初一數(shù)學(xué)知識點(diǎn)歸納15篇
在現(xiàn)實(shí)學(xué)習(xí)生活中,很多人都經(jīng)常追著老師們要知識點(diǎn)吧,知識點(diǎn)也可以通俗的理解為重要的內(nèi)容。想要一份整理好的知識點(diǎn)嗎?下面是小編整理的初一數(shù)學(xué)知識點(diǎn)歸納,希望能夠幫助到大家。
初一數(shù)學(xué)知識點(diǎn)歸納1
普查:為了一定的目的而對考察對象進(jìn)行的全面調(diào)查.
總體:所要考察對象的.全體稱為總體
個休:組成總體的每一個考察對象稱為個體.
抽樣調(diào)查:從總體中抽取部分個體進(jìn)行調(diào)查.
樣本:總體中抽取的一部分個體叫做總體的一個樣本.
樣本容量:樣本中個體的數(shù)目.
頻數(shù):每個對象出現(xiàn)的次數(shù)
頻率:每個對象出現(xiàn)的次數(shù)與總次數(shù)的比值
初一數(shù)學(xué)知識點(diǎn)歸納2
一、同底數(shù)冪的乘法
(m,n都是整數(shù))是冪的運(yùn)算中最基本的法則,在應(yīng)用法則運(yùn)算時,要注意以下幾點(diǎn):
a)法則使用的前提條件是:冪的底數(shù)相同而且是相乘時,底數(shù)a可以是一個具體的數(shù)字式字母,也可以是一個單項(xiàng)或多項(xiàng)式;
b)指數(shù)是1時,不要誤以為沒有指數(shù);
c)不要將同底數(shù)冪的乘法與整式的加法相混淆,對乘法,只要底數(shù)相同指數(shù)就可以相加;而對于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;
二、冪的乘方與積的乘方
三、同底數(shù)冪的除法
(1)運(yùn)用法則的前提是底數(shù)相同,只有底數(shù)相同,才能用此法則
(2)底數(shù)可以是具體的數(shù),也可以是單項(xiàng)式或多項(xiàng)式
(3)指數(shù)相減指的是被除式的指數(shù)減去除式的指數(shù),要求差不為負(fù)
四、整式的乘法
1、單項(xiàng)式的概念:由數(shù)與字母的乘積構(gòu)成的代數(shù)式叫做單項(xiàng)式。單獨(dú)的一個數(shù)或一個字母也是單項(xiàng)式。單項(xiàng)式的數(shù)字因數(shù)叫做單項(xiàng)式的系數(shù),所有字母指數(shù)和叫單項(xiàng)式的次數(shù)。
如:bca22-的系數(shù)為2-,次數(shù)為4,單獨(dú)的一個非零數(shù)的次數(shù)是0。
2、多項(xiàng)式:幾個單項(xiàng)式的`和叫做多項(xiàng)式。多項(xiàng)式中每個單項(xiàng)式叫多項(xiàng)式的項(xiàng),次數(shù)項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù)。
五、平方差公式
表達(dá)式:(a+b)(a-b)=a^2-b^2,兩個數(shù)的和與這兩個數(shù)差的積,等于這兩個數(shù)的平方差,這個公式就叫做乘法的平方差公式
公式運(yùn)用
可用于某些分母含有根號的分式:
1/(3-4倍根號2)化簡:
六、完全平方公式
完全平方公式中常見錯誤有:
①漏下了一次項(xiàng)
、诨煜
、圻\(yùn)算結(jié)果中符號錯誤
、茏兪綉(yīng)用難于掌握。
七、整式的除法
1、單項(xiàng)式的除法法則
單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。
注意:首先確定結(jié)果的系數(shù)(即系數(shù)相除),然后同底數(shù)冪相除,如果只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。
初一數(shù)學(xué)知識點(diǎn)歸納3
7.1與三角形有關(guān)的線段
7.1.1三角形的邊
由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。相鄰兩邊組成的角,叫做三角形的內(nèi)角,簡稱三角形的角。
頂點(diǎn)是A、B、C的三角形,記作“△ABC”,讀作“三角形ABC”。
三角形兩邊的和大于第三邊。
7.1.2三角形的高、中線和角平分線
7.1.3三角形的.穩(wěn)定性
三角形具有穩(wěn)定性。
7.2與三角形有關(guān)的角
7.2.1三角形的內(nèi)角
三角形的內(nèi)角和等于180。
7.2.2三角形的外角
三角形的一邊與另一邊的延長線組成的角,叫做三角形的外角。
三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和。
三角形的一個外角大于與它不相鄰的任何一個內(nèi)角。
7.3多邊形及其內(nèi)角和
7.3.1多邊形
在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
連接多邊形不相鄰的兩個頂點(diǎn)的線段,叫做多邊形的對角線。
n邊形的對角線公式:
各個角都相等,各條邊都相等的多邊形叫做正多邊形。
7.3.2多邊形的內(nèi)角和
n邊形的內(nèi)角和公式:180(n-2)
多邊形的外角和等于360。
7.4課題學(xué)習(xí)鑲嵌
初一數(shù)學(xué)知識點(diǎn)歸納4
4.1 幾何圖形
1、幾何圖形:從形形色色的物體外形中得到的圖形叫做幾何圖形。
2、立體圖形:這些幾何圖形的各部分不都在同一個平面內(nèi)。
3、平面圖形:這些幾何圖形的各部分都在同一個平面內(nèi)。
4、雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯(lián)系的。
立體圖形中某些部分是平面圖形。
5、三視圖:從左面看,從正面看,從上面看
6、展開圖:有些立體圖形是由一些平面圖形圍成的,將它們的表面適當(dāng)剪開,可以展開成平面圖形。這樣的平面圖形稱為相應(yīng)立體圖形的展開圖。
7、⑴幾何體簡稱體;包圍著體的是面;面面相交形成線;線線相交形成點(diǎn);
、泣c(diǎn)無大小,線、面有曲直;
、菐缀螆D形都是由點(diǎn)、線、面、體組成的;
、赛c(diǎn)動成線,線動成面,面動成體;
、牲c(diǎn):是組成幾何圖形的基本元素。
4.2 直線、射線、線段
1、直線公理:經(jīng)過兩點(diǎn)有一條直線,并且只有一條直線。即:兩點(diǎn)確定一條直線。
2、當(dāng)兩條不同的直線有一個公共點(diǎn)時,我們就稱這兩條直線相交,這個公共點(diǎn)叫做它們的交點(diǎn)。
3、把一條線段分成相等的兩條線段的點(diǎn),叫做這條線段的中點(diǎn)。
4、線段公理:兩點(diǎn)的所有連線中,線段做短(兩點(diǎn)之間,線段最短)。
5、連接兩點(diǎn)間的線段的長度,叫做這兩點(diǎn)的距離。
6、直線的表示方法:如圖的直線可記作直線AB或記作直線m.
(1)用幾何語言描述右面的圖形,我們可以說:
點(diǎn)P在直線AB外,點(diǎn)A、B都在直線AB上.
(2)如圖,點(diǎn)O既在直線m上,又在直線n上,我們稱直線
m、n 相交,交點(diǎn)為O.
7、在直線上取點(diǎn)O,把直線分成兩個部分,去掉一邊的一個部分,保留點(diǎn)0和另一部分就得到一條射線,如圖就是一條射線,記作射線OM或記作射線
注意:射線有一個端點(diǎn),向一方無限延伸.
8、在直線上取兩個點(diǎn)A、B,把直線分成三個部分,去掉兩邊的部分,保留點(diǎn)A、B和中間的一部分就得到一條線段.如圖就是一條線段,記作線段AB或記作線段a.
注意:線段有兩個端點(diǎn).
4.3 角
1. 角的定義:有公共端點(diǎn)的兩條射線組成的圖形叫角。這個公共端點(diǎn)是角的頂點(diǎn),兩條射線為角的兩邊。如圖,角的頂點(diǎn)是O,兩邊分別是射線OA、OB.
2、角有以下的表示方法:
、 用三個大寫字母及符號“∠”表示.三個大寫字母分別是頂點(diǎn)和兩邊上的任意點(diǎn),頂點(diǎn)的'字母必須寫在中間.如上圖的角,可以記作∠AOB或∠BOA.
、 用一個大寫字母表示.這個字母就是頂點(diǎn).如上圖的角可記作∠O.當(dāng)有兩個或兩個以上的角是同一個頂點(diǎn)時,不能用一個大寫字母表示.
、 用一個數(shù)字或一個希臘字母表示.在角的內(nèi)部靠近角的頂點(diǎn)
處畫一弧線,寫上希臘字母或數(shù)字.如圖的兩個角,分別記作∠、∠1
2、以度、分、秒為單位的角的度量制,叫做角度制。角的度、分、秒是60進(jìn)制的。
1度=60分 1分=60秒 1周角=360度 1平角=180度
3、角的平分線:一般地,從一個角的頂點(diǎn)出發(fā),把這個角分成兩個相等的角的射線,叫做這個角的平分線。
4、如果兩個角的和等于90度(直角),就說這兩個叫互為余角,即其中每一個角是另一個角的余角;
如果兩個角的和等于180度(平角),就說這兩個叫互為補(bǔ)角,即其中每一個角是另一個角的補(bǔ)角。
5、同角(等角)的補(bǔ)角相等;同角(等角)的余角相等。
6、方位角:一般以正南正北為基準(zhǔn),描述物體運(yùn)動的方向。
初一數(shù)學(xué)知識點(diǎn)歸納5
本章的主要內(nèi)容是圖形的初步認(rèn)識,從生活周圍熟悉的物體入手,對物體的形狀的認(rèn)識從感性逐步上升到抽象的幾何圖形。通過從不同方向看立體圖形和展開立體圖形,初步認(rèn)識立體圖形與平面圖形的聯(lián)系。在此基礎(chǔ)上,認(rèn)識一些簡單的平面圖形直線、射線、線段和角。
一、目標(biāo)與要求
1.能從現(xiàn)實(shí)物體中抽象得出幾何圖形,正確區(qū)分立體圖形與平面圖形;能把一些立體圖形的問題,轉(zhuǎn)化為平面圖形進(jìn)行研究和處理,探索平面圖形與立體圖形之間的關(guān)系。
2.經(jīng)歷探索平面圖形與立體圖形之間的關(guān)系,發(fā)展空間觀念,培養(yǎng)提高觀察、分析、抽象、概括的.能力,培養(yǎng)動手操作能力,經(jīng)歷問題解決的過程,提高解決問題的能力。
3.積極參與教學(xué)活動過程,形成自覺、認(rèn)真的學(xué)習(xí)態(tài)度,培養(yǎng)敢于面對學(xué)習(xí)困難的精神,感受幾何圖形的美感;倡導(dǎo)自主學(xué)習(xí)和小組合作精神,在獨(dú)立思考的基礎(chǔ)上,能從小組交流中獲益,并對學(xué)習(xí)過程進(jìn)行正確評價,體會合作學(xué)習(xí)的重要性。
二、知識框架
三、難點(diǎn)
立體圖形與平面圖形之間的轉(zhuǎn)化是難點(diǎn);
探索點(diǎn)、線、面、體運(yùn)動變化后形成的圖形是難點(diǎn);
畫一條線段等于已知線段的尺規(guī)作圖方法,正確比較兩條線段長短是難點(diǎn)。
四、知識點(diǎn)、概念總結(jié)
1.幾何圖形:點(diǎn)、線、面、體這些可幫助人們有效的刻畫錯綜復(fù)雜的世界,它們都稱為幾何圖形。從實(shí)物中抽象出的各種圖形統(tǒng)稱為幾何圖形。有些幾何圖形的各部分不在同一平面內(nèi),叫做立體圖形。有些幾何圖形的各部分都在同一平面內(nèi),叫做平面圖形。雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯(lián)系的。
2.幾何圖形的分類:幾何圖形一般分為立體圖形和平面圖形。
13.角的種類:角的大小與邊的長短沒有關(guān)系;角的大小決定于角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。在動態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負(fù)角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。
銳角:大于0,小于90的角叫做銳角。
直角:等于90的角叫做直角。
鈍角:大于90而小于180的角叫做鈍角。
平角:等于180的角叫做平角。
優(yōu)角:大于180小于360叫優(yōu)角。
劣角:大于0小于180叫做劣角,銳角、直角、鈍角都是劣角。
周角:等于360的角叫做周角。
負(fù)角:按照順時針方向旋轉(zhuǎn)而成的角叫做負(fù)角。
正角:逆時針旋轉(zhuǎn)的角為正角。
0角:等于零度的角。
余角和補(bǔ)角:兩角之和為90則兩角互為余角,兩角之和為180則兩角互為補(bǔ)角。等角的余角相等,等角的補(bǔ)角相等。
對頂角:兩條直線相交后所得的只有一個公共頂點(diǎn)且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構(gòu)成兩對對頂角。互為對頂角的兩個角相等。
還有許多種角的關(guān)系,如內(nèi)錯角,同位角,同旁內(nèi)角(三線八角中,主要用來判斷平行)!
14.幾何圖形分類
(1)立體幾何圖形可以分為以下幾類:
第一類:柱體;
包括:圓柱和棱柱,棱柱又可分為直棱柱和斜棱柱,棱柱體按底面邊數(shù)的多少又可分為三棱柱、四棱柱、N棱柱;
棱柱體積統(tǒng)一等于底面面積乘以高,即V=SH,
第二類:錐體;
包括:圓錐體和棱錐體,棱錐分為三棱錐、四棱錐以及N棱錐;
棱錐體積統(tǒng)一為V=SH/3,
第三類:球體;
此分類只包含球一種幾何體,
體積公式V=4R3/3,
其他不常用分類:圓臺、棱臺、球冠等很少接觸到。
大多幾何體都由這些幾何體組成。
(2)平面幾何圖形如何分類
a.圓形
b.多邊形:三角形(分為一般三角形,直角三角形,等腰三角形,等邊三角形)、四邊形(分為不規(guī)則四邊形,體形,平行四邊形,平行四邊形又分:矩形,菱形,正方形)、五邊形、六
注:正方形既是矩形也是菱形
初一數(shù)學(xué)知識點(diǎn)歸納6
1.有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);不是有理數(shù);
(2)有理數(shù)的分類:①②
(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù);
a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0a是負(fù)數(shù)或0a是非正數(shù).
2.?dāng)?shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線.
3.相反數(shù):
(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;
(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;
(3)相反數(shù)的和為0a+b=0a、b互為相反數(shù).
4.絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的'意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;
(2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;
(3);;
(4)|a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a|·|b|=|a·b|,.
5.有理數(shù)比大。
(1)正數(shù)的絕對值越大,這個數(shù)越大;
。2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;
(3)正數(shù)大于一切負(fù)數(shù);
。4)兩個負(fù)數(shù)比大小,絕對值大的反而。
。5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;
。6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.
6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;倒數(shù)是本身的數(shù)是±1;若ab=1a、b互為倒數(shù);若ab=-1a、b互為負(fù)倒數(shù).
7.有理數(shù)加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
。2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數(shù)與0相加,仍得這個數(shù).
8.有理數(shù)加法的運(yùn)算律:
。1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).
9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).
10有理數(shù)乘法法則:
。1)兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘;
。2)任何數(shù)同零相乘都得零;
。3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負(fù)因式的個數(shù)決定.
11有理數(shù)乘法的運(yùn)算律:
。1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),.
13.有理數(shù)乘方的法則:
。1)正數(shù)的任何次冪都是正數(shù);
。2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時:(-a)n=-an或(a-b)n=-(b-a)n,當(dāng)n為正偶數(shù)時:(-a)n=an或(a-b)n=(b-a)n.
14.乘方的定義:
。1)求相同因式積的運(yùn)算,叫做乘方;
。2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
。3)a2是重要的非負(fù)數(shù),即a2≥0;若a2+|b|=0a=0,b=0;
(4)據(jù)規(guī)律底數(shù)的小數(shù)點(diǎn)移動一位,平方數(shù)的小數(shù)點(diǎn)移動二位.
15.科學(xué)記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法.
16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.
17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.
18.混合運(yùn)算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準(zhǔn)確,是數(shù)學(xué)計(jì)算的最重要的原則.
19.特殊值法:是用符合題目要求的數(shù)代入,并驗(yàn)證題設(shè)成立而進(jìn)行猜想的一種方法,但不能用于證明.
初一數(shù)學(xué)知識點(diǎn)歸納7
1.有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);π不是有理數(shù);
(2)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線。
3.相反數(shù):
(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;
(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;
4.絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;
(2)絕對值可表示為:
絕對值的.問題經(jīng)常分類討論;
(3)a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a|?|b|=|a?b|,5.有理數(shù)比大。(1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個負(fù)數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.
初一數(shù)學(xué)知識點(diǎn)歸納8
一、將考試的一些錯誤信息進(jìn)行分類
、龠z憾之錯
就是分明會做,反而做錯了的題。
比如說,“審題之錯”是由于審題出現(xiàn)失誤,看錯數(shù)字等造成的;“計(jì)算之錯”是由于計(jì)算出現(xiàn)差錯造成的;“抄寫之錯”是在草稿紙上做對了,往試卷上一抄就寫錯了、漏掉了;“表達(dá)之錯”是自己答案正確但與題目要求的表達(dá)不一致,如單位混用等。
、谒品侵e
理解的不夠透徹,應(yīng)用得不夠自如;回答不嚴(yán)密、不完整;第一遍做對了,一改反而改錯了;或第一遍做錯了,后來又改對了;一道題做到一半做不下去了等等。
③無為之錯
由于不會,因而答錯了或猜的,或者根本沒有答。這是無思路、不理解,更談不上應(yīng)用的問題。
一般情況下,這三類錯誤的比例是2:7:1,你也可以自己分析一下自己的三類錯誤比例。得出結(jié)論后,就知道問題出在哪里,要針對性進(jìn)行解決。
二、出現(xiàn)這些錯誤情況的原因
、俦粍訉W(xué)習(xí)
許多同學(xué)有很強(qiáng)的依賴或懶惰的心理,只是被動的跟隨老師的慣性運(yùn)轉(zhuǎn),沒有掌握學(xué)習(xí)的主動權(quán)。表現(xiàn)在不定計(jì)劃、坐等上課,課前沒有預(yù)習(xí),對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所有內(nèi)容。
②學(xué)不得法
老師上課一般都要講清知識點(diǎn)的來龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法。而一部分同學(xué)上課沒能專心聽課,對要點(diǎn)沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背。也有的晚上加班加點(diǎn),白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。
、鄄恢匾暬A(chǔ)
一些“自我感覺良好”的同學(xué),常輕視基本知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠(yuǎn),重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。
、軘(shù)學(xué)思維不夠?qū)拸V
有的同學(xué)不會對知識的深度、廣度,以及各章節(jié)進(jìn)行總結(jié),并融會貫通,不會“多角度”考慮,不會“概括”、“類比”、“聯(lián)想”、“抽象”等各種方法與思維。
⑤死記硬背,不能遷移知識
初中數(shù)學(xué)主要是以形象、通俗的語言方式進(jìn)行表達(dá)。有些同學(xué)建立了統(tǒng)一的思維模式,就只能機(jī)械的進(jìn)行操作,形成一種定勢方式。而不會加強(qiáng)知識的遷移,對一道題,要盡可能多想解法,多開動“腦筋”,使思維“活”起來。對一些相近的題,要善于總結(jié),形成“一法多題”。
三、科學(xué)的'學(xué)習(xí)方法
學(xué)生僅僅想學(xué)是不夠的,還必須“會學(xué)”,要講究科學(xué)的學(xué)習(xí)方法,提高學(xué)習(xí)效率,才能變被動為主動。
、倥囵B(yǎng)良好的學(xué)習(xí)習(xí)慣
良好的學(xué)習(xí)習(xí)慣包括制定計(jì)劃、課前自學(xué)、專心上課、及時復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面。
制定計(jì)劃明確學(xué)習(xí)目的。合理的學(xué)習(xí)計(jì)劃是推動主動學(xué)習(xí)和克服困難的內(nèi)在動力。既有長遠(yuǎn)打算,又有短期安排,執(zhí)行過程中嚴(yán)格要求自己,磨煉學(xué)習(xí)意志。
課前預(yù)習(xí)是取得較好學(xué)習(xí)效果的基礎(chǔ)。預(yù)習(xí)不能搞走過場,要講究質(zhì)量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點(diǎn),突破難點(diǎn),盡可能把問題解決在課堂上。
上課是理解和掌握基本知識、基本技能和基本方法的關(guān)鍵環(huán)節(jié)。上課專心聽重點(diǎn)難點(diǎn),把老師補(bǔ)充的內(nèi)容記錄下來,而不是全抄全錄,顧此失彼。
及時復(fù)習(xí)是提高效率學(xué)習(xí)的重要一環(huán)。通過反復(fù)閱讀教材,強(qiáng)化對基本概念知識體系的理解與記憶,將所學(xué)的新知識與有關(guān)舊知識聯(lián)系起來,進(jìn)行分析比較。
獨(dú)立作業(yè)是通過自己的獨(dú)立思考,靈活地分析問題、解決問題,進(jìn)一步加深對所有新知識的理解和對新技能的掌握過程。
解決疑難是指對獨(dú)立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點(diǎn)撥使思路暢通,補(bǔ)遺解答的過程。做錯的作業(yè)要再做一遍,對錯誤的地方?jīng)]弄清楚要反復(fù)思考。
系統(tǒng)小結(jié)是通過積極思考,達(dá)到全面系統(tǒng)深刻地掌握知識和發(fā)展認(rèn)識能力的重要環(huán)節(jié)。小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與資料,通過分析、綜合、類比、概括,提示知識間的內(nèi)在聯(lián)系,以達(dá)到所有知識融會貫通的目的。
課外學(xué)習(xí)包括閱讀課外書籍與報(bào)刊,課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補(bǔ)充和繼續(xù),它不僅能豐富同學(xué)們的文化科學(xué)知識,加深和鞏固課內(nèi)所學(xué)的知識,而且能夠滿足和發(fā)展我們的興趣愛好,培養(yǎng)獨(dú)立學(xué)習(xí)和工作的能力。
、谥刃驖u進(jìn),防止急躁
由于學(xué)生年齡較小,閱歷有限,有些學(xué)生容易急躁,有的同學(xué)貪多求快,有的同學(xué)想靠幾天“沖刺”一蹴而就,有的取得一點(diǎn)成績便洋洋自得,遇到挫折又一蹶不振。學(xué)習(xí)是一個長期的鞏固舊知識、發(fā)現(xiàn)新知識的積累過程,決非一朝一夕可以完成。學(xué)習(xí)是一項(xiàng)循序漸進(jìn)、長期積累的過程,要有恒心、決心,有一些拼搏的心,要防止急躁心里,才能取得最后的成功。
、垩芯繉W(xué)科特點(diǎn),尋找最佳學(xué)習(xí)方法
數(shù)學(xué)學(xué)科擔(dān)負(fù)著培養(yǎng)學(xué)生運(yùn)算能力、邏輯思維能力、空間想象能力,以及運(yùn)用所學(xué)知識分析問題、解決問題的能力的重任。它的特點(diǎn)是具有高度的抽象性、邏輯性和廣泛性,對能力要求較高。具體尋找方法因人而異,但學(xué)習(xí)的五個環(huán)節(jié):預(yù)習(xí)、上課、復(fù)習(xí)、作業(yè)、總結(jié)是少不了的。
、芏嘟涣、多反思解疑,化解分化點(diǎn)
多和同學(xué)交流,多向老師請教,多開展變式練習(xí),化解分化點(diǎn),以達(dá)到靈活掌握知識、運(yùn)用知識的目的。
只要學(xué)習(xí)科學(xué)方法,有恒心,有信心,有拼搏心,克服急躁心里,克服“小聰明”,多交流,多反思,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,就能順利度過學(xué)習(xí)適應(yīng)期,就能在今后的數(shù)學(xué)成績突飛猛進(jìn)。
四、學(xué)數(shù)學(xué)的幾個建議:
1、記數(shù)學(xué)筆記,特別是對概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,以及老師補(bǔ)充的課外知識。
2、建立數(shù)學(xué)糾錯本。
3、記憶數(shù)學(xué)規(guī)律和數(shù)學(xué)小結(jié)論。
4、與同學(xué)建立良好關(guān)系,爭做“小老師”,形成數(shù)學(xué)學(xué)習(xí)“互助組”。
5、增加數(shù)學(xué)課外閱讀,加大自學(xué)力度。
6、反復(fù)鞏固,消滅前學(xué)后忘。
7、學(xué)會總結(jié)歸類。
初一數(shù)學(xué)知識點(diǎn)歸納9
有理數(shù)的加法法則:
、磐杻蓴(shù)相加,取相同的符號,并把絕對值相加。
⑵絕對值不相等的'異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個數(shù)相加得0。
⑶一個數(shù)同0相加,仍得這個數(shù)。
兩個數(shù)相加,交換加數(shù)的位置,和不變。
加法交換律:a+b=b+a
三個數(shù)相加,先把前面兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。
加法結(jié)合律:(a+b)+c=a+(b+c)
初一數(shù)學(xué)知識點(diǎn)歸納10
七上第三章 整式及其加減
1.字母表示數(shù)
1)字母表示運(yùn)算律 2)字母表示計(jì)算公式
字母可以表示任何數(shù)
2.代數(shù)式
1)概念:像4+3(x-1),x+x+(x+1),a+b,ab,2(+n),s/t 等式子都是代數(shù)式,單獨(dú)一個數(shù)或一個字母也是代數(shù)式,如-5,a,b等.
2)書寫要求:①字母與字母相乘時,乘號通常簡寫作“ ”或省略不寫;數(shù)字與字母相乘時,數(shù)字在前;帶分?jǐn)?shù)與字母相乘時,應(yīng)先把帶分?jǐn)?shù)化成假分?jǐn)?shù)后再與字母相乘;數(shù)字與數(shù)字相乘仍用“×”.
、诔ㄒ话銓懗煞?jǐn)?shù)形式
、 如果代數(shù)式是積或商的形式,單位直接寫在后面;如果是和或差的形式,必須先把代數(shù)式用括號括起來再寫單位。
3.整式
1)單項(xiàng)式:表示數(shù)字和字母的積,單獨(dú)的一個數(shù)或一個字母也是單項(xiàng)式.
、 系數(shù):單項(xiàng)式中的數(shù)字因數(shù)(包括其前面的符號)
、 次數(shù):單項(xiàng)式中,所有字母的指數(shù)的和;單獨(dú)的'數(shù)字是0次單項(xiàng)式.
注意:(1)單項(xiàng)式中數(shù)與字母之間都是乘積關(guān)系,凡字母出現(xiàn)在分母中的式子一定不是單項(xiàng)式,如1/x不是單項(xiàng)式;(2)單項(xiàng)式中不含加減運(yùn)算;(3)π是常數(shù),在單項(xiàng)式中相當(dāng)于數(shù)字因數(shù);(4)定義中的“數(shù)”可以是小數(shù),也可以是分?jǐn)?shù)、整數(shù).
2)多項(xiàng)式:幾個單項(xiàng)式的和;在多項(xiàng)式中,每個單項(xiàng)式叫做多項(xiàng)式的項(xiàng),不含字母的項(xiàng)叫常數(shù)項(xiàng);一個多項(xiàng)式含有幾項(xiàng),就叫幾項(xiàng)式;
次數(shù): 多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù),是多項(xiàng)式的次數(shù);
注意:(1)確定多項(xiàng)式的項(xiàng)時,不要忽略它的符號;(2)關(guān)于某個字母的n次項(xiàng)式,要求是合并同類項(xiàng)后的最簡多項(xiàng)式.
3) 整式:單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式.
4)同類項(xiàng):① 概念:所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng);與它們的系數(shù)大小無關(guān),與字母順序無關(guān);幾個常數(shù)也是同類項(xiàng).
②合并同類項(xiàng)法則:同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變.
4.整式的加減:
1)整式加減是求幾個整式的和或差的運(yùn)算,其實(shí)質(zhì)是去括號,合并同類項(xiàng)
2)法則:幾個整式相加減,用括號把每一個整式括起來,再用加減號連接,然后去括號,合并同類項(xiàng).
3)化簡求值:一是相加減化簡,二是用具體數(shù)值代替整式中的字母,三是按式子的運(yùn)算關(guān)系計(jì)算,計(jì)算其結(jié)果.
5.探索與表達(dá)規(guī)律:圖形中的規(guī)律、數(shù)字中的規(guī)律、算式中的規(guī)律.
初一數(shù)學(xué)知識點(diǎn)歸納11
3.1 一元一次方程
1、方程是含有未知數(shù)的等式。
2、方程都只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程。
注意:判斷一個方程是否是一元一次方程要抓住三點(diǎn):
1)未知數(shù)所在的式子是整式(方程是整式方程);
2)化簡后方程中只含有一個未知數(shù);
3)經(jīng)整理后方程中未知數(shù)的次數(shù)是1.
3、解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程的解。
4、等式的性質(zhì):
1)等式兩邊同時加(或減)同一個數(shù)(或式子),結(jié)果仍相等;
2)等式兩邊同時乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等。
注意:運(yùn)用性質(zhì)時,一定要注意等號兩邊都要同時變;運(yùn)用性質(zhì)2時,一定要注意0這個數(shù).
3.2 、3.3解一元一次方程
在實(shí)際解方程的過程中,以下步驟不一定完全用上,有些步驟還需重復(fù)使用. 因此在解方程時還要注意以下幾點(diǎn):
、偃シ帜福涸诜匠虄蛇叾汲艘愿鞣帜傅淖钚」稊(shù),不要漏乘不含分母的項(xiàng);分子是一個整體,去分母后應(yīng)加上括號;去分母與分母化整是兩個概念,不能混淆;
、谌ダㄌ枺鹤駨南热バ±ㄌ,再去中括號,最后去大括號;不要漏乘括號的項(xiàng);不要弄錯符號;
、垡祈(xiàng):把含有未知數(shù)的項(xiàng)移到方程的一邊,其他項(xiàng)都移到方程的另一邊(移項(xiàng)要變符號) 移項(xiàng)要變號;
、芎喜⑼愴(xiàng):不要丟項(xiàng),解方程是同解變形,每一步都是一個方程,不能像計(jì)算或化簡題那樣寫能連等的形式;
、菹禂(shù)化為1::字母及其指數(shù)不變系數(shù)化成1,在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解。不要分子、分母搞顛倒。
3.4 實(shí)際問題與一元一次方程
一、概念梳理
、帕幸辉淮畏匠探鉀Q實(shí)際問題的一般步驟是:①審題,特別注意關(guān)鍵的字和詞的意義,弄清相關(guān)數(shù)量關(guān)系;②設(shè)出未知數(shù)(注意單位);③根據(jù)相等關(guān)系列出方程;④解這個方程;⑤檢驗(yàn)并寫出答案(包括單位名稱)。
、埔恍┕潭P椭械牡攘筷P(guān)系及典型例題參照一元一次方程應(yīng)用題專練學(xué)案。
二、思想方法(本單元常用到的數(shù)學(xué)思想方法小結(jié))
、沤K枷耄和ㄟ^對實(shí)際問題中的數(shù)量關(guān)系的分析,抽象成數(shù)學(xué)模型,建立一元一次方程的思想.
、品匠趟枷耄河梅匠探鉀Q實(shí)際問題的思想就是方程思想.
、腔瘹w思想:解一元一次方程的.過程,實(shí)質(zhì)上就是利用去分母、去括號、移項(xiàng)、合并同類項(xiàng)、未知數(shù)的系數(shù)化為1等各種同解變形,不斷地用新的更簡單的方程來代替原來的方程,最后逐步把方程轉(zhuǎn)化為x=a的形式. 體現(xiàn)了化“未知”為“已知”的化歸思想.
、葦(shù)形結(jié)合思想:在列方程解決問題時,借助于線段示意圖和圖表等來分析數(shù)量關(guān)系,使問題中的數(shù)量關(guān)系很直觀地展示出來,體現(xiàn)了數(shù)形結(jié)合的優(yōu)越性.
、煞诸愃枷耄涸诮夂帜赶禂(shù)的方程和含絕對值符號的方程過程中往往需要分類討論,在解有關(guān)方案設(shè)計(jì)的實(shí)際問題的過程中往往也要注意分類思想在過程中的運(yùn)用.
三、數(shù)學(xué)思想方法的學(xué)習(xí)
1. 解一元一次方程時,要明確每一步過程都作什么變形,應(yīng)該注意什么問題.
2. 尋找實(shí)際問題的數(shù)量關(guān)系時,要善于借助直觀分析法,如表格法,直線分析法和圖示分析法等.
3. 列方程解應(yīng)用題的檢驗(yàn)包括兩個方面:⑴檢驗(yàn)求得的結(jié)果是不是方程的解;
、剖且袛喾匠痰慕馐欠穹项}目中的實(shí)際意義.
四、應(yīng)用(常見等量關(guān)系)
行程問題:s=v×t
工程問題:工作總量=工作效率×?xí)r間
盈虧問題:利潤=售價-成本
利率=利潤÷成本×100%
售價=標(biāo)價×折扣數(shù)×10%
儲蓄利潤問題:利息=本金×利率×?xí)r間
本息和=本金+利息
初一數(shù)學(xué)知識點(diǎn)歸納12
1.有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);π不是有理數(shù);
(2)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的.一條直線.
3.相反數(shù):
(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;
(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;
4.絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;
(2)絕對值可表示為:
絕對值的問題經(jīng)常分類討論;
(3)a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a|?|b|=|a?b|,
5.有理數(shù)比大小:(1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個負(fù)數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.
初一數(shù)學(xué)知識點(diǎn)歸納13
【知識點(diǎn)一】實(shí)數(shù)的分類
1、按定義分類: 2.按性質(zhì)符號分類:
注:0既不是正數(shù)也不是負(fù)數(shù).
【知識點(diǎn)二】實(shí)數(shù)的相關(guān)概念
1.相反數(shù)
(1)代數(shù)意義:只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù).0的相反數(shù)是0.
(2)幾何意義:在數(shù)軸上原點(diǎn)的兩側(cè),與原點(diǎn)距離相等的兩個點(diǎn)表示的兩個數(shù)互為相反數(shù),或數(shù)軸上,互為相反數(shù)的兩個數(shù)所對應(yīng)的點(diǎn)關(guān)于原點(diǎn)對稱.
(3)互為相反數(shù)的兩個數(shù)之和等于0.a、b互為相反數(shù) a+b=0.
2.絕對值 |a|0.
3.倒數(shù) (1)0沒有倒數(shù) (2)乘積是1的兩個數(shù)互為倒數(shù).a、b互為倒數(shù) .
4.平方根
(1)如果一個數(shù)的平方等于a,這個數(shù)就叫做a的平方根.一個正數(shù)有兩個平方根,它們互為相反數(shù);0有一個平方根,它是0本身;負(fù)數(shù)沒有平方根.a(a0)的平方根記作.
(2)一個正數(shù)a的正的平方根,叫做a的算術(shù)平方根.a(a0)的算術(shù)平方根記作 .
5.立方根
如果x3=a,那么x叫做a的立方根.一個正數(shù)有一個正的立方根;一個負(fù)數(shù)有一個負(fù)的立方根;零的`立方根是零.
【知識點(diǎn)三】實(shí)數(shù)與數(shù)軸
數(shù)軸定義: 規(guī)定了原點(diǎn),正方向和單位長度的直線叫做數(shù)軸,數(shù)軸的三要素缺一不可.
【知識點(diǎn)四】實(shí)數(shù)大小的比較
1.對于數(shù)軸上的任意兩個點(diǎn),靠右邊的點(diǎn)所表示的數(shù)較大.
2.正數(shù)都大于0,負(fù)數(shù)都小于0,兩個正數(shù),絕對值較大的那個正數(shù)大;兩個負(fù)數(shù);絕對值大的反而小.
3.無理數(shù)的比較大。
【知識點(diǎn)五】實(shí)數(shù)的運(yùn)算
1.加法
同號兩數(shù)相加,取相同的符號,并把絕對值相加;絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;互為相反數(shù)的兩個數(shù)相加得0;一個數(shù)同0相加,仍得這個數(shù).
2.減法:減去一個數(shù)等于加上這個數(shù)的相反數(shù).
3.乘法
幾個非零實(shí)數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有偶數(shù)個時,積為正;當(dāng)負(fù)因數(shù)有奇數(shù)個時,積為負(fù).幾個數(shù)相乘,有一個因數(shù)為0,積就為0.
4.除法
除以一個數(shù),等于乘上這個數(shù)的倒數(shù).兩個數(shù)相除,同號得正,異號得負(fù),并把絕對值相除.0除以任何一個不等于0的數(shù)都得0.
5.乘方與開方
(1)an所表示的意義是n個a相乘,正數(shù)的任何次冪是正數(shù),負(fù)數(shù)的偶次冪是正數(shù),負(fù)數(shù)的奇次冪是負(fù)數(shù).
(2)正數(shù)和0可以開平方,負(fù)數(shù)不能開平方;正數(shù)、負(fù)數(shù)和0都可以開立方.
(3)零指數(shù)與負(fù)指數(shù)
【知識點(diǎn)六】有效數(shù)字和科學(xué)記數(shù)法
1.有效數(shù)字:
一個近似數(shù),從左邊第一個不是0的數(shù)字起,到精確到的數(shù)位為止,所有的數(shù)字,都叫做這個近似數(shù)的有效數(shù)字.
2.科學(xué)記數(shù)法:
把一個數(shù)用 (110,n為整數(shù))的形式記數(shù)的方法叫科學(xué)記數(shù)法.
有了上文梳理的人教版數(shù)學(xué)期中考試知識點(diǎn)匯總(2),相信大家對考試充滿了信心,同時預(yù)祝大家考試取得好成績。
初一數(shù)學(xué)知識點(diǎn)歸納14
1、三角形的分類
三角形按邊的關(guān)系分類如下:
三角形包括不等邊三角形和等腰三角形
等腰三角形 包括底和腰不相等的等腰三角形和等邊三角形
三角形按角的關(guān)系分類如下:
三角形包括 直角三角形(有一個角為直角的三角形)和斜三角形
斜三角形 包括 銳角三角形(三個角都是銳角的三角形)和 鈍角三角形(有一個角為鈍 角的三角形)
把邊和角聯(lián)系在一起,我們又有一種特殊的三角形:等腰直角三角形。它是兩條直角邊相等的直角三角形。
2、三角形的三邊關(guān)系定理及推論
(1)三角形三邊關(guān)系定理:三角形的兩邊之和大于第三邊。
推論:三角形的兩邊之差小于第三邊。
3、三角形的內(nèi)角和定理及推論
三角形的內(nèi)角和定理:三角形三個內(nèi)角和等于180°。
推論:
、僦苯侨切蔚膬蓚銳角互余。
、谌切蔚囊粋外角等于和它不相鄰的來兩個內(nèi)角的和。
、廴切蔚囊粋外角大于任何一個和它不相鄰的內(nèi)角。
注:在同一個三角形中:等角對等邊;等邊對等角;大角對大邊;大邊對大角。
4、三角形的面積
三角形的面積=×底×高
全等三角形
1、全等三角形的概念
能夠完全重合的兩個三角形叫做全等三角形。。
2、三角形全等的判定
三角形全等的判定定理:
(1)邊角邊定理:有兩邊和它們的夾角對應(yīng)相等的'兩個三角形全等(可簡寫成“邊角邊”或“SAS”)
(2)角邊角定理:有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等(可簡寫成“角邊角”或“ASA”)
(3)邊邊邊定理:有三邊對應(yīng)相等的兩個三角形全等(可簡寫成“邊邊邊”或“SSS”)。
直角三角形全等的判定:
對于特殊的直角三角形,判定它們?nèi)葧r,還有HL定理(斜邊、直角邊定理):有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等(可簡寫成“斜邊、直角邊”或“HL”)
3、全等變換
只改變圖形的位置,不改變其形狀大小的圖形變換叫做全等變換。
全等變換包括一下三種:
(1)平移變換:把圖形沿某條直線平行移動的變換叫做平移變換。
(2)對稱變換:將圖形沿某直線翻折180°,這種變換叫做對稱變換。
(3)旋轉(zhuǎn)變換:將圖形繞某點(diǎn)旋轉(zhuǎn)一定的角度到另一個位置,這種變換叫做旋轉(zhuǎn)變換。
等腰三角形
1、等腰三角形的性質(zhì)
(1)等腰三角形的性質(zhì)定理及推論:
定理:等腰三角形的兩個底角相等(簡稱:等邊對等角)
推論1:等腰三角形頂角平分線平分底邊并且垂直于底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。
推論2:等邊三角形的各個角都相等,并且每個角都等于60°。
2、三角形中的中位線
連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。
(1)三角形共有三條中位線,并且它們又重新構(gòu)成一個新的三角形。
(2)要會區(qū)別三角形中線與中位線。
三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半。
三角形中位線定理的作用:
位置關(guān)系:可以證明兩條直線平行。
數(shù)量關(guān)系:可以證明線段的倍分關(guān)系。
常用結(jié)論:任一個三角形都有三條中位線,由此有:
結(jié)論1:三條中位線組成一個三角形,其周長為原三角形周長的一半。
結(jié)論2:三條中位線將原三角形分割成四個全等的三角形。
結(jié)論3:三條中位線將原三角形劃分出三個面積相等的平行四邊形。
結(jié)論4:三角形一條中線和與它相交的中位線互相平分。
結(jié)論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形的頂角相等。
初一數(shù)學(xué)知識點(diǎn)歸納15
1、某工作,甲單獨(dú)干需用15小時完成,乙單獨(dú)干需用12小時完成,若甲先干1小時、乙又單獨(dú)干4小時,剩下的.工作兩人合作,問:再用幾小時可全部完成任務(wù)?
2、某工廠計(jì)劃26小時生產(chǎn)一批零件,后因每小時多生產(chǎn)5件,用24小時,不但完成了任務(wù),而且還比原計(jì)劃多生產(chǎn)了60件,問原計(jì)劃生產(chǎn)多少零件?
3、某高校共有5個大餐廳和2個小餐廳.經(jīng)過測試:同時開放1個大餐廳、2個小餐廳,可供1680名學(xué)生就餐;同時開放2個大餐廳、1個小餐廳,可供2280名學(xué)生就餐.
(1)求1個大餐廳、1個小餐廳分別可供多少名學(xué)生就餐;
(2)若7個餐廳同時開放,能否供全校的5300名學(xué)生就餐?請說明理由.
4、甲乙兩件衣服的成本共500元,商店老板為獲取利潤,決定將家服裝按50%的利潤定價,乙服裝按40%的利潤定價,在實(shí)際銷售時,應(yīng)顧客要求,兩件服裝均按9折出售,這樣商店共獲利157元,求甲乙兩件服裝成本各是多少元?
【初一數(shù)學(xué)知識點(diǎn)歸納】相關(guān)文章:
初一數(shù)學(xué)知識點(diǎn)歸納12-27
(合集)初一數(shù)學(xué)知識點(diǎn)歸納08-17
【薦】初一數(shù)學(xué)知識點(diǎn)歸納08-02
初一數(shù)學(xué)知識點(diǎn)歸納【實(shí)用】08-18
[合集]初一數(shù)學(xué)知識點(diǎn)歸納07-27
[熱門]初一數(shù)學(xué)知識點(diǎn)歸納08-04