合就是為集合的并集運(yùn)算. 生疑析疑,

  導(dǎo)入新知

  形成

  概念

  思考:并集運(yùn)算.

  集合C是由所有屬于集合A或?qū)儆诩螧的元素組成的,稱C為A和B的并集.

  定義:由所有屬于集合A或集合B的元素組成的集合. 稱為集合A與B的并集;記作:A∪B;讀作A并B,即A∪B = {x | x∈A,或x∈B},Venn圖表示為:

  師:請同學(xué)們將上述兩組實(shí)例的共同規(guī)律用數(shù)學(xué)語言表達(dá)出來.

  學(xué)生合作交流:歸納→回答→補(bǔ)充或修正→完善→得出并集的定義. 在老師指導(dǎo)下,學(xué)生通過合作交流,探究問題共性,感知并集概念,從而初步理解并集的含義.

  應(yīng)用舉例 例1 設(shè)A = {4,5,6,8},B = {3,5,7,8},求A∪B.

  例2 設(shè)集合A = {x | –1

  例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.

  例2解:A∪B = {x |–1

  師:求并集時(shí),兩集合的相同元素如何在并集中表示.

  生:遵循集合元素的互異性.

  師:涉及不等式型集合問題.

  注意利用數(shù)軸,運(yùn)用數(shù)形結(jié)合思想求解.

  生:在數(shù)軸上畫出兩集合,然后合并所有區(qū)間. 同時(shí)注意集合元素的互異性. 學(xué)生嘗試求解,老師適時(shí)適當(dāng)指導(dǎo),評析.

  固化概念

  提升能力

  探究性質(zhì) ①A∪A = A, ②A∪ = A,

 、跘∪B = B∪A,

 、 ∪B, ∪B.

  老師要求學(xué)生對性質(zhì)進(jìn)行合理解釋. 培養(yǎng)學(xué)生數(shù)學(xué)思維能力.

  形成概念 自學(xué)提要:

 、儆蓛杉系乃性睾喜⒖傻脙杉系牟⒓蓛杉系墓苍亟M成的集合又會(huì)是兩集合的一種怎樣的運(yùn)算?

 、诮患\(yùn)算具有的運(yùn)算性質(zhì)呢?

  交集的定義.

  由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集;記作A∩B,讀作A交B.

  即A∩B = {x | x∈A且x∈B}

  Venn圖表示

  老師給出自學(xué)提要,學(xué)生在老師的引導(dǎo)下自我學(xué)習(xí)交集知識(shí),自我體會(huì)交集運(yùn)算的含義. 并總結(jié)交集的性質(zhì).

  生:①A∩A = A;

 、贏∩ = ;

  ③A∩B = B∩A;

 、蹵∩ ,A∩ .

  師:適當(dāng)闡述上述性質(zhì).

  自學(xué)輔導(dǎo),合作交流,探究交集運(yùn)算. 培養(yǎng)學(xué)生的自學(xué)能力,為終身發(fā)展培養(yǎng)基本素質(zhì).

  應(yīng)用舉例 例1 (1)A = {2,4,6,8,10},

  B = {3,5,8,12},C = {8}.

  (2)新華中學(xué)開運(yùn)動(dòng)會(huì),設(shè)

  A = {x | x是新華中學(xué)高一年級參加百米賽跑的同學(xué)},

  B = {x | x是新華中學(xué)高一年級參加跳高比賽的.同學(xué)},求A∩B.

  例2 設(shè)平面內(nèi)直線l1上點(diǎn)的集合為L1,直線l2上點(diǎn)的集合為L2,試用集合的運(yùn)算表示l1,l2的位置關(guān)系. 學(xué)生上臺(tái)板演,老師點(diǎn)評、總結(jié).

  例1 解:(1)∵A∩B = {8},

  ∴A∩B = C.

  (2)A∩B就是新華中學(xué)高一年級中那些既參加百米賽跑又參加跳高比賽的同學(xué)組成的集合. 所以,A∩B = {x | x是新華中學(xué)高一年級既參加百米賽跑又參加跳高比賽的同學(xué)}.

  例2 解:平面內(nèi)直線l1,l2可能有三種位置關(guān)系,即相交于一點(diǎn),平行或重合.

  (1)直線l1,l2相交于一點(diǎn)P可表示為 L1∩L2 = {點(diǎn)P};

  (2)直線l1,l2平行可表示為

  L1∩L2 = ;

  (3)直線l1,l2重合可表示為

  L1∩L2 = L1 = L2. 提升學(xué)生的動(dòng)手實(shí)踐能力.

  歸納總結(jié) 并集:A∪B = {x | x∈A或x∈B}

  交集:A∩B = {x | x∈A且x∈B}

  性質(zhì):①A∩A = A,A∪A = A,

 、贏∩ = ,A∪ = A,

  ③A∩B = B∩A,A∪B = B∪A. 學(xué)生合作交流:回顧→反思→總理→小結(jié)

  老師點(diǎn)評、闡述 歸納知識(shí)、構(gòu)建知識(shí)網(wǎng)絡(luò)

  課后作業(yè) 1.1第三課時(shí) 習(xí)案 學(xué)生獨(dú)立完成 鞏固知識(shí),提升能力,反思升華

  備選例題

  例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.

  【解析】法一:∵A∩B = {–2},∴–2∈B,

  ∴a – 1 = –2或a + 1 = –2,

  解得a = –1或a = –3,

  當(dāng)a = –1時(shí),A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.

  當(dāng)a = –3時(shí),A = {–1,10,6},A不合要求,a = –3舍去

  ∴a = –1.

  法二:∵A∩B = {–2},∴–2∈A,

  又∵a2 + 1≥1,∴a2 – 3 = –2,

  解得a =±1,

  當(dāng)a = 1時(shí),A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.

  當(dāng)a = –1時(shí),A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.

  例2 集合A = {x | –1

  (1)若A∩B = ,求a的取值范圍;

  (2)若A∪B = {x | x<1},求a的取值范圍.

  【解析】(1)如下圖所示:A = {x | –1

  ∴數(shù)軸上點(diǎn)x = a在x = – 1左側(cè).

  ∴a≤–1.

  (2)如右圖所示:A = {x | –1

  ∴數(shù)軸上點(diǎn)x = a在x = –1和x = 1之間.

  ∴–1

  例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何實(shí)數(shù)時(shí),A∩B 與A∩C = 同時(shí)成立?

  【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.

  由A∩B 和A∩C = 同時(shí)成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 將3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.

  當(dāng)a = 5時(shí),A = {x | x2 – 5x + 6 = 0} = {2,3},此時(shí)A∩C = {2},與題設(shè)A∩C = 相矛盾,故不適合.

  當(dāng)a = –2時(shí),A = {x | x2 + 2x – 15 = 0} = {3,5},此時(shí)A∩B 與A∩C = ,同時(shí)成立,∴滿足條件的實(shí)數(shù)a = –2.

  例4 設(shè)集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.

  【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.

  當(dāng)x = 3時(shí),A = {9,5,– 4},B = {–2,–2,9},B中元素違背了互異性,舍去.

  當(dāng)x = –3時(shí),A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}滿足題意,故A∪B = {–7,– 4,–8,4,9}.

  當(dāng)x = 5時(shí),A = {25,9,– 4},B = {0,– 4,9},此時(shí)A∩B = {– 4,9}與A∩B = {9}矛盾,故舍去.

  綜上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.

高一數(shù)學(xué)教學(xué)計(jì)劃14

  一 設(shè)計(jì)思想:

  函數(shù)與方程是中學(xué)數(shù)學(xué)的重要內(nèi)容,是銜接初等數(shù)學(xué)與高等數(shù)學(xué)的紐帶,再加上函數(shù)與方程還是中學(xué)數(shù)學(xué)四大數(shù)學(xué)思想之一,是具體事例與抽象思想相結(jié)合的體現(xiàn),在教學(xué)過程中,我采用了自主探究教學(xué)法。通過教學(xué)情境的設(shè)置,讓學(xué)生由特殊到一般,有熟悉到陌生,讓學(xué)生從現(xiàn)象中發(fā)現(xiàn)本質(zhì),以此激發(fā)學(xué)生的成就感,激發(fā)學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)熱情。在現(xiàn)實(shí)生活中函數(shù)與方程都有著十分重要的應(yīng)用,因此函數(shù)與方程在整個(gè)高中數(shù)學(xué)教學(xué)中占有非常重要的地位。

  二 教學(xué)內(nèi)容分析:

  本節(jié)課是《普通高中課程標(biāo)準(zhǔn)》的新增內(nèi)容之一,選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教課書數(shù)學(xué)I必修本(A版)》第94—95頁的第三章第一課時(shí)3。1。1方程的根與函數(shù)的的零點(diǎn)。

  本節(jié)通過對二次函數(shù)的圖象的研究判斷一元二次方程根的存在性以及根的個(gè)數(shù)的.判斷建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點(diǎn)的聯(lián)系,然后由特殊到一般,將其推廣到一般方程與相應(yīng)的函數(shù)的情形。它既揭示了初中一元二次方程與相應(yīng)的二次函數(shù)的內(nèi)在聯(lián)系,也引出對函數(shù)知識(shí)的總結(jié)拓展。之后將函數(shù)零點(diǎn)與方程的根的關(guān)系在利用二分法解方程中(3。1。2)加以應(yīng)用,通過建立函數(shù)模型以及模型的求解(3。2)更全面地體現(xiàn)函數(shù)與方程的關(guān)系,逐步建立起函數(shù)與方程的聯(lián)系。滲透“方程與函數(shù)”思想。

  總之,本節(jié)課滲透著重要的數(shù)學(xué)思想“特殊到一般的歸納思想”“方程與函數(shù)”和“數(shù)形結(jié)合”的思想,教好本節(jié)課可以為學(xué)好中學(xué)數(shù)學(xué)打下一個(gè)良好基礎(chǔ),因此教好本節(jié)是至關(guān)重要的。

  三 教學(xué)目標(biāo)分析:

  知識(shí)與技能:

  1。結(jié)合方程根的幾何意義,理解函數(shù)零點(diǎn)的定義;

  2。結(jié)合零點(diǎn)定義的探究,掌握方程的實(shí)根與其相應(yīng)函數(shù)零點(diǎn)之間的等價(jià)關(guān)系;

  3。結(jié)合幾類基本初等函數(shù)的圖象特征,掌握判斷函數(shù)的零點(diǎn)個(gè)數(shù)和所在區(qū)間 的方法

  情感、態(tài)度與價(jià)值觀:

  1。讓學(xué)生體驗(yàn)化歸與轉(zhuǎn)化、數(shù)形結(jié)合、函數(shù)與方程這三大數(shù)學(xué)思想在解決數(shù)學(xué)問題時(shí)的意義與價(jià)值;

  2。培養(yǎng)學(xué)生鍥而不舍的探索精神和嚴(yán)密思考的良好學(xué)習(xí)習(xí)慣;

  3。使學(xué)生感受學(xué)習(xí)、探索發(fā)現(xiàn)的樂趣與成功感

  教學(xué)重點(diǎn):函數(shù)零點(diǎn)與方程根之間的關(guān)系;連續(xù)函數(shù)在某區(qū)間上存在零點(diǎn)的判定方法。

  教學(xué)難點(diǎn):發(fā)現(xiàn)與理解方程的根與函數(shù)零點(diǎn)的關(guān)系;探究發(fā)現(xiàn)函數(shù)存在零點(diǎn)的方法。

  四 教學(xué)準(zhǔn)備

  導(dǎo)學(xué)案,自主探究,合作學(xué)習(xí),電子交互白板。

  五 教學(xué)過程設(shè)計(jì):

  六、探索研究(可根據(jù)時(shí)間和學(xué)生對知識(shí)的接受程度適當(dāng)調(diào)整)

  討論:請大家給方程的一個(gè)解的大約范圍,看誰找得范圍更?

  [師生互動(dòng)]

  師:把學(xué)生分成小組共同探究,給學(xué)生足夠的自主學(xué)習(xí)時(shí)間,讓學(xué)生充分研究,發(fā)揮其主觀能動(dòng)性。也可以讓各組把這幾個(gè)題做為小課題來研究,激發(fā)學(xué)生學(xué)習(xí)潛能和熱情。老師用多媒體演示,直觀地演示根的存在性及根存在的區(qū)間大小情況。

  生:分組討論,各抒己見。在探究學(xué)習(xí)中得到數(shù)學(xué)能力的提高

  第五階段設(shè)計(jì)意圖:

  一是為用二分法求方程的近似解做準(zhǔn)備

  二是小組探究合作學(xué)習(xí)培養(yǎng)學(xué)生的創(chuàng)新能力和探究意識(shí),本組探究題目就是為了培養(yǎng)學(xué)生的探究能力,此組題目具有較強(qiáng)的開放性,探究性,基本上可以達(dá)到上述目的。

  七、課堂小結(jié):

  零點(diǎn)概念

  零點(diǎn)存在性的判斷

  零點(diǎn)存在性定理的應(yīng)用注意點(diǎn):零點(diǎn)個(gè)數(shù)判斷以及方程根所在區(qū)間

  八、鞏固練習(xí)(略)

  小編為大家提供的高一上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃格式,大家仔細(xì)閱讀了嗎?最后祝同學(xué)們學(xué)習(xí)進(jìn)步。

高一數(shù)學(xué)教學(xué)計(jì)劃15

  一、教學(xué)分析

  1、分析教材

  本章教材整體主要分成三大部分:

  (1)、圓的標(biāo)準(zhǔn)方程與一般方程;

  (2)、直線與圓、圓與圓的位置關(guān)系;

  (3)、空間直角坐標(biāo)系以及空間兩點(diǎn)間的距離公式。

  圓的方程是在前一章直線方程基礎(chǔ)上引入的新的曲線方程,更進(jìn)一步要求“數(shù)與形”結(jié)合。所以學(xué)習(xí)有關(guān)圓的方程時(shí),仍仍然沿用直線方程中使用的坐標(biāo)法,繼續(xù)運(yùn)用坐標(biāo)法研究直線與圓、圓與圓的位置關(guān)系等幾何問題。此外還要學(xué)習(xí)空間直角坐標(biāo)系的有關(guān)知識(shí),以便為今后用坐標(biāo)法研究空間幾何對象奠定基礎(chǔ)。這些知識(shí)是進(jìn)一步學(xué)習(xí)圓錐曲線方程、導(dǎo)數(shù)和積分的基礎(chǔ)。

  2、分析學(xué)生

  高中一年級的學(xué)生還沒有建立起比較好的數(shù)形結(jié)合的思想,前面學(xué)習(xí)過直線知識(shí),只是使學(xué)生有了用坐標(biāo)法研究問題的基本思路,通過圓的概念的引入及其現(xiàn)實(shí)生活中圓的例子,啟發(fā)學(xué)生學(xué)習(xí)的興趣及研究問題的方法,培養(yǎng)學(xué)生分析探索問題的能力,熟練的掌握解決解析幾何問題的方法-坐標(biāo)法,滲透數(shù)形結(jié)合的思想研究問題時(shí)抓住問題的本質(zhì),研究細(xì)致思考,規(guī)范得出解答,體現(xiàn)運(yùn)動(dòng)變化,對立統(tǒng)一的思想

  3、教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn):圓的標(biāo)準(zhǔn)方程與一般方程;利用直線與圓的方程判斷直線與圓、圓與圓的位置關(guān)系;空間直角坐標(biāo)系的基本認(rèn)識(shí)。

  難點(diǎn):直線與圓的方程的應(yīng)用;會(huì)求解簡單的直線與圓的相關(guān)曲線的方程;建立空間直角坐標(biāo)系。

  二、教學(xué)目標(biāo)

  1、掌握圓的定義和圓標(biāo)準(zhǔn)方程、一般方程的概念;能根據(jù)圓的方程求圓心和半徑,初步掌握求圓的方程的方法。

  2、掌握直線與圓的位置關(guān)系的判定。

  3、在進(jìn)一步培養(yǎng)學(xué)生類比、數(shù)形結(jié)合、分類討論和化歸的數(shù)學(xué)思想方法的過程中,提高學(xué)生學(xué)習(xí)能力。

  4、培養(yǎng)學(xué)生科學(xué)探索精神、審美觀和理論聯(lián)系實(shí)際思想。

  三、教學(xué)策略

  1、教學(xué)模式

  本節(jié)內(nèi)容是運(yùn)用“問題解決”課堂教學(xué)模式的一次嘗試,采用探究、討論的

  教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題,掌握數(shù)學(xué)基本知識(shí)和基本能力,培養(yǎng)積極探索和團(tuán)結(jié)協(xié)作的科學(xué)精神。

  2、教學(xué)方法與手段--充分利用信息技術(shù),合理整合課程資源

  采用探究、討論的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲采用多媒體技術(shù),目的在于充分利用其優(yōu)良的傳播功能,大容量信息的呈現(xiàn)和生動(dòng)形象的演示(尤其是動(dòng)畫效果)對提高學(xué)生學(xué)習(xí)興趣、激活學(xué)生思維、加深概念理解有積極作用。制作中,采用交互技術(shù),使課件的機(jī)動(dòng)性得到加強(qiáng)。

  四、對內(nèi)容安排的說明

  本章分三部分:圓的標(biāo)準(zhǔn)方程與一般方程;直線與圓、圓與圓的位置關(guān)系;空間直角坐標(biāo)系。

  1、建立圓的方程是本節(jié)的主要內(nèi)容之一。根據(jù)圓的幾何特征(主要是動(dòng)點(diǎn)與定點(diǎn)間距離恒定)建立適當(dāng)?shù)淖鴺?biāo)系,再根據(jù)曲線上的點(diǎn)所滿足的幾何條件,求出點(diǎn)的坐標(biāo)所滿足的曲線方程。

  通過研究方程來研究曲線的性質(zhì)是解析幾何的另一個(gè)主要內(nèi)容,這就是解析幾何通過代數(shù)方法研究幾何圖形的.特點(diǎn),也就是坐標(biāo)法。始終強(qiáng)調(diào)曲線方程與曲線圖像之間的一一對應(yīng)。這一思想應(yīng)該貫穿于整個(gè)圓的教學(xué)。

  2.通過方程,研究直線與圓、圓與圓的位置關(guān)系是本章的主要內(nèi)容之一。判斷直線與圓、圓與圓的位置關(guān)系可以從兩個(gè)方面著手:

  (1)。兩條曲線有無公共點(diǎn),等價(jià)于由它們方程聯(lián)立的方程組有無實(shí)數(shù)解。方程組有幾組實(shí)數(shù)解,這兩條曲線就有幾個(gè)公共點(diǎn);方程組沒有實(shí)數(shù)解,這兩條曲線就沒有公共點(diǎn)。

  (2)。運(yùn)用平面幾何知識(shí),把直線與圓、圓與圓位置關(guān)系的結(jié)論轉(zhuǎn)化為相應(yīng)的代數(shù)結(jié)論。

  3、坐標(biāo)法是研究幾何問題的重要方法,在教學(xué)過程中,應(yīng)該始終貫穿坐標(biāo)法這一重要思想,不怕重復(fù);通過坐標(biāo)系,把點(diǎn)和坐標(biāo)、曲線和方程聯(lián)系起來,實(shí)現(xiàn)形和數(shù)的統(tǒng)一。

  用坐標(biāo)法解決幾何問題時(shí),先用坐標(biāo)和方程表示相應(yīng)的幾何對象,然后對坐標(biāo)和方程進(jìn)行代數(shù)討論;最后再把代數(shù)運(yùn)算結(jié)果翻譯成相應(yīng)的幾何結(jié)論。這就是用坐標(biāo)法解決平面幾何問題的“三步曲”:

  第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問題中涉及的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;

  第二步:通過代數(shù)運(yùn)算,解決代數(shù)問題;

  第三步:把代數(shù)運(yùn)算結(jié)果翻譯成幾何結(jié)論。

  五、教學(xué)評價(jià)

  ㈠過程性評價(jià)

  1、教學(xué)過程中,教師的講解和學(xué)生的練習(xí)緊扣教學(xué)目標(biāo),內(nèi)容深淺要分層次,設(shè)計(jì)的問題要照顧好、中、差。

  2、對于方程的推導(dǎo)運(yùn)用的方法,學(xué)生理解起來難度較大,主要采用讓學(xué)生理解的基礎(chǔ)上進(jìn)行檢測反饋

 、娼K結(jié)性評價(jià)

  1、課程內(nèi)容全部結(jié)束后,讓學(xué)生分組交流、討論后,選代表談收獲、體會(huì)和感想。

  2、留課后作業(yè)(扣教學(xué)目標(biāo)、分類型、分層次,落實(shí)學(xué)生為主體),讓學(xué)生認(rèn)真理解和鞏固,了解圓的標(biāo)準(zhǔn)方程和一般方程,以及直線與圓位置關(guān)系,做完課后習(xí)題,做好作業(yè)。

【高一數(shù)學(xué)教學(xué)計(jì)劃】相關(guān)文章:

高一數(shù)學(xué)教學(xué)計(jì)劃(精選15篇)12-26

高一數(shù)學(xué)的教學(xué)計(jì)劃(15篇)09-01

高一數(shù)學(xué)教學(xué)計(jì)劃15篇12-04

高一數(shù)學(xué)的教學(xué)計(jì)劃15篇01-19

數(shù)學(xué)高一上教學(xué)計(jì)劃09-01

高一數(shù)學(xué)教學(xué)計(jì)劃通用15篇12-24

高一數(shù)學(xué)教學(xué)計(jì)劃集合15篇12-24

高一數(shù)學(xué)教學(xué)計(jì)劃(集合15篇)12-28

高一數(shù)學(xué)教學(xué)計(jì)劃(集錦15篇)01-14