亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

勾股定理說課稿

時(shí)間:2024-09-20 13:09:10 說課稿 我要投稿

勾股定理說課稿15篇

  作為一無名無私奉獻(xiàn)的教育工作者,常常要根據(jù)教學(xué)需要編寫說課稿,編寫說課稿是提高業(yè)務(wù)素質(zhì)的有效途徑。那么什么樣的說課稿才是好的呢?以下是小編收集整理的勾股定理說課稿,僅供參考,歡迎大家閱讀。

勾股定理說課稿15篇

勾股定理說課稿1

  一、教材分析

  (一)教材地位

  這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版七年級(jí)第二章第一節(jié)《探索勾股定理》第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

  (二)教學(xué)目標(biāo)

  1、知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡單實(shí)際問題。

  2、過程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。

  3、情感態(tài)度與價(jià)值觀: 激發(fā)學(xué)生愛國熱情,讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。

 。ㄈ┙虒W(xué)重點(diǎn)

  經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能用它來解決一些簡單的實(shí)際問題。

  教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。

  二、教法與學(xué)法分析

  學(xué)情分析:

  七年級(jí)學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們在小學(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來解決問題的意識(shí)和能力還不夠。

  另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng).

  教法分析:

  結(jié)合七年級(jí)學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問題情境————建立模型————解釋應(yīng)用———拓展鞏固”的模式, 選擇引導(dǎo)探索法。

  把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。

  學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。

  三、教學(xué)過程設(shè)計(jì)

 。ㄒ唬﹦(chuàng)設(shè)情境,提出問題

 。1)圖片欣賞勾股定理數(shù)形圖

  1955年希臘發(fā)行美麗的勾股樹

  20xx年國際數(shù)學(xué)的一枚紀(jì)念郵票

  大會(huì)會(huì)標(biāo)

  設(shè)計(jì)意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值。

 。2)某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊(duì)員能否進(jìn)入三樓滅火?

  設(shè)計(jì)意圖:以實(shí)際問題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識(shí)的發(fā)生過程,解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié)。

 。ǘ⿲(shí)驗(yàn)操作模型構(gòu)建

  1、等腰直角三角形(數(shù)格子)

  2、一般直角三角形(割補(bǔ))

  問題一:對(duì)于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?

  設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。

  問題二:對(duì)于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)

  設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無形中得到提高。

  通過以上實(shí)驗(yàn)歸納總結(jié)勾股定理。

  設(shè)計(jì)意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊—— 一般的認(rèn)知規(guī)律。

 。ㄈ┗貧w生活應(yīng)用新知

  讓學(xué)生解決開頭情景中的.問題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的樂趣和信心。

 。ㄋ模┲R(shí)拓展鞏固深化

  基礎(chǔ)題,情境題,探索題。

  設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展。知識(shí)的運(yùn)用得到升華。

  基礎(chǔ)題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問題?你能解決所提出的問題嗎?

  設(shè)計(jì)意圖:這道題立足于雙基.通過學(xué)生自己創(chuàng)設(shè)情境 ,鍛煉了發(fā)散思維。

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī)。小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯(cuò)了。你同意他的想法嗎?

  設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

  探索題: 做一個(gè)長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識(shí)說明。

  設(shè)計(jì)意圖:探索題的難度相對(duì)大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。

 。ㄎ澹└形蚴斋@布置作業(yè)

  這節(jié)課你的收獲是什么?

  作業(yè):

  1、課本習(xí)題2.1

  2、搜集有關(guān)勾股定理證明的資料。

  四、板書設(shè)計(jì)

  探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  設(shè)計(jì)說明:

  1、探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì)數(shù)形結(jié)合及從特殊到一般的思想方法。

  2、讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現(xiàn)出來的思維水平、表達(dá)水平。

  圖文搜集自網(wǎng)絡(luò),如有侵權(quán),請聯(lián)系刪除。

  鐵樹老師面試輔導(dǎo),喜馬拉雅app—主播—教師面試大雜燴

勾股定理說課稿2

  一、教材分析

  (一)教材所處的地位

  這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書八年級(jí)第十八章第一節(jié)勾股定理第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

  (二)根據(jù)課程標(biāo)準(zhǔn),本課的教學(xué)目標(biāo)是:

  1、知識(shí)技能:了解勾股定理的'文化背景,體驗(yàn)勾股定理的探索過程。

  2、數(shù)學(xué)思考:在勾股定理的探索過程中,發(fā)展合情推理能力,體會(huì)數(shù)形結(jié)合的思想。

  3、解決問題:①通過拼圖活動(dòng),體驗(yàn)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性,發(fā)展形象思維。

 、谠谔骄窟^程中,學(xué)會(huì)與人合作并能與他人交流思維的過程和探究的結(jié)果。

  4、情感態(tài)度:①通過介紹勾股定理在中國古代的研究,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想,激發(fā)學(xué)生發(fā)奮學(xué)習(xí)。

 、谠谔骄窟^程中,體驗(yàn)解決問題方法的多樣性,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神。

  (三)本課的教學(xué)重點(diǎn):探索和證明勾股定理

  本課的教學(xué)難點(diǎn):用拼圖的方法證明勾股定理

  二、教法與學(xué)法分析:

  教法分析:針對(duì)八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時(shí)代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問題實(shí)驗(yàn)操作歸納驗(yàn)證問題解決鞏固練習(xí)課堂小結(jié) 布置作業(yè)七部分。

  學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識(shí),掌握方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。

  三、教學(xué)過程設(shè)計(jì)

  (一)提出問題:

  首先提出問題1:你知道下圖所表示的意義嗎?創(chuàng)設(shè)問題情境,2002年在北京召開了第24屆國際數(shù)學(xué)家大會(huì),它是最高水平的全球性數(shù)學(xué)科學(xué)學(xué)術(shù)會(huì)議,被譽(yù)為數(shù)學(xué)界的奧運(yùn)會(huì),這就是本屆大會(huì)會(huì)徽的圖案,你聽說過勾股定理嗎?通過提出問題,從而激發(fā)學(xué)生的求知欲。

  其次提出問題2:你知道勾三、股四、弦五的意義嗎?此問題由故事引入,3000多年前有個(gè)叫商高的人對(duì)周公說,把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的求知欲。

勾股定理說課稿3

  (一)創(chuàng)設(shè)問題情境,引入新課:

  在這一環(huán)節(jié)中,我設(shè)計(jì)了這樣一個(gè)情境,多媒體動(dòng)畫展示,米老鼠來到了數(shù)學(xué)王國里的三角形城堡,要求只利用一根繩子,構(gòu)造一個(gè)直角三角形,方可入城,這可難壞了米老鼠,你能幫它想辦法嗎?預(yù)測大多數(shù)同學(xué)會(huì)無從下手,這樣引出課題。只有學(xué)習(xí)了勾股定理的逆定理后,大家都能幫助米老鼠進(jìn)入城堡,我認(rèn)為:“大疑而大進(jìn)”這樣做,充分調(diào)動(dòng)學(xué)習(xí)內(nèi)容,激發(fā)求知欲望,動(dòng)漫演示,又有了很強(qiáng)的趣味性,做到課之初,趣已生,疑已質(zhì)。

  (二)實(shí)踐猜想

  本環(huán)節(jié)要圍繞以下幾個(gè)活動(dòng)展開:

  1、算一算:求以線段a,b為直角邊的直角三角形的斜邊c長。

  1a=3b=42a=5b=123a=2.5b=64a=6b=8

  2、猜一猜,以下列線段長為三邊的三角形形狀

  13cm4cm5cm25cm12cm13cm

  32.5cm6cm6.5cm46cm8cm10cm

  3、擺一擺利用方便筷來操作問題2,利用量角器來度量,驗(yàn)證問題2的發(fā)現(xiàn)。

  4、用恰當(dāng)?shù)恼Z言敘述你的結(jié)論

  在算一算中學(xué)生復(fù)習(xí)了勾股定理,猜一猜和擺一擺中學(xué)生小組合作動(dòng)手實(shí)踐,在問題1的基礎(chǔ)上做出合理的推測和猜想,這樣分層遞進(jìn)找到了學(xué)生思維的最近發(fā)展區(qū),面向不同層次的每一名學(xué)生,每一名學(xué)生都有參與數(shù)學(xué)活動(dòng)的機(jī)會(huì),最后運(yùn)用恰當(dāng)?shù)恼Z言表述,得到了勾股定理的逆定理。在整個(gè)過程的活動(dòng)中,教師給學(xué)生充分的時(shí)間和空間,教師以平等的身份參與小組活動(dòng)中,傾聽意見,幫助指導(dǎo)學(xué)生的實(shí)踐活動(dòng)。學(xué)生的擺一擺的過程利用實(shí)物投影儀展示,在活動(dòng)中教師關(guān)注;

  1)學(xué)生的參與意識(shí)與動(dòng)手能力。

  2)是否清楚三角形三邊長度的平方關(guān)系是因,直角三角形是果。既先有數(shù),后有形。

  3)數(shù)形結(jié)合的思想方法及歸納能力。

  (三)推理證明

  八年級(jí)正是學(xué)生由實(shí)驗(yàn)幾何向推理幾何過渡的重要時(shí)期,多數(shù)學(xué)生難以由直觀到抽象這一思維的飛躍,而勾股定理的逆定理的證明又不同于以往的幾何圖形的證明,需要構(gòu)造直角三角形才能完成,而構(gòu)造直角三角形就成為解決問題的關(guān)鍵,直接拋給學(xué)生證明,無疑會(huì)石沉大海,所以,我采用分層導(dǎo)進(jìn)的方法,以求一石激起千層浪。

  1.三邊長度為3cm,4cm,5cm的`三角形與以3cm,4cm為直角邊的直角三角形之間有什么關(guān)系?你是怎樣得到的?請簡要說明理由?

  2.△ABC三邊長a,b,c滿足a2+b2=c2與a,b為直角三角形之間有何關(guān)系?試說明理由?

  為了較好完成教師的誘導(dǎo),教師要給學(xué)生獨(dú)立思考的時(shí)間,要給學(xué)生在組內(nèi)交流個(gè)別意見的時(shí)間,教師要深入小組指導(dǎo)與幫助,并利用實(shí)物投影儀展示小組成果,取得階段性成果再探究問題2.這樣由特殊到一般,凸顯了構(gòu)造直角三角形這一解決問題的關(guān)鍵,讓他們在不斷的探究過程中,親自體驗(yàn)參與發(fā)現(xiàn)創(chuàng)造的愉悅,有效的突破了難點(diǎn)。

勾股定理說課稿4

  各位考官,大家好,我是X號(hào)考生,今天我說課的內(nèi)容是《勾股定理的逆定理》。根據(jù)新課程標(biāo)準(zhǔn),我將以教什么,怎么教,為什么這么教為思路開展我的說課,首先,我先來說說我對(duì)教材的理解。

  教材分析是上好一堂課的前提條件,在上好一堂課之前,我首先談一談對(duì)教材的理解。

  一、說教材

  “勾股定理的逆定理”一節(jié)?是在上節(jié)“勾股定理”之后繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)和深化。勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。

  二、說學(xué)情

  中學(xué)生心理學(xué)研究指出,初中階段是智力發(fā)展的關(guān)鍵年齡,學(xué)生邏輯思維從經(jīng)驗(yàn)型逐步向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨著迅速發(fā)展。學(xué)生此前學(xué)習(xí)了三角形有關(guān)的知識(shí),掌握了直角三角形的性質(zhì)和勾股定理,學(xué)生在此基礎(chǔ)上學(xué)習(xí)勾股定理的逆定理可以加深理解。

  三、說教學(xué)目標(biāo)

  根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容結(jié)合學(xué)生實(shí)際我確定了如下教學(xué)目標(biāo)。

  【知識(shí)與技能】

  理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。利用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形。

  【過程與方法】

  通過勾股定理的逆定理的證明,體會(huì)數(shù)與形結(jié)合方法在問題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問題。

  【情感態(tài)度與價(jià)值觀】

  通過一系列富有探究性的問題,滲透與他人交流、合作的意識(shí)和探究精神。

  四、說教學(xué)重難點(diǎn)

  重點(diǎn):勾股定理逆定理的應(yīng)用;

  難點(diǎn):探究勾股定理逆定理的證明過程。

  五、說教學(xué)方法

  科學(xué)合理的教學(xué)方法能使教學(xué)效果事半功倍,達(dá)到教與學(xué)的和諧完美統(tǒng)一。基于此,我準(zhǔn)備采用的教法是講練結(jié)合法,小組討論法。

  六、說教學(xué)過程

  (一)導(dǎo)入新課

  在導(dǎo)入新課環(huán)節(jié),我會(huì)采用溫故知新的導(dǎo)入方法,先讓學(xué)生回顧勾股定理有關(guān)知識(shí),并引入本節(jié)課的課題——勾股定理逆定理。

  【設(shè)計(jì)意圖】通過復(fù)習(xí)回顧能很好地將新舊知識(shí)聯(lián)系起來,使學(xué)生形成對(duì)知識(shí)的系統(tǒng)的認(rèn)識(shí)。并且由舊知開始,能很好地幫助學(xué)生克服畏難情緒。

  (二)探究新知

  一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識(shí)可探索卻又解決不好的問題去提示本節(jié)課的探究宗旨,演示古代埃及人把一根長繩打上等距離的13個(gè)結(jié),然后便得到一個(gè)直角三角形這是為什么?這個(gè)問題一出現(xiàn),馬上激起學(xué)生已有知識(shí)與待研究知識(shí)的認(rèn)識(shí)沖突,引起了學(xué)生的重視激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來創(chuàng)造了我要學(xué)的氣氛,同時(shí)也說明了幾何知識(shí)來源于實(shí)踐不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。

  因?yàn)閹缀蝸碓从诂F(xiàn)實(shí)生活,對(duì)初二學(xué)生來說選擇適當(dāng)?shù)臅r(shí)機(jī)讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開始學(xué)習(xí)可以提高學(xué)習(xí)的主動(dòng)性和參與意識(shí),所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動(dòng)手折紙?jiān)诰唧w的'實(shí)踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。

  這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見,它要求按照已知條件作一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手裁出了一個(gè)兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。

  接下來就是利用這個(gè)數(shù)學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等順利作出了輔助直角三角形,整個(gè)證明過程自然無神秘感,實(shí)現(xiàn)了從生動(dòng)直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了動(dòng)手操作——觀察——猜測——探索——論證的全過程。這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理?因而使學(xué)生感到自然、親切。學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高,使學(xué)生確實(shí)在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。

  在同學(xué)們完成證明之后,可讓他們對(duì)照課本把證明過程嚴(yán)格的閱讀一遍充分發(fā)揮教科書的作用養(yǎng)成學(xué)生看書的習(xí)慣這也是在培養(yǎng)學(xué)生的自學(xué)能力。

  (三)鞏固提高

  本著由淺入深的原則安排了三個(gè)題目。演示第一題比較簡單(判斷下列三條線段組成的三角形是不是直角三角形,比如15、8、17;13、14、15等等)讓學(xué)生口答讓所有的學(xué)生都能完成。

  第二題則進(jìn)了一層用字母代替了數(shù)字,繞了一個(gè)彎,既可以檢查本課知識(shí)又可以提高靈活運(yùn)用以往知識(shí)的能力。

  思維提高了課堂教學(xué)的效果和利用率。在變式訓(xùn)練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習(xí)過程,隨時(shí)反饋調(diào)節(jié)教法同時(shí)注意加強(qiáng)有針對(duì)性的個(gè)別指導(dǎo)把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。

  (四)小結(jié)作業(yè)

  在小結(jié)環(huán)節(jié),我會(huì)隨機(jī)詢問學(xué)生勾股定理的逆定理是什么?如果判斷一個(gè)三角形是不是直角三角形,以及勾股定理的逆定理的應(yīng)用需要注意點(diǎn)什么等問題,先讓學(xué)生歸納本節(jié)知識(shí)和技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法培養(yǎng)能力方面比如輔助線的添法。

  設(shè)計(jì)意圖:這樣設(shè)計(jì)可以幫助學(xué)生以反思的形式回憶本節(jié)課所學(xué)的知識(shí),加深對(duì)知識(shí)的印象,有利于學(xué)生良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣的養(yǎng)成。

  由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。第一組是基礎(chǔ)題,我會(huì)用ppt出示關(guān)于勾股定理的逆定理的計(jì)算題目,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。第二組是開放性題目,讓學(xué)生課后思考總結(jié)一下判定一個(gè)三角形是直角三角形的方法。

勾股定理說課稿5

  一、 教材分析

 。ㄒ唬┙滩牡匚

  這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版八年級(jí)第一章第一節(jié)《探索勾股定理》第一課時(shí),它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

 。ǘ┙虒W(xué)目標(biāo)

  知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡單實(shí)際問題.

  過程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想.

  情感態(tài)度與價(jià)值觀:激發(fā)學(xué)生愛國熱情,讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué).

  (三)教學(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能用它來解決一些簡單的實(shí)際問題。

  教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解.

  二、教法與學(xué)法分析:

  學(xué)情分析:八年級(jí)學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們在小學(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來解決問題的意識(shí)和能力還不夠.另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng).

  教法分析:結(jié)合八年級(jí)學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式, 選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。

  學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人.

  三、 教學(xué)過程設(shè)計(jì)

  1.創(chuàng)設(shè)情境,提出問題

  2.實(shí)驗(yàn)操作,模型構(gòu)建

  3.回歸生活,應(yīng)用新知

  4.知識(shí)拓展,鞏固深化5.感悟收獲,布置作業(yè)

  (一)創(chuàng)設(shè)情境提出問題

  (1)圖片欣賞 勾股定理數(shù)形圖 1955年希臘發(fā)行 美麗的勾股樹 20xx年國際數(shù)學(xué) 的一枚紀(jì)念郵票 大會(huì)會(huì)標(biāo) 設(shè)計(jì)意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值.

  (2) 某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊(duì)員能否進(jìn)入三樓滅火?

  設(shè)計(jì)意圖:以實(shí)際問題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識(shí)的發(fā)生過程,解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié).

  二、實(shí)驗(yàn)操作模型構(gòu)建

  1.等腰直角三角形(數(shù)格子)

  2.一般直角三角形(割補(bǔ))

  問題一:對(duì)于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?

  設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想.

  問題二:對(duì)于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)

  設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的`分析問題解決問題的能力在無形中得到提高.

  通過以上實(shí)驗(yàn)歸納總結(jié)勾股定理.

  設(shè)計(jì)意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊—— 一般的認(rèn)知規(guī)律.

  三.回歸生活應(yīng)用新知

  讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的樂趣和信心.

  四、知識(shí)拓展鞏固深化

  基礎(chǔ)題,情境題,探索題.

  設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展.知識(shí)的運(yùn)用得到升華.

  基礎(chǔ)題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問題?你能解決所提出的問題嗎?

  設(shè)計(jì)意圖:這道題立足于雙基.通過學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維.

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī).小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯(cuò)了.你同意他的想法嗎?

  設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

  探索題: 做一個(gè)長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識(shí)說明。

  設(shè)計(jì)意圖:探索題的難度相對(duì)大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力.

  五、感悟收獲布置作業(yè): 這節(jié)課你的收獲是什么?

  作業(yè): 李景萍《探索勾股定理》第一課時(shí)說課稿 1、課本習(xí)題2.1 2、搜集有關(guān)勾股定理證明的資料.

  板書設(shè)計(jì) 探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  李景萍《探索勾股定理》第一課時(shí)說課稿

  設(shè)計(jì)說明::1.探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì)數(shù)形結(jié)合及從特殊到一般的思想方法.

  2.讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現(xiàn)出來的思維水平、表達(dá)水平.

勾股定理說課稿6

各位專家領(lǐng)導(dǎo):

  上午好!今天我說課的課題是《勾股定理》。

  一、教材分析:

  (一)本節(jié)內(nèi)容在全書和章節(jié)的地位。

  這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(華東版),八年級(jí)第十九章第二節(jié)“勾股定理”第一課時(shí)。勾股定理是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形的主要依據(jù)之一,在實(shí)際生活中用途很大。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和觀察分析問題的能力;通過實(shí)際分析,拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較,理解勾股定理,以便于正確的進(jìn)行運(yùn)用。

  (二)三維教學(xué)目標(biāo):

  1、知識(shí)與能力目標(biāo)。

 。1)理解并掌握勾股定理的內(nèi)容和證明,能夠靈活運(yùn)用勾股定理及其計(jì)算;

 。2)通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。

  2、過程與方法目標(biāo)。

  在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察-猜想-歸納-驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合和從特殊到一般的思想方法。

  3、情感態(tài)度與價(jià)值觀。

  通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學(xué)生的民族自豪感和鉆研精神。

  (三)教學(xué)重點(diǎn)、難點(diǎn):

  1、教學(xué)重點(diǎn):勾股定理的證明與運(yùn)用

  2、教學(xué)難點(diǎn):用面積法等方法證明勾股定理

  3、難點(diǎn)成因:

  對(duì)于勾股定理的得出,首先需要學(xué)生通過動(dòng)手操作,在觀察的基礎(chǔ)上,大膽猜想數(shù)學(xué)結(jié)論,而這需要學(xué)生具備一定的分析、歸納的思維方法和運(yùn)用數(shù)學(xué)的思想意識(shí),但學(xué)生在這一方面的可預(yù)見性和耐挫折能力并不是很成熟,從而形成困難。

  4、突破措施:

 。1)創(chuàng)設(shè)情景,激發(fā)思維:

  創(chuàng)設(shè)生動(dòng)、啟發(fā)性的問題情景,激發(fā)學(xué)生的問題沖突,讓學(xué)生在感到“有趣”、“有意思”的狀態(tài)下進(jìn)入學(xué)習(xí)過程;

 。2)自主探索,敢于猜想:

  充分讓自己動(dòng)手操作,大膽猜想數(shù)學(xué)問題的結(jié)論,老師是整個(gè)活動(dòng)的組織者,更是一位參入者,學(xué)生之間相互交流、協(xié)作,從而形成生動(dòng)的課堂環(huán)境;

 。3)張揚(yáng)個(gè)性,展示風(fēng)采:

  實(shí)行“小組合作制”,各小組中自己推薦一人擔(dān)任“發(fā)言人”,一人擔(dān)任“書記員”,在討論結(jié)束后,由小組的“發(fā)言人”匯報(bào)本小組的討論結(jié)果,并可上臺(tái)利用“多媒體視頻展示臺(tái)”展示本組的優(yōu)秀作品,其他小組給予評(píng)價(jià)。這樣既保證討論的有效性,也調(diào)動(dòng)了學(xué)生的學(xué)習(xí)積極性。

  二、教法與學(xué)法分析:

  1、教法分析:

  數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此在教學(xué)中,不僅要使學(xué)生“知其然”,而且還要使學(xué)生“知其所以然”。針對(duì)初二年級(jí)學(xué)生的認(rèn)知結(jié)構(gòu)和心理特征,本節(jié)課可選擇“引導(dǎo)探索法”,由淺到深,由特殊到一般的提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念緊隨新課改理念,也反映了時(shí)代精神。基本的教學(xué)程序是“創(chuàng)設(shè)情景-動(dòng)手操作-歸納驗(yàn)證-問題解決-課堂小結(jié)-布置作業(yè)”六個(gè)方面。

  2、學(xué)法分析:

  新課標(biāo)明確提出要培養(yǎng)“可持續(xù)發(fā)展的學(xué)生”,因此教師要有組織、有目的、有針對(duì)性的引導(dǎo)學(xué)生并參入到學(xué)習(xí)活動(dòng)中,鼓勵(lì)學(xué)生采用自主探索,合作交流的研討式學(xué)習(xí)方式,培養(yǎng)學(xué)生“動(dòng)手”、“動(dòng)腦”、“動(dòng)口”的習(xí)慣與能力,使學(xué)生真正成為學(xué)習(xí)的主人。

  三、教學(xué)過程設(shè)計(jì):

  (一)創(chuàng)設(shè)情景:

  多媒體課件演示FLASH小動(dòng)畫片:某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊(duì)員能否進(jìn)入三樓滅火?

  問題的設(shè)計(jì)有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,老師要注意引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學(xué)生會(huì)感到一些困難,從而老師指出學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會(huì)有辦法解決了。這種以實(shí)際問題作為切入點(diǎn)導(dǎo)入新課,不僅自然,而且也反映了“數(shù)學(xué)來源于生活”,學(xué)習(xí)數(shù)學(xué)是為更好“服務(wù)于生活”。

  (二)動(dòng)手操作:

  1、課件出示課本P99圖19.2.1:

  觀察圖中用陰影畫出的三個(gè)正方形,你從中能夠得出什么結(jié)論?

  學(xué)生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵(lì)學(xué)生用語言進(jìn)行描述,引導(dǎo)學(xué)生發(fā)現(xiàn)SP+SQ=SR(此時(shí)讓小組“發(fā)言人”發(fā)言),從而讓學(xué)生通過正方形的面積之間的關(guān)系發(fā)現(xiàn):對(duì)于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當(dāng)∠C=90°,AC=BC時(shí),則 AC2+BC2=AB2。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。

  2、緊接著讓學(xué)生思考:

  上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出P100圖 19.2.2(一般直角三角形)。學(xué)生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時(shí)可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學(xué)生就能夠發(fā)現(xiàn):對(duì)于一般的以整數(shù)為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學(xué)生的動(dòng)手操作、合作交流,來獲取知識(shí),這樣設(shè)計(jì)有利于突破難點(diǎn),也讓學(xué)生體會(huì)到觀察、猜想、歸納的數(shù)學(xué)思想及學(xué)習(xí)過程,提高學(xué)生的分析問題和解決問題的能力。

  3、再問:

  當(dāng)邊長不為整數(shù)的.直角三角形是否也存在這一結(jié)論呢?投影例題:一個(gè)邊長分別為1.5,3.6,3.9這種含有小數(shù)的直角三角形,讓學(xué)生計(jì)算。這樣設(shè)計(jì)的目的是讓學(xué)生體會(huì)到“從特殊到一般”的情形,這樣歸納的結(jié)論更具有一般性。

  (三)歸納驗(yàn)證:

  1、歸納:

  通過動(dòng)手操作、合作交流,探索邊長為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長為小數(shù)的直角三角形的兩直角邊與斜邊的關(guān)系,讓學(xué)生在整個(gè)學(xué)習(xí)過程中感受學(xué)數(shù)學(xué)的樂趣,,使學(xué)生學(xué)會(huì)“文字語言”與“數(shù)學(xué)語言”這兩種表達(dá)方式,各小組“發(fā)言人”的積極表現(xiàn),整堂課充分發(fā)揮學(xué)生的主體作用,真正獲取知識(shí),解決問題。

  2、驗(yàn)證:

  先后三次驗(yàn)證“勾股定理”這一結(jié)論,期間學(xué)生動(dòng)手進(jìn)行了畫圖、剪圖、拼圖,還有測量、計(jì)算等活動(dòng),使學(xué)生從中體會(huì)到數(shù)形結(jié)合和從特殊到一般的數(shù)學(xué)思想,而且這一過程也有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。

  (四)問題解決:

  1、讓學(xué)生解決開始上課前所提出的問題,前后呼應(yīng),讓學(xué)生體會(huì)到成功的快樂。

  2、自學(xué)課本P101例1,然后完成P102練習(xí)。

  (五)課堂小結(jié):

  1、小組成員從內(nèi)容、數(shù)學(xué)思想方法、獲取知識(shí)的途徑進(jìn)行小結(jié),后由“發(fā)言人”匯報(bào),小組間要互相比一比,看看哪一個(gè)小組表現(xiàn)最佳。

  2、教師用多媒體介紹“勾股定理史話”。

  (1)《周髀算徑》:西周的商高(公元一千多年前)發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。

  (2)康熙數(shù)學(xué)專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨(dú)創(chuàng)。

  3、目的:對(duì)學(xué)生進(jìn)行愛國主義教育,激勵(lì)學(xué)生奮發(fā)向上。

  (六)布置作業(yè):

  課本P104習(xí)題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學(xué)生進(jìn)一步體會(huì)定理與實(shí)際生活的聯(lián)系。

  以上內(nèi)容,我僅從“說教材”,“說學(xué)情”、“說教法”、“說學(xué)法”、“說教學(xué)過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領(lǐng)導(dǎo)對(duì)本次說課提出寶貴的意見,謝謝!

勾股定理說課稿7

  一、教材分析

  (一)、本節(jié)課在教材中的地位作用

  “勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。

 。ǘ、教學(xué)目標(biāo)

  1、知識(shí)技能:1理解并會(huì)證明勾股定理的逆定理;

  2會(huì)應(yīng)用勾股定理的逆定理判定一個(gè)三角形是否為直角三角形; 3知道什么叫勾股數(shù),記住一些覺見的勾股數(shù).

  2、過程與方法:通過對(duì)勾股定理的逆定理的探索和證明,經(jīng)歷知識(shí)的發(fā)生,發(fā)展與形成的過程,體驗(yàn)“數(shù)形結(jié)合”方法的應(yīng)用。

  3、情感、態(tài)度價(jià)值觀 培養(yǎng)數(shù)學(xué)思維以及合情推理意識(shí),感悟勾股定理和逆定理的應(yīng)用價(jià)值。滲透與他人交流、合作的意識(shí)和探究精神,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系。

 。ㄈ、學(xué)情分析:

  盡管已到初二下學(xué)期學(xué)生知識(shí)增多,能力增強(qiáng),但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見到,它要求根據(jù)已知條件構(gòu)造一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點(diǎn),這樣就確定了本節(jié)課的重點(diǎn)、難點(diǎn)。 教學(xué)重點(diǎn):勾股定理逆定理的應(yīng)用

  教學(xué)難點(diǎn):勾股定理逆定理的證明

  二、教學(xué)過程

  本節(jié)課的設(shè)計(jì)原則是:使學(xué)生在動(dòng)手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認(rèn)識(shí)結(jié)構(gòu)與幾何知識(shí)結(jié)構(gòu)之間筑了一個(gè)信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識(shí)結(jié)構(gòu)的目的。

 。ㄒ唬⿵(fù)習(xí)回顧

  復(fù)習(xí)回顧與直角三角形、勾股定理有關(guān)的內(nèi)容,建立新舊知識(shí)之間的聯(lián)系。

 。ǘ﹦(chuàng)設(shè)問題情境

  一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識(shí)可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個(gè)結(jié),然后用樁釘如圖那樣的三角形,便得到一個(gè)直角三角形。這是為什么?。這個(gè)問題一出現(xiàn)馬上激起學(xué)生已有知識(shí)與待研究知識(shí)的認(rèn)識(shí)沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來,創(chuàng)

  造了我要學(xué)的氣氛,同時(shí)也說明了幾何知識(shí)來源于實(shí)踐,不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。

  (三)學(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點(diǎn)突破)

  因?yàn)閹缀蝸碓从诂F(xiàn)實(shí)生活,對(duì)初二學(xué)生來說選擇適當(dāng)?shù)臅r(shí)機(jī),讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動(dòng)性和參與意識(shí),所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動(dòng)手畫圖在具體的實(shí)踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。

  這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見到,它要求按照已知條件作一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手畫出了一個(gè)兩直角邊與所給三角形兩條較小邊相等的直角三角形,通過操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。

  接下來就是利用這個(gè)數(shù)學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等,順利作出了輔助直角三角形,整個(gè)證明過程自然、無神秘感,實(shí)現(xiàn)了從生動(dòng)直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了動(dòng)手操作——觀察——猜測——探索——論證的全過程,這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。

  在同學(xué)們完成證明之后,同時(shí)讓學(xué)生總結(jié)互逆命題、互逆定理的關(guān)系,并舉例指出哪些為互逆定理。然后讓他們對(duì)照課本把證明過程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。

 。ㄋ模┙M織變式訓(xùn)練

  本著由淺入深的原則,安排了兩個(gè)例題。(演示)第一題比較簡單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進(jìn)了一層,不僅判斷是否為直接三角形,還繞了一個(gè)彎,指出哪一個(gè)角是直角。這樣既可以檢查本課知識(shí),又可以提高靈活運(yùn)用以往知識(shí)的能力。例題講解后安排了三個(gè)練習(xí),循序漸進(jìn),由淺入深。培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。讓學(xué)生知道勾股逆定理的用途,激發(fā)學(xué)生的學(xué)習(xí)興趣。我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習(xí)過程,隨時(shí)反饋,調(diào)節(jié)教法,同時(shí)注意加強(qiáng)有針對(duì)性的個(gè)別指導(dǎo),把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。

  (五)歸納小結(jié),納入知識(shí)體系

  本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識(shí)和技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并

  告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過自己親手實(shí)踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認(rèn)識(shí)問題的好方法,希望同學(xué)在課外練習(xí)時(shí)注意用這種方法,這都是教給學(xué)習(xí)方法。

 。┳鳂I(yè)布置

  由于學(xué)生的.思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩題作業(yè)。第一題是基本的思維訓(xùn)練項(xiàng)目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。第二題適當(dāng)加大難度,拓寬知識(shí),供有能力又有興趣的學(xué)生做,日積月累,對(duì)訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個(gè)性有積極作用。

  三、說教法學(xué)法與教學(xué)手段

  為貫徹實(shí)施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動(dòng)發(fā)展的精神和培養(yǎng)創(chuàng)新活動(dòng)的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動(dòng)手、觀察、分析、猜想、驗(yàn)證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),加深對(duì)所學(xué)知識(shí)的理解和掌握;有利于突破難點(diǎn)和突出重點(diǎn)。

  此外,本節(jié)課我還采用了理論聯(lián)系實(shí)際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗(yàn)和感性認(rèn)識(shí),由最鄰近的知識(shí)去向本節(jié)課遷移,通過動(dòng)手操作讓學(xué)生獨(dú)立探討、主動(dòng)獲取知識(shí)。

  總之,本節(jié)課遵循從生動(dòng)直觀到抽象思維的認(rèn)識(shí)規(guī)律,力爭最大限度地調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性;力爭把教師教的過程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識(shí)的過程;力爭使學(xué)生在獲得知識(shí)的過程中得到能力的培養(yǎng)。

勾股定理說課稿8

  一、教材分析

  教材所處的地位與作用

  “探索勾股定理”是人教版八年級(jí)《數(shù)學(xué)》下冊內(nèi)容!肮垂啥ɡ怼笔前才旁趯W(xué)生學(xué)習(xí)了三角形、全等三角形、等腰三角形等有關(guān)知識(shí)之后,它揭示了直角三角形三邊之間的一種美妙關(guān)系,將數(shù)與形密切聯(lián)系起來,在幾何學(xué)中占有非常重要的位置。同時(shí)勾股定理在生產(chǎn)、生活中也有很大的用途。

  二、教學(xué)目標(biāo)

  綜上分析及教學(xué)大綱要求,本課時(shí)教學(xué)目標(biāo)制定如下:

  1、知識(shí)目標(biāo)

   知道勾股定理的由來,初步理解割補(bǔ)拼接的面積證法。

   掌握勾股定理,通過動(dòng)手操作利用等積法理解勾股定理的證明過程。

  2、能力目標(biāo)

   在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察——合理猜想——?dú)w納——驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合以及由特殊到一般的思想方法,培養(yǎng)學(xué)生的觀察力、抽象概括能力、創(chuàng)造想象能力以及科學(xué)探究問題的能力。

  3、情感目標(biāo)

   通過觀察、猜想、拼圖、證明等操作,使學(xué)生深刻感受到數(shù)學(xué)知識(shí)的發(fā)生、發(fā)展過程。

   介紹“趙爽弦圖”,讓學(xué)生感受到中國古代在勾股定理研究方面所取得的偉大成就,激發(fā)學(xué)生的數(shù)學(xué)激情及愛國情感。

  三、教學(xué)重難點(diǎn)

  本課重點(diǎn)是掌握勾股定理,讓學(xué)生深刻感悟到直角三角形三邊所具備的特殊關(guān)系。由于八年級(jí)學(xué)生構(gòu)造能力較低以及對(duì)面積證法的不熟悉,因此本課的難點(diǎn)便是勾股定理的證明。

  四、教學(xué)問題診斷

  本 節(jié)主要攻克的問題就是本節(jié)的難點(diǎn):勾股定理的證明。我打算采用面積法來講解,但這種借助于圖形的面積來探索、驗(yàn)證數(shù)學(xué)結(jié)論的數(shù)形結(jié)合思想,對(duì)于學(xué)生來說, 有些陌生,難以理解,又加之?dāng)?shù)學(xué)課本身的課程特征,在講解時(shí),沒有文科那么深動(dòng)形象,所以針對(duì)這一現(xiàn)狀,我在教法和學(xué)法上都進(jìn)行了改進(jìn)。

  五、教法與學(xué)法分析

  [教學(xué)方法與手段] 針對(duì)八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題,引導(dǎo)學(xué)生自主探索,合作交流,并利用多媒體進(jìn)行教學(xué)。

  [學(xué)法分析] 在教師組織引導(dǎo)下,采用自主探索、合作交流的方式,讓學(xué)生自己實(shí)驗(yàn),自己獲取知識(shí),并感悟?qū)W習(xí)方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦能力,使學(xué)生真正成為學(xué)習(xí)的主體。讓學(xué)生感受到自己是學(xué)習(xí)的主體,增強(qiáng)他們的主動(dòng)感和責(zé)任感,這樣對(duì)掌握新知會(huì)事半功倍。

  六、教學(xué)流程設(shè)計(jì)

  1、創(chuàng)設(shè)情境,引入新課

  本節(jié)課開始利用多媒體介紹了在北京召開的20xx年 國際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),其圖案為“趙爽弦圖”,由此導(dǎo)入新課,是為了激發(fā)學(xué)生的興趣和民族自豪感,它是課堂教學(xué)的重要一環(huán)!昂玫拈_始是成功的.一半”,在 課的起始階段迅速集中學(xué)生注意力,把他們的思緒帶進(jìn)特定的學(xué)習(xí)情境中,激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣和強(qiáng)烈的求知欲。多媒體展示這一有意義的圖案,可有效開啟學(xué) 生思維的閘門,激勵(lì)探究,使學(xué)生的學(xué)習(xí)狀態(tài)由被動(dòng)變?yōu)橹鲃?dòng),在輕松愉悅的氛圍中學(xué)到知識(shí)。

  2、觀察發(fā)現(xiàn),類比猜想

  讓學(xué)生仔細(xì)觀察畢達(dá)哥拉斯朋友家的瓷磚(圖1), 從而得到特殊的等腰直角三角形三邊關(guān)系,緊接著由特殊到一般,讓學(xué)生合理猜測:是否任意直角三角形都符合這個(gè)“三邊關(guān)系”的結(jié)論?同學(xué)們很輕易的得到了結(jié) 論。最后對(duì)此結(jié)論通過在網(wǎng)格中數(shù)格子進(jìn)行驗(yàn)證,讓學(xué)生經(jīng)歷了“觀察——合理猜測——?dú)w納——驗(yàn)證”的這一數(shù)學(xué)思想。在數(shù)格子的驗(yàn)證過程中,發(fā)現(xiàn)任意直角三 角形(圖2)斜邊上長出的正方形中網(wǎng)格不規(guī)則,沒法數(shù)出。通過同學(xué)們的討論,發(fā)現(xiàn)數(shù)不出來的原因是格子不規(guī)則,從而想到了用補(bǔ)或割的方法進(jìn)行計(jì)算,其原則就是由不規(guī)則經(jīng)過割補(bǔ)變?yōu)橐?guī)則。

  3、實(shí)驗(yàn)探究,證明結(jié)論

  因?yàn)楣垂啥ɡ淼某霈F(xiàn),使數(shù)學(xué)從單一的純計(jì)算進(jìn)入了幾何圖形的證明,所以為了讓學(xué)生感受數(shù)形結(jié)合這一數(shù)學(xué)思想,讓學(xué)生親自動(dòng)手,互相協(xié)作,拿一塊由a2和b2組成的不規(guī)則的平面圖形經(jīng)割補(bǔ),變?yōu)橐?guī)則的c2,又因兩塊割補(bǔ)前后面積相等,從而得到勾股定理:a2+b2= c2,也因此引入了“等積法”證明勾股定理。

  4、練兵之際

  這是“總統(tǒng)證法”,此時(shí)讓學(xué)生自己探索,然后討論。選用“總統(tǒng)證法”,第一是為了讓同學(xué)們熟悉“等積法”,第二讓學(xué)生感受數(shù)學(xué)的地位之高,第三在沒有講解的情況下,學(xué)生自己得出了“總統(tǒng)證法”,大大增強(qiáng)了學(xué)生的自信心和自豪感。

  5、自己動(dòng)手,拼出弦圖

  讓同學(xué)們拿出了提前準(zhǔn)備好的四個(gè)全等的邊長為a、b、c的 直角三角形進(jìn)行拼圖,小組活動(dòng),拼出自己喜愛的圖形,但有一個(gè)前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時(shí)已經(jīng)是把課堂全部還給了學(xué)生,讓他們 在數(shù)學(xué)的海洋中馳騁,提供這種學(xué)習(xí)方式就是為了讓孩子們更加開闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學(xué)生們拼得很好,并且都給出了正確的 證明,在黑板上盡情地展示了一番。

  6、總結(jié)反思

  通 過這一堂課,我認(rèn)為數(shù)學(xué)教學(xué)的核心不是知識(shí)本身,而是數(shù)學(xué)的思維方式,而培養(yǎng)這種數(shù)學(xué)思維方式需要豐富的數(shù)學(xué)活動(dòng)。在活動(dòng)中學(xué)生可以用自己創(chuàng)造與體驗(yàn)的方 法來學(xué)習(xí)數(shù)學(xué),這樣才能真正的掌握數(shù)學(xué),真正擁有數(shù)學(xué)的思維方式,這一課的學(xué)習(xí)就是通過讓學(xué)生自主探索知識(shí),從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興 趣,再合作交流,最后展示成果的自主學(xué)習(xí),教學(xué)模式也從教師講授為主轉(zhuǎn)為了學(xué)生動(dòng)腦、動(dòng)手、自主研究,小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)化為“數(shù)學(xué)實(shí)驗(yàn) 室”,學(xué)生通過自己活動(dòng)得出結(jié)論,使創(chuàng)新精神與實(shí)踐能力得到了發(fā)展。

  七、設(shè)計(jì)說明

  1、根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),我采用的數(shù)學(xué)流程是:創(chuàng)設(shè)情境引入新課——觀察發(fā)現(xiàn)類比猜想——實(shí)驗(yàn)探究證明結(jié)論——自己動(dòng)手拼出弦圖——總結(jié)反思這五部分。這一流程體現(xiàn)了知識(shí)的發(fā)生、形成和發(fā)展的過程,讓學(xué)生經(jīng)歷了觀察——猜想——?dú)w納——驗(yàn)證的思想和數(shù)形結(jié)合的思想。

  2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般的數(shù)學(xué)思想對(duì)直角三角形三邊關(guān)系進(jìn)行了研究,并得出了結(jié)論。這種方法是認(rèn)識(shí)事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對(duì)于學(xué)生良好的思維品質(zhì)的形成有重要作用,對(duì)學(xué)生終身發(fā)展也有很大作用。

勾股定理說課稿9

  一、教材分析

  勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。

  據(jù)此,制定教學(xué)目標(biāo)如下:

  1、理解并掌握勾股定理及其證明。

  2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。

  3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。

  4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

  教學(xué)重點(diǎn):勾股定理的證明和應(yīng)用。

  教學(xué)難點(diǎn):勾股定理的證明。

  二、教法和學(xué)法

  教法和學(xué)法是體現(xiàn)在整個(gè)教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):

  1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過程。

  2、切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問題和解決問題的能力。

  3、通過演示實(shí)物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

  三、教學(xué)程序

  本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:

 。ㄒ唬﹦(chuàng)設(shè)情境 以古引新

  1、由故事引入,3000多年前有個(gè)叫商高的人對(duì)周公說,把一根直尺折成直角,兩端連接得到一個(gè)直角三角形。如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。

  2、是不是所有的`直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂學(xué)狀態(tài)。

  3、板書課題,出示學(xué)習(xí)目標(biāo)。

 。ǘ┏醪礁兄 理解教材

  教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知。體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識(shí),鍛煉學(xué)生主動(dòng)探究知識(shí),養(yǎng)成良好的自學(xué)習(xí)慣。

 。ㄈ┵|(zhì)疑解難 討論歸納

  1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現(xiàn)欲。

  2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;

 。1)這兩個(gè)圖形有什么特點(diǎn)?

 。2)你能寫出這兩個(gè)圖形的面積嗎?

 。3)如何運(yùn)用勾股定理?是否還有其他形式?

  這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流;先有某一組代表發(fā)言,說明本組對(duì)問題的理解程度,其他各組作評(píng)價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥。最后,師生共同歸納,形成一致意見,最終解決疑難。

 。ㄋ模╈柟叹毩(xí) 強(qiáng)化提高

  1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。

  2、出示例1學(xué)生試解,師生共同評(píng)價(jià),以加深對(duì)例題的理解與運(yùn)用。針對(duì)例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力,對(duì)練習(xí)中出現(xiàn)的情況可采取互評(píng)、互議的形式,在互評(píng)互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。

  (五)歸納總結(jié) 練習(xí)反饋

  引導(dǎo)學(xué)生對(duì)知識(shí)要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。

  本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強(qiáng)師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習(xí)中創(chuàng)新精神和實(shí)踐能力得到培養(yǎng)。

勾股定理說課稿10

  一、說教材

  本課時(shí)是華師大版八年級(jí)(上)數(shù)學(xué)第14章第二節(jié)內(nèi)容,是在掌握勾股定理的基礎(chǔ)上對(duì)勾股定理的應(yīng)用之一。 勾股定理是我國古數(shù)學(xué)的一項(xiàng)偉大成就。勾股定理為我們提供了直角三角形的三邊間的數(shù)量關(guān)系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據(jù),也是判定兩條直線是否互相垂直的一個(gè)重要方法,這些成果被廣泛應(yīng)用于數(shù)學(xué)和實(shí)際生活的各個(gè)方面。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際分析,使學(xué)生獲得較為直觀的印象,通過聯(lián)系和比較,了解勾股定理在實(shí)際生活中的廣泛應(yīng)用。 據(jù)此,制定教學(xué)目標(biāo)如下:

  1、知識(shí)和方法目標(biāo):通過對(duì)一些典型題目的思考,練習(xí),能正確熟練地進(jìn)行勾股定理有關(guān)計(jì)算,深入對(duì)勾股定理的理解。

  2、過程與方法目標(biāo):通過對(duì)一些題目的探討,以達(dá)到掌握知識(shí)的目的。

  3、情感與態(tài)度目標(biāo):感受數(shù)學(xué)在生活中的應(yīng)用,感受數(shù)學(xué)定理的美。

  教學(xué)重點(diǎn):勾股定理的應(yīng)用。

  教學(xué)難點(diǎn):勾股定理的正確使用。

  教學(xué)關(guān)鍵:在現(xiàn)實(shí)情境中捕抓直角三角形,確定好直角三角形之后,再應(yīng)用勾股定理。

  二、說教法和學(xué)法

  1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過程。

  2、切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察,分析,討論,操作,歸納理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問題和解決問題的能力。

  3、通過演示實(shí)物,引導(dǎo)學(xué)生觀察,操作,分析,證明,使學(xué)生獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

  三、教學(xué)程序

  本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生的動(dòng)手,動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)置如下:

  一、回顧問:

  勾股定理的內(nèi)容是什么? 勾股定理揭示了直角三角形三邊之間的關(guān)系,今天我們來學(xué)習(xí)這個(gè)定理在實(shí)際生活中的應(yīng)用。

  二、新授課例

  1、如圖所示,有一個(gè)圓柱,它的高AB等于4厘米,底面周長等于20厘米,在圓柱下底面的A點(diǎn)有一只螞蟻,它想吃到上底面與A點(diǎn)相對(duì)的C點(diǎn)處的食物,沿圓柱側(cè)面爬行的最短路線是多少?(課本P57圖14.2.1)

  ①學(xué)生取出自制圓柱,,嘗試從A點(diǎn)到C點(diǎn)沿圓柱側(cè)面畫出幾條路線。思考:那條路線最短?

 、谌鐖D,將圓柱側(cè)面剪開展成一個(gè)長方形,從A點(diǎn)到C點(diǎn)的最短路線是什么?你畫得對(duì)嗎?

 、畚浵亸腁點(diǎn)出發(fā),想吃到C點(diǎn)處的食物,它沿圓柱側(cè)面爬行的最短路線是什么?

  思路點(diǎn)撥:引導(dǎo)學(xué)生在自制的圓柱側(cè)面上尋找最短路線;提醒學(xué)生將圓柱側(cè)面展開成長方形,引導(dǎo)學(xué)生觀察分析發(fā)現(xiàn)“兩點(diǎn)之間的所有線中,線段最短”。 學(xué)生在自主探索的基礎(chǔ)上興趣高漲,氣氛異常的活躍,他們發(fā)現(xiàn)螞蟻從A點(diǎn)往上爬到B點(diǎn)后順著直徑爬向C點(diǎn)爬行的路線是最短的!我也意外的發(fā)現(xiàn)了這種爬法是正確的,但是課本上是順著側(cè)面往上爬的,我就告訴學(xué)生:“課本中的`圓柱體是沒有上蓋的”。只有這樣課本上的解答才算是完全正確的。例2.(課本P58圖14.2.3)

  思路點(diǎn)撥:廠門的寬度是足夠的,這個(gè)問題的關(guān)鍵是觀察當(dāng)卡車位于廠門正中間時(shí)其高度是否小于CH,點(diǎn)D在離廠門中線0.8米處,且CD⊥AB, 與地面交于H,尋找出Rt△OCD,運(yùn)用勾股定理求出2.3m,CD= = =0.6,CH=0.6+2.3=2.9>2.5可見卡車能順利通過 。詳細(xì)解題過程看課本 引導(dǎo)學(xué)生完成P58做一做。

  三、課堂小練

  1、課本P58練習(xí)第1,2題。

  2、探究: 一門框的尺寸如圖所示,一塊長3米,寬2.2米的薄木板是否能從門框內(nèi)通過?為什么?

  四、小結(jié)

  直角三角形在實(shí)際生活中有更為廣泛的應(yīng)用希望同學(xué)們能緊緊抓住直角三角形的性質(zhì),學(xué)透勾股定理的具體應(yīng)用,那樣就能很輕松的解決現(xiàn)實(shí)生活中的許多問題,達(dá)到事倍功半的效果。

  五、布置作業(yè)

  課本P60習(xí)題14.2第1,2,3題。

勾股定理說課稿11

尊敬的各位評(píng)委,各位老師,大家好:

  我今天說課的內(nèi)容是《勾股定理的逆定理》第一課時(shí)。下面我將從教材、目標(biāo)、重點(diǎn)難點(diǎn)、教法、教學(xué)流程等幾個(gè)方面向各位專家闡述我對(duì)本節(jié)課的教學(xué)設(shè)想。

  一、說教材。

  這節(jié)內(nèi)容選自《蘇科版》義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)八年級(jí)上冊第三章《勾股定理》中的第二節(jié)。勾股定理的逆定理是幾何中一個(gè)非常重要的定理,它是對(duì)直角三角形的再認(rèn)識(shí),也是判斷一個(gè)三角形是不是直角三角形的一種重要方法。還是向?qū)W生滲透“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材。八年級(jí)正是學(xué)生由實(shí)驗(yàn)幾何向推理幾何過渡的重要時(shí)期,通過對(duì)勾股定理逆定理的探究,培養(yǎng)學(xué)生的分析思維能力,發(fā)展推理能力。在教學(xué)中滲透類比、轉(zhuǎn)化,從特殊到一般的思想方法。

  二、說教學(xué)目標(biāo)。

  教學(xué)目標(biāo)支配著教學(xué)過程,教學(xué)目標(biāo)的制定和落實(shí)是實(shí)施課堂教學(xué)的關(guān)鍵。考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及本班學(xué)生的實(shí)際情況,我制定了如下教學(xué)目標(biāo):

  1、知識(shí)與技能:探索并掌握直角三角形判別思想,會(huì)應(yīng)用勾股定理及逆定理解決實(shí)際問題。

  2、過程與方法:通過對(duì)勾股定理的逆定理的.探索和證明,經(jīng)歷知識(shí)的發(fā)生,發(fā)展與形成的過程,體驗(yàn)“數(shù)形結(jié)合”方法的應(yīng)用。

  3、情感、態(tài)度、價(jià)值觀:培養(yǎng)數(shù)學(xué)思維以及合情推理意識(shí),感悟勾股定理和逆定理的應(yīng)用價(jià)值。滲透與他人交流、合作的意識(shí)和探究精神,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系。

  三、說教學(xué)重點(diǎn)、難點(diǎn),關(guān)鍵。

  本著課程標(biāo)準(zhǔn),在吃透教材的基礎(chǔ)上,我確立了如下的教學(xué)重、難點(diǎn)及關(guān)鍵。

  重點(diǎn):理解并掌握勾股定理的逆定理,并會(huì)應(yīng)用。

  難點(diǎn):理解勾股定理的逆定理的推導(dǎo)。

  關(guān)鍵:動(dòng)手驗(yàn)證,體驗(yàn)勾股定理的逆定理。

  四、說教法。

  在本節(jié)課中,我設(shè)計(jì)了以下幾種教法學(xué)法:

  情景教學(xué)法,啟發(fā)教學(xué)法,分層導(dǎo)學(xué)法。

  讓學(xué)生實(shí)踐活動(dòng),動(dòng)手操作,看自己畫的三角形是否為一個(gè)直角三角形。體會(huì)觀察,作出合理的推測。同時(shí)通過引入,讓學(xué)生了解古代都用這種方法來確定直角的。對(duì)學(xué)生進(jìn)行動(dòng)手能力培養(yǎng)的同時(shí),引導(dǎo)命題的形成過程,自然地得出勾股定理的逆定理。既鍛煉了學(xué)生的實(shí)踐、觀察能力,又滲透了人文和探究精神。

  五、說教學(xué)流程。

  1、動(dòng)手實(shí)踐,檢測猜測。引導(dǎo)學(xué)生分別以3cm,4cm,5cm , 2.5cm,6cm,6.5cm和4cm, 7.5 cm, 8.5 cm , 2cm, 5cm, 6cm為邊畫出兩個(gè)三角形,觀察猜測三角形的形狀。再引導(dǎo)啟發(fā)學(xué)生從這兩個(gè)活動(dòng)中歸納思考:如果三角形的三邊長a、b、c滿足,那么此三角形是什么三角形?在整個(gè)過程的活動(dòng)中,盡量給學(xué)生充足的時(shí)間和空間,以平等的身份參與到學(xué)生活動(dòng)中來,幫助指導(dǎo)學(xué)生的實(shí)踐活動(dòng)。

  2、探索歸納,證明猜測。

  勾股定理逆定理的證明不同于以往的幾何圖形的證明,需要構(gòu)造直角三角形才能完成,構(gòu)造直角三角形就成為解決問題的關(guān)鍵。如果此時(shí)直接將問題拋給學(xué)生證明,學(xué)生定會(huì)覺得無從下手。我就采用分層導(dǎo)進(jìn)的方法,讓學(xué)生從具體的例子中感受總結(jié),再歸納到中抽象中來。于是我就設(shè)計(jì)了這樣的兩個(gè)步驟:

  先補(bǔ)充一道例題:三邊長度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么聯(lián)系?你是怎么得到的?請簡單說明理由。

  然后再更改上面的例題,變?yōu)椤鰽BC三邊長為a、b、c,滿足,與以a、b為直角邊的直角三角形之間有什么聯(lián)系呢?你們又是如何想的?試說明理由。通過推理證明得出勾股定理的逆定理。

  在這個(gè)過程中,要努力引導(dǎo)學(xué)生聯(lián)想到“全等”,進(jìn)而設(shè)法構(gòu)造直角三角形,讓學(xué)生在不斷的嘗試、探究的過程中,總結(jié)出勾股定理的逆定理。有效地突破本節(jié)的難點(diǎn)。同時(shí)提出原命題與逆命題及其關(guān)系。培養(yǎng)良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣對(duì)學(xué)生的可持續(xù)發(fā)展是非常重要的,歸納出定理后,與學(xué)生一起分析定理的題設(shè)與結(jié)論,并與勾股定理進(jìn)行對(duì)比,明白兩定理是互逆定理。

  3、嘗試運(yùn)用,熟悉定理。

  課本中的例題是讓學(xué)生進(jìn)一步熟練掌握勾股定理的逆定理及其運(yùn)用的步驟。

  4、分層訓(xùn)練,能力升級(jí)。有針對(duì)性有層次性地布置練習(xí),及時(shí)反饋教學(xué)效果,查缺被漏,并對(duì)有困難的學(xué)生給予指導(dǎo)。

  5、總結(jié)內(nèi)容,強(qiáng)化認(rèn)識(shí)。使學(xué)生再次感悟勾股定理的逆定理,體會(huì)定理的互逆性,加深對(duì)“數(shù)形結(jié)合”的理解,更深刻地理解數(shù)學(xué)思想方法在解題中的地位和作用,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  6、布置作業(yè)。有代表性地布置不同層次的作業(yè),尊重學(xué)生的個(gè)體差異,滿足多樣化學(xué)習(xí)的需要。

  結(jié)束語:我的說課完了,非常感謝各位領(lǐng)導(dǎo)和專家給了我這次學(xué)習(xí)、聆聽、參與、鍛煉的機(jī)會(huì)。謝謝大家!

勾股定理說課稿12

  一、教材分析:

  勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。

  教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。

  據(jù)此,制定教學(xué)目標(biāo)如下:

  1、理解并掌握勾股定理及其證明。

  2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。

  3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。

  4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

  二、教學(xué)重點(diǎn):

  勾股定理的證明和應(yīng)用。

  三、教學(xué)難點(diǎn):

  勾股定理的證明。

  四、教法和學(xué)法:

  教法和學(xué)法是體現(xiàn)在整個(gè)教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):

  以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過程。

  切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問題和解決問題的能力。

  通過演示實(shí)物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

  五、教學(xué)程序

  :本節(jié)內(nèi)容的'教學(xué)主要體現(xiàn)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:

  (一)創(chuàng)設(shè)情境 以古引新

  1、由故事引入,3000多年前有個(gè)叫商高的人對(duì)周公說,把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。

  2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂學(xué)狀態(tài)。

  3、板書課題,出示學(xué)習(xí)目標(biāo)。

  (二)初步感知 理解教材

  教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識(shí),鍛煉學(xué)生主動(dòng)探究知識(shí),養(yǎng)成良好的自學(xué)習(xí)慣。

  (三)質(zhì)疑解難、討論歸納:

  1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現(xiàn)欲。

  2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;

 。1)這兩個(gè)圖形有什么特點(diǎn)?

 。2)你能寫出這兩個(gè)圖形的面積嗎?

 。3)如何運(yùn)用勾股定理?是否還有其他形式?

  這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對(duì)問題的理解程度,其他各組作評(píng)價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

  (四)鞏固練習(xí) 強(qiáng)化提高

  1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。

  2、出示例1學(xué)生試解,師生共同評(píng)價(jià),以加深對(duì)例題的理解與運(yùn)用。針對(duì)例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力,對(duì)練習(xí)中出現(xiàn)的情況可采取互評(píng)、互議的形式,在互評(píng)互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。

  (五)歸納總結(jié) 練習(xí)反饋

  引導(dǎo)學(xué)生對(duì)知識(shí)要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。

  本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助多媒體提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強(qiáng)師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習(xí)中創(chuàng)新精神和實(shí)踐能力得到培養(yǎng)。

勾股定理說課稿13

  一、教材分析

  (一)教材地位:這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版七年級(jí)第二章第一節(jié)《探索勾股定理》第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

 。ǘ┙虒W(xué)目標(biāo):

  知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡單實(shí)際問題.

  過程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想.

  情感態(tài)度與價(jià)值觀:激發(fā)學(xué)生愛國熱情,讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué).

 。ㄈ┙虒W(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能用它來解決一些簡單的實(shí)際問題。

  教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解.

  二、教法與學(xué)法分析:

  學(xué)情分析:七年級(jí)學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們在小學(xué)已學(xué)習(xí)了一些幾何圖形的.面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來解決問題的意識(shí)和能力還不夠.另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng).

  教法分析:結(jié)合七年級(jí)學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式,選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。

  學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人.

  三、教學(xué)過程設(shè)計(jì)

  1.創(chuàng)設(shè)情境,提出問題

  2.實(shí)驗(yàn)操作,模型構(gòu)建

  3.回歸生活,應(yīng)用新知

  4.知識(shí)拓展,鞏固深化

  5.感悟收獲,布置作業(yè)

  (一)創(chuàng)設(shè)情境提出問題

  (1)圖片欣賞勾股定理數(shù)形圖1955年希臘發(fā)行美麗的勾股樹20xx年國際數(shù)學(xué)的一枚紀(jì)念郵票大會(huì)會(huì)標(biāo)

  設(shè)計(jì)意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值.

  (2)某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊(duì)員能否進(jìn)入三樓滅火?

  設(shè)計(jì)意圖:以實(shí)際問題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識(shí)的發(fā)生過程,解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié).

  二、實(shí)驗(yàn)操作模型構(gòu)建

  1.等腰直角三角形(數(shù)格子)2.一般直角三角形(割補(bǔ))

  問題一:對(duì)于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?

  設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想.

  問題二:對(duì)于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)

  設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無形中得到提高.

  通過以上實(shí)驗(yàn)歸納總結(jié)勾股定理.

  設(shè)計(jì)意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊——一般的認(rèn)知規(guī)律.

  三.回歸生活應(yīng)用新知

  讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的樂趣和信心.

  四、知識(shí)拓展鞏固深化

  基礎(chǔ)題,情境題,探索題.

  設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展.知識(shí)的運(yùn)用得到升華.

  基礎(chǔ)題:直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問題?你能解決所提出的問題嗎?

  設(shè)計(jì)意圖:這道題立足于雙基.通過學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維.

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī).小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯(cuò)了.你同意他的想法嗎?

  設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

  探索題:做一個(gè)長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識(shí)說明。

  設(shè)計(jì)意圖:探索題的難度相對(duì)大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力.

  五、感悟收獲布置作業(yè):

  這節(jié)課你的收獲是什么?

  作業(yè):

  1、課本習(xí)題2.1

  2、搜集有關(guān)勾股定理證明的資料.

  板書設(shè)計(jì)探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  設(shè)計(jì)說明:

  1.探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì)數(shù)形結(jié)合及從特殊到一般的思想方法.

  2.讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現(xiàn)出來的思維水平、表達(dá)水平.

勾股定理說課稿14

  今天我說課的課題是《勾股定理》。本課選自九年義務(wù)教育人教版八年級(jí)數(shù)學(xué)下冊第十八章第一節(jié)的第一課時(shí)。

  一、教學(xué)背景分析

  1、教材分析

  本節(jié)課是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,通過20xx年國際數(shù)學(xué)家大會(huì)的會(huì)徽圖案,引入勾股定理,進(jìn)而探索直角三角形三邊的數(shù)量關(guān)系,并應(yīng)用它解決問題。學(xué)好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎(chǔ),而且為今后學(xué)習(xí)解直角三角形奠定基礎(chǔ),在實(shí)際生活中用途很大。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個(gè)非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,將數(shù)與形密切地聯(lián)系起來,它有著豐富的歷史背景,在理論上占有重要的地位。

  2、學(xué)情分析

  通過前面的學(xué)習(xí),學(xué)生已具備一些平面幾何的知識(shí),能夠進(jìn)行一般的推理和論證,但如何通過拼圖來證明勾股定理,學(xué)生對(duì)這種解決問題的途徑還比較陌生,存在一定的難度,因此,我采用直觀教具、多媒體等手段,讓學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦,化難為易,深入淺出,讓學(xué)生感受學(xué)習(xí)知識(shí)的樂趣。

  3、教學(xué)目標(biāo):

  根據(jù)八年級(jí)學(xué)生的認(rèn)知水平,依據(jù)新課程標(biāo)準(zhǔn)和教學(xué)大綱的要求,我制定了如下的教學(xué)目標(biāo):

  知識(shí)與能力目標(biāo):了解勾股定理的發(fā)現(xiàn)過程,掌握勾股定理的內(nèi)容,會(huì)用面積法證明勾股定理;培養(yǎng)在實(shí)際生活中發(fā)現(xiàn)問題總結(jié)規(guī)律的意識(shí)和能力.

  過程與方法目標(biāo):通過創(chuàng)設(shè)情境,導(dǎo)入新課,引導(dǎo)學(xué)生探索勾股定理,并應(yīng)用它解決問題,運(yùn)用了觀察、演示、實(shí)驗(yàn)、操作等方法學(xué)習(xí)新知。

  情感態(tài)度價(jià)值觀目標(biāo):感受數(shù)學(xué)文化,激發(fā)學(xué)生學(xué)習(xí)的熱情,體驗(yàn)合作學(xué)習(xí)成功的喜悅,滲透數(shù)形結(jié)合的思想。

  4、教學(xué)重點(diǎn)、難點(diǎn)

  通過分析可見,勾股定理是平面幾何的重要定理,有著承上啟下的作用,在今后的生活實(shí)踐中有著廣泛應(yīng)用。因此我確定本課的教學(xué)

  重難點(diǎn)為探索和證明勾股定理.

  二、教材處理

  根據(jù)學(xué)生情況,為有效培養(yǎng)學(xué)生能力,在教學(xué)過程中,以創(chuàng)設(shè)問題情境為先導(dǎo),運(yùn)用直觀教具、多媒體等手段,激發(fā)學(xué)生學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性,并開展以探究活動(dòng)為主的教學(xué)模式,邊設(shè)疑,邊講解,邊操作,邊討論,啟發(fā)學(xué)生提出問題,分析問題,進(jìn)而解決問題,以達(dá)到突出重點(diǎn),攻破難點(diǎn)的目的。

  三、教學(xué)策略

  1、教法

  “教必有法,而教無定法”,只有方法恰當(dāng),才會(huì)有效。根據(jù)本課內(nèi)容特點(diǎn)和八年級(jí)學(xué)生思維活動(dòng)特點(diǎn),我采用了引導(dǎo)發(fā)現(xiàn)教學(xué)法,合作探究教學(xué)法,逐步滲透教學(xué)法和師生共研相結(jié)合的方法。

  2、學(xué)法

  “授人以魚,不如授人以漁”,通過設(shè)計(jì)問題序列,引導(dǎo)學(xué)生主動(dòng)探究新知,合作交流,體現(xiàn)學(xué)習(xí)的自主性,從不同層次發(fā)掘不同學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。

  3、教學(xué)模式

  根據(jù)新課標(biāo)要求,要積極倡導(dǎo)自主、合作、探究的學(xué)習(xí)方式,我采用了創(chuàng)設(shè)情境——探究新知——反饋訓(xùn)練的教學(xué)模式,使學(xué)生獲取知識(shí),提高素質(zhì)能力。

  四、教學(xué)過程

 。ㄒ唬﹦(chuàng)設(shè)情境,引入新課

  利用多媒體課件,給學(xué)生出示20xx年國際數(shù)學(xué)家大會(huì)的場面,通過觀察會(huì)徽圖案,提出問題:你見過這個(gè)圖案嗎?你聽說過勾股定理嗎?從現(xiàn)實(shí)生活中提出趙爽弦圖,激發(fā)學(xué)生學(xué)習(xí)的熱情和求知欲,同時(shí)為探索勾股定理提供背景材料,進(jìn)而引出課題。

 。ǘ┮龑(dǎo)學(xué)生,探究新知

  1、初步感知定理:這一環(huán)節(jié)選擇教材的圖片,講述畢達(dá)哥拉斯到朋友家做客時(shí)發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關(guān)系,創(chuàng)設(shè)感知情境,提出問題:現(xiàn)在也請你觀察,看看有什么發(fā)現(xiàn)?教師配合演示,使問題更形象、具體。適當(dāng)補(bǔ)充等腰直角三角形邊長為1、2時(shí),所形成的規(guī)律,使學(xué)生再次感知發(fā)現(xiàn)的規(guī)律。

  2、提出猜想:在活動(dòng)1的基礎(chǔ)上,學(xué)生已發(fā)現(xiàn)一些規(guī)律,進(jìn)一步通過活動(dòng)2進(jìn)行看一看,想一想,做一做,讓學(xué)生感受不只是等腰直角三角形才具有這樣的性質(zhì),使學(xué)生由淺到深,由特殊到一般的提出問題,啟發(fā)學(xué)生得出猜想,直角三角形的兩直角邊的平方和等于斜邊的平方。

  3、證明猜想:是不是所有的直角三角形都有這樣的特點(diǎn)呢?這就需要我們對(duì)一個(gè)一般的直角三角形進(jìn)行證明.通過活動(dòng)3,充分引導(dǎo)學(xué)生利用直觀教具,進(jìn)行拼圖實(shí)驗(yàn),在動(dòng)手操作中放手讓學(xué)生思考、討論、合作、交流,探究解決問題的多種方法,鼓勵(lì)創(chuàng)新,小組競賽,引入競爭,教師參與討論,與學(xué)生交流,獲取信息,從而有針對(duì)性地引導(dǎo)學(xué)生進(jìn)行證法的探究,使學(xué)生創(chuàng)造性地得出拼圖的多種方法,并使學(xué)生在學(xué)習(xí)的過程中,感受到自我創(chuàng)造的快樂,從而分散了教學(xué)難點(diǎn),發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。培養(yǎng)了學(xué)生的發(fā)散思維、一題多解和探究數(shù)學(xué)問題的能力。

  4、總結(jié)定理:讓學(xué)生自己總結(jié)定理,不完善之處由教師補(bǔ)充。在前面探究活動(dòng)的基礎(chǔ)上,學(xué)生很容易得出直角三角形的三邊數(shù)量關(guān)系即勾股定理,培養(yǎng)了學(xué)生的`語言表達(dá)能力和歸納概括能力。

 。ㄈ┓答佊(xùn)練,鞏固新知

  學(xué)生對(duì)所學(xué)的知識(shí)是否掌握了,達(dá)到了什么程度?為了檢測學(xué)生對(duì)本課目標(biāo)的達(dá)成情況和加強(qiáng)對(duì)學(xué)生能力的培養(yǎng),設(shè)計(jì)一組有坡度的練習(xí)題:A組動(dòng)腦筋,想一想,是本節(jié)基礎(chǔ)知識(shí)的理解和直接應(yīng)用;B組求陰影部分的面積,建立了新舊知識(shí)的聯(lián)系,培養(yǎng)學(xué)生綜合運(yùn)用知識(shí)的能力。C組議一議,是一道實(shí)際應(yīng)用題型,給學(xué)生施展才智的機(jī)會(huì),讓學(xué)生獨(dú)立思考后,討論交流得出解決問題的方法,增強(qiáng)了數(shù)學(xué)來源于實(shí)踐,反過來又作用于實(shí)踐的應(yīng)用意識(shí),達(dá)到了學(xué)以致用的目的。

 。ㄋ模w納小結(jié),深化新知

  本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進(jìn)一步研究的的問題是什么?通過小結(jié),使學(xué)生進(jìn)一步明確掌握教學(xué)目標(biāo),使知識(shí)成為體系。

 。ㄎ澹┎贾米鳂I(yè),拓展新知

  讓學(xué)生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.使本節(jié)知識(shí)得到拓展、延伸,培養(yǎng)了學(xué)生能力和思維的深刻性,讓學(xué)生感受數(shù)學(xué)深厚的文化底蘊(yùn)。

  (六)板書設(shè)計(jì),明確新知

  本節(jié)課的板書設(shè)計(jì)分為三塊:一塊是拼圖方法,一塊是勾股定理;一塊是例題解析。它突出了重點(diǎn),層次清楚,便于學(xué)生掌握,為獲得知識(shí)服務(wù)。

勾股定理說課稿15

尊敬的各位評(píng)委、老師,大家好!

  我說課的題目是華師版八年級(jí)上冊第十四章第一節(jié)第一課時(shí)《勾股定理》。

  教材分析:

  如果說數(shù)學(xué)思想是解決數(shù)學(xué)問題的一首經(jīng)典老歌,那么本節(jié)課蘊(yùn)含的由特殊到一般的思想、數(shù)學(xué)建模的思想、轉(zhuǎn)化的思想就是歌中最為活躍的音符!本節(jié)的內(nèi)容是在學(xué)習(xí)了二次根式之后的教學(xué),是在學(xué)生已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行的后繼學(xué)習(xí),是中學(xué)數(shù)學(xué)幾個(gè)重要定理之一。它揭示了直角三角形三條邊之間的數(shù)量關(guān)系,是解直角三角形的主要根據(jù)之一,是解決四邊形、圓等知識(shí)的靈魂,在實(shí)際生活中有著極其廣泛的應(yīng)用。

  勾股定理的發(fā)現(xiàn)、驗(yàn)證和應(yīng)用蘊(yùn)含著豐富的文化價(jià)值,在理論上占有重要地位,因此本節(jié)在教材中起著承前啟后的橋梁作用。

  新課標(biāo)下的數(shù)學(xué)教學(xué)不僅是知識(shí)的教學(xué),更應(yīng)注重能力的培養(yǎng)及情感的教育,因此,根據(jù)本節(jié)在教學(xué)中的地位和作用,結(jié)合初二學(xué)生不愛表現(xiàn)、好靜不好動(dòng)的特點(diǎn),我確定本節(jié)教學(xué)目標(biāo)如下:

  1、探索并利用拼圖證明勾股定理。

  2、利用勾股定理解決簡單的數(shù)學(xué)問題。

  3、感受數(shù)學(xué)文化,體會(huì)解決問題方法的多樣性和數(shù)形結(jié)合的思想。

  本著課標(biāo)的要求,在吃透教材的基礎(chǔ)上,我確定本節(jié)的教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵如下:

  勾股定理的證明和簡單應(yīng)用是本節(jié)的重點(diǎn),用拼圖的方法證明勾股定理是難點(diǎn),而解決難點(diǎn)的關(guān)鍵是充分利用圖形面積的各種表示方法構(gòu)造恒等式。

  為了講清重點(diǎn)、突破難點(diǎn)、抓住關(guān)鍵,使學(xué)生達(dá)到預(yù)定目標(biāo),我對(duì)教法和學(xué)法分析如下:

  教法分析:

  新課程標(biāo)準(zhǔn)強(qiáng)調(diào)要從學(xué)生已有的經(jīng)驗(yàn)出發(fā),最大限度的激發(fā)學(xué)生學(xué)習(xí)積極性,新課程下的數(shù)學(xué)教師更應(yīng)是學(xué)生學(xué)習(xí)活動(dòng)的組織者、引導(dǎo)者、合作者,因此,鑒于教材的重點(diǎn)和初二學(xué)生的認(rèn)知水平,我以學(xué)生充分預(yù)習(xí)為前提,以學(xué)生的動(dòng)手操作、講解為中心,讓學(xué)生親歷親為,體會(huì)做數(shù)學(xué)的.過程,激發(fā)學(xué)生的探索興趣,使課堂活躍起來,提高課堂效率。運(yùn)用觀察法、歸納法、引導(dǎo)發(fā)現(xiàn)法、討論法等多種教學(xué)方法相結(jié)合的形式,讓學(xué)生充分展示預(yù)習(xí)成果,體驗(yàn)成功的快樂,為終身學(xué)習(xí)和發(fā)展打下堅(jiān)實(shí)的基礎(chǔ)。為了增大課堂容量、給學(xué)生創(chuàng)設(shè)高效的數(shù)學(xué)課堂,給學(xué)生提供足夠從事數(shù)學(xué)活動(dòng)的時(shí)間,以導(dǎo)學(xué)案的形式、運(yùn)用多媒體輔助教學(xué)。

  學(xué)法分析

  學(xué)法是學(xué)生再生知識(shí)的法寶,為了把學(xué)生學(xué)習(xí)過程當(dāng)作認(rèn)知事物的過程來解決,教學(xué)中我首先引導(dǎo)學(xué)生先動(dòng)手操作,再合作交流,培養(yǎng)學(xué)生良好的學(xué)習(xí)品質(zhì)和與人合作的能力;接下來,我讓學(xué)生獨(dú)立思考,點(diǎn)撥學(xué)生用特殊到一般的思想大膽償試,水到渠成的突出勾股定理的探索這一重點(diǎn),然后通過學(xué)生展示成果讓學(xué)生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關(guān)健,以自己拼圖操作、講解展示預(yù)習(xí)成果突破定理證明這一難點(diǎn),指導(dǎo)學(xué)生嚴(yán)謹(jǐn)、合理的書寫格式,培養(yǎng)學(xué)生的邏輯思維能力和語言表達(dá)能力。

  為了充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,創(chuàng)設(shè)優(yōu)化高效的數(shù)學(xué)課堂,我以導(dǎo)學(xué)案的方式循序見進(jìn)的設(shè)計(jì)教學(xué)流程。

  以學(xué)生必讀課本48—52頁,選讀課本55、56頁的課前預(yù)習(xí)為前提,共分四個(gè)環(huán)節(jié)來進(jìn)行教學(xué)

  1、勾股定理的探究:讓學(xué)生歷經(jīng)量一量、算一算、想一想的由特殊到一般的數(shù)學(xué)思想引導(dǎo)好學(xué)生課前預(yù)習(xí),再以檢查預(yù)習(xí)成果的形式為新知的探究作好鋪墊。

  2、勾股定理的證明:以學(xué)生拼圖展示、講解預(yù)習(xí)成果的形式完成對(duì)定理的證明。

  3、勾股定理的應(yīng)用:以課堂練習(xí)、學(xué)生個(gè)性補(bǔ)充和老師適當(dāng)?shù)膫(gè)性化追加的形式實(shí)現(xiàn)對(duì)定理的靈活應(yīng)用。

  4、學(xué)后反思:以學(xué)生小結(jié)的形式引導(dǎo)學(xué)生從知識(shí)、情感兩方面實(shí)現(xiàn)對(duì)本節(jié)內(nèi)容的鞏固與升華。

  說創(chuàng)新點(diǎn):

  為了給學(xué)生營造一個(gè)和諧、民主、平等而高效的數(shù)學(xué)課堂,我以新課程標(biāo)準(zhǔn)的基本理念和總體目標(biāo)為指導(dǎo)思想,面向全體學(xué)生,選擇適當(dāng)?shù)钠瘘c(diǎn)和方法,充分發(fā)揮學(xué)生的主體地位與教師主導(dǎo)作用相統(tǒng)一的原則。教學(xué)中注重學(xué)生的動(dòng)手操作能力的培養(yǎng),化繁為簡,化抽象為直觀。例如我以展示預(yù)習(xí)成果為主線,以學(xué)生動(dòng)手操作、講解等直觀方式代替老師畫圖、剪圖、講評(píng)費(fèi)時(shí)費(fèi)力的方式,既讓每個(gè)學(xué)生都能積極的參與進(jìn)來,培養(yǎng)學(xué)生的語言表達(dá)能力、邏輯推理能力,又達(dá)到了直觀高效的效果。

  教學(xué)中我注重人文環(huán)境的創(chuàng)設(shè),使數(shù)學(xué)課堂充滿親切、民主的氣氛,例如整節(jié)課我以學(xué)生的操作、展示、講解、個(gè)性補(bǔ)充為主,拉近了數(shù)學(xué)與學(xué)生的距離,激發(fā)了學(xué)生的學(xué)習(xí)興趣;為了使不同的學(xué)生得到不同的發(fā)展,人人學(xué)有價(jià)值的數(shù)學(xué),在教學(xué)中我創(chuàng)造性的使用教材,在不改變例題的本意為前提,創(chuàng)設(shè)身邊暖房工程為情境,體現(xiàn)數(shù)學(xué)的生活化;以一題多變、中考題改編等形式進(jìn)行練習(xí)題的層層深入,體現(xiàn)數(shù)學(xué)的變化美。

  以學(xué)生個(gè)性補(bǔ)充的形式促進(jìn)課堂新的生成,最大限度的培養(yǎng)學(xué)生創(chuàng)新思維,使不同的人在數(shù)學(xué)上有不同的發(fā)展。本節(jié)課既做到了課程的開放,為充分發(fā)揮學(xué)生聰明智慧和創(chuàng)造性的思維提供了空間,又創(chuàng)設(shè)了具有獨(dú)特教學(xué)風(fēng)格的作文式數(shù)學(xué)課堂。而多媒體教學(xué)的引入更為學(xué)生提供了廣闊的思考空間和時(shí)間;同時(shí),我注重對(duì)學(xué)生進(jìn)行數(shù)學(xué)文化的薰陶和數(shù)學(xué)思想的滲透,注重美育、德育與教育的三統(tǒng)一,如小結(jié)時(shí)由“勾股樹”到“智慧樹”的希望寄語。

【勾股定理說課稿】相關(guān)文章:

勾股定理說課稿07-03

《勾股定理》說課稿08-22

勾股定理說課稿模板10-18

初中數(shù)學(xué)勾股定理說課稿06-21

《勾股定理》說課稿15篇10-03

八年級(jí)勾股定理教學(xué)反思11-23

《貓》說課稿07-01

初中說課稿11-11

藝術(shù)說課稿08-29

長城說課稿01-20