初二數(shù)學上冊期末試卷
初二數(shù)學期末考試到了,沒有付出,就沒有收獲,人只有上坡路才是最難走的,相信自己能成功,自己就一定能成功。以下是小編為你整理的初二數(shù)學上冊期末試卷,希望對大家有幫助!
一.選擇題:(每小題4分,滿分40分,請將正確答案的序號填寫在選擇題的答題欄內(nèi))
1.在下列各數(shù)中,無理數(shù)是( )
A.0 B. C. D.7
【考點】無理數(shù).
【分析】無理數(shù)就是無限不循環(huán)小數(shù).理解無理數(shù)的概念,一定要同時理解有理數(shù)的概念,有理數(shù)是整數(shù)與分數(shù)的統(tǒng)稱.即有限小數(shù)和無限循環(huán)小數(shù)是有理數(shù),而無限不循環(huán)小數(shù)是無理數(shù).由此即可判定選擇項.
【解答】解:A、0是整數(shù),是有理數(shù),選項錯誤;
B、 是分數(shù),是有理數(shù),選項錯誤;
C、 是無理數(shù),選項錯誤;
D、7是整數(shù),是有理數(shù),選項錯誤.
故選C.
【點評】此題主要考查了無理數(shù)的定義,其中初中范圍內(nèi)學習的無理數(shù)有:π,2π等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).
2.若x>y,則下列不等式成立的是( )
A.x﹣3
【考點】不等式的性質(zhì).
【分析】根據(jù)不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變;不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變;不等式兩邊乘(或除以)同一個負數(shù),不等號的方向改變.
【解答】解:A、不等式的兩邊都減3,不等號的方向不變,故A錯誤;
B、不等式的兩邊都加5,不等號的方向不變,故B正確;
C、不等式的兩邊都除以3,不等號的方向不變,故C錯誤;
D、不等式的兩邊都乘以﹣2,不等號的方向改變,故D錯誤;
故選:B.
【點評】主要考查了不等式的基本性質(zhì).“0”是很特殊的一個數(shù),因此,解答不等式的問題時,應密切關注“0”存在與否,以防掉進“0”的陷阱.不等式的基本性質(zhì):不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變;不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變;不等式兩邊乘(或除以)同一個負數(shù),不等號的方向改變.
3.若等腰三角形底角為72°,則頂角為( )
A.108° B.72° C.54° D.36°
【考點】等腰三角形的性質(zhì);三角形內(nèi)角和定理.
【專題】計算題.
【分析】根據(jù)三角形內(nèi)角和定理和等腰三角形的性質(zhì),可以計算其頂角的度數(shù).
【解答】解:∵等腰三角形底角為72°
∴頂角=180°﹣(72°×2)=36°
故選D.
【點評】根據(jù)三角形內(nèi)角和定理和等腰三角形的性質(zhì)來計算.
4.當x=2015時,分式 的值是( )
A. B. C. D.
【考點】分式的化簡求值.
【專題】計算題;分式.
【分析】原式約分得到最簡結果,把x的值代入計算即可求出值.
【解答】解:原式= = ,
當x=2015時,原式= .
故選C
【點評】此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關鍵.
5.已知△ABC中,2(∠B+∠C)=3∠A,則∠A的度數(shù)是( )
A.54° B.72° C.108° D.144°
【考點】三角形內(nèi)角和定理.
【分析】根據(jù)三角形內(nèi)角和定理和已知條件得出方程,解方程即可.
【解答】解:∵2(∠B+∠C)=3∠A,∠A+∠B+∠C=180°,
∴2(180°﹣∠A)=3∠A,
解得:∠A=72°.
故選:B.
【點評】本題考查的是三角形內(nèi)角和定理,熟知三角形內(nèi)角和是180°是解答此題的關鍵.
6.不等式組 的最小整數(shù)解是( )
A.0 B.﹣1 C.1 D.2
【考點】一元一次不等式組的整數(shù)解.
【專題】計算題;一元一次不等式(組)及應用.
【分析】求出不等式組的解集,確定出最小的整數(shù)解即可.
【解答】解:不等式組整理得: ,
解得:﹣<x≤4,< p="">
則不等式組的最小整數(shù)解是0,
故選A.
【點評】此題考查了一元一次不等式組的整數(shù)解,求不等式組的解集,應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.
7.已知關于x的方程 的解為x=1,則a等于( )
A.0.5 B.2 C.﹣2 D.﹣0.5
【考點】分式方程的解.
【分析】根據(jù)方程的解的定義,把x=1代入原方程,原方程左右兩邊相等,從而原方程轉化為含a的新方程,解此新方程可以求得a的值.
【解答】解:把x=1代入方程 得:
= ,
解得:a=﹣0.5;
經(jīng)檢驗a=﹣0.5是原方程的解;
故選D.
【點評】此題考查了分式方程的解,關鍵是要掌握方程的解的定義,由已知解代入原方程得到新方程,然后再解答.
8.若a=1+ ,b=1﹣ ,則代數(shù)式 的值為( )
A.3 B.±3 C.5 D.9
【考點】二次根式的化簡求值.
【分析】首先把所求的式子化成 的形式,然后代入數(shù)值計算即可.
【解答】解:原式= = = =3.
故選A.
【點評】本題考查了二次根式的化簡求值,正確對所求的式子進行變形是關鍵.
二.填空題:(每小題3分,滿分24分,請將答案填寫在填空題的答題欄內(nèi))
11.金園小區(qū)有一塊長為18m,寬為8m的長方形草坪,計劃在草坪面積不變的情況下,把它改造成正方形,則這個正方形的'邊長是12m.
【考點】算術平方根.
【專題】計算題;實數(shù).
【分析】設這個正方形的邊長是xm,根據(jù)題意列出方程,利用平方根定義開方即可得到結果.
【解答】解:設這個正方形的邊長是xm,
根據(jù)題意得:x2=18×8=144,
開方得:x=12(負值舍去),
則這個正方形的邊長是12m,
故答案為:12
【點評】此題考查了算術平方根,熟練掌握算術平方根的定義是解本題的關鍵.
12.已知不等式2x+★>2的解集是x>﹣4,則“★”表示的數(shù)是10.
【考點】不等式的解集.
【分析】設“★”表示的數(shù)a,則不等式是2x+a>2,解不等式利用a表示出不等式的解集,則可以得到一個關于a的方程,求得a的值.
【解答】解:設“★”表示的數(shù)a,則不等式是2x+a>2,
移項,得2x>2﹣a,
則x> .
根據(jù)題意得: =﹣4,
解得:a=10.
故答案是:10.
【點評】主要考查了一元一次不等式組解集的求法,解答此題的關鍵是掌握不等式的性質(zhì),在不等式兩邊同加或同減一個數(shù)或式子,不等號的方向不變,在不等式兩邊同乘或同除一個正數(shù)或式子,不等號的方向不變在不等式兩邊同乘或同除一個負數(shù)或式子,不等號的方向改變.
13.一個工程隊計劃用6天完成300土方的工程,實際上第一天就完成了60方土,因進度需要,剩下的工程所用的時間不能超過3天,那么以后幾天平均至少要完成的土方數(shù)是80.
【考點】一元一次不等式的應用.
【分析】假設以后幾天平均每天完成x土方,一個工程隊規(guī)定要在6天內(nèi)完成300土方的工程,第一天完成了60土方,那么該土方工程還剩300﹣60=240土方,利用剩下的工程所用的時間不能超過3天,則列不等式方程 ≤3,解得x即可知以后平均每天至少完成多少土方.
【解答】解:設以后幾天平均每天完成x土方.
由題意得:3x≥300﹣60
解得:x≥80
答:以后幾天平均至少要完成的土方數(shù)是80土方.
故答案為:80.
【點評】此題主要考查了一元一次不等式的應用,解本類工程問題,主要是找準正確的工程不等式(如本題 ≤3以天數(shù)做為基準列不等式).
14.A、B兩地相距60km,甲騎自行車從A地到B地,出發(fā)1h后,乙騎摩托車從A地到B地,且乙比甲早到3h,已知甲、乙的速度之比為1:3,則甲的速度是10km/h.
【考點】分式方程的應用.
【分析】本題的等量關系是路程=速度×時間,根據(jù)“甲騎自行車從A地出發(fā)到B地,出發(fā)1h后,乙騎摩托車從A地到B地,且乙比甲早到3h”可知:甲比乙多用了4小時,可根據(jù)此條件列出方程求解.
【解答】解:設甲的速度為xkm/h,則乙的速度為3xkm/h,
依題意,有 +4,
解這個方程,得x=10,
經(jīng)檢驗,x=10是原方程的解,
當x=10時,3x=30.
答:甲的速度為10km/h,乙的速度為30km/h.
故答案為:10km/h
【點評】此題考查分式方程的應用問題,列分式方程解應用題與所有列方程解應用題一樣,重點在于準確地找出相等關系,這是列方程的依據(jù).
三.解答題:(請寫出主要的推導過程)
15.已知x= +1,y= ﹣1,求 的值.
【考點】分式的化簡求值;二次根式的化簡求值.
【分析】由條件可得x+y,x﹣y,xy的值,再把以上數(shù)值代入化簡的結果即可.
【解答】解:由題意得:x+y=2 ,x﹣y=2,xy=1,
原式=
=
=
=4 .
【點評】本題考查了含有二次根式的分式化簡求值,在其求值過程要注意:先把分式化簡后,再把分式中未知數(shù)對應的值代入求出分式的值,在化簡的過程中要注意運算順序和分式的化簡.化簡的最后結果分子、分母要進行約分,注意運算的結果要化成最簡分式或整式.
16.已知:2x+y+7的立方根是3,16的算術平方根是2x﹣y,求:
(1)x、y的值;
(2)x2+y2的平方根.
【考點】立方根;平方根;算術平方根.
【專題】計算題;實數(shù).
【分析】(1)利用立方根,算術平方根的定義求出x與y的值即可;
(2)把x與y的值代入原式,求出平方根即可.
【解答】解:(1)依題意 ,
解得: ;
(2)x2+y2=36+64=100,100的平方根是±10.
【點評】此題考查了立方根,平方根,以及算術平方根,熟練掌握各自的定義是解本題的關鍵.
17.某公司決定從廠家購進甲、乙兩種不同型號的顯示器共50臺,購進顯示器的總金額不超過77000元,已知甲、乙型號的顯示器價格分別為1000元/臺、2000元/臺.
(1)求該公司至少購買甲型顯示器多少臺?
(2)若要求甲型顯示器的臺數(shù)不超過乙型顯示器的臺數(shù),問有哪些購買方案?
【考點】一元一次不等式的應用.
【分析】(1)設該公司購進甲型顯示器x臺,則購進乙型顯示器(50﹣x)臺,根據(jù)兩種顯示器的總價不超過77000元建立不等式,求出其解即可;
(2)由甲型顯示器的臺數(shù)不超過乙型顯示器的臺數(shù)可以建立不等式x≤50﹣x與(1)的結論構成不等式組,求出其解即可.
【解答】解:(1)設該公司購進甲型顯示器x臺,則購進乙型顯示器(50﹣x)臺,由題意,得
1000x+2000(50﹣x)≤77000
解得:x≥23.
∴該公司至少購進甲型顯示器23臺.
(2)依題意可列不等式:
x≤50﹣x,
解得:x≤25.
∴23≤x≤25.
∵x為整數(shù),
∴x=23,24,25.
∴購買方案有:
、偌仔惋@示器23臺,乙型顯示器27臺;
、诩仔惋@示器24臺,乙型顯示器26臺;
、奂仔惋@示器25臺,乙型顯示器25臺.
【點評】本題考查了列一元一次不等式解實際問題的運用,一元一次不等式的解法的運用,方案設計的運用,解答時根據(jù)條件的不相等關系建立不等式是關鍵.
【初二數(shù)學上冊期末試卷】相關文章:
初二數(shù)學上冊小報內(nèi)容04-11
五年級數(shù)學上冊期末試卷07-22
關于初二數(shù)學上冊復習的同步訓練05-28
初二數(shù)學上冊知識點總結大全11-23
初二上冊數(shù)學期中試題08-23
初二物理期末試卷分析的總結11-26
蘇科版初二數(shù)學上冊知識點12-07
初一語文上冊期末試卷分析08-26