高考數(shù)學(xué)立體幾何知識(shí)點(diǎn)
立體幾何生是高考教學(xué)中的重點(diǎn),同時(shí)也是高考試卷中的必考題目。今天小編就為大家整理了高考數(shù)學(xué)立體幾何知識(shí)點(diǎn),供大家參考。
高考數(shù)學(xué)立體幾何知識(shí)點(diǎn) 篇1
(1)棱柱:
定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱
幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐
幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
(3)棱臺(tái):
定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等
表示:用各頂點(diǎn)字母,如五棱臺(tái)
幾何特征:
、偕舷碌酌媸窍嗨频钠叫卸噙呅
②側(cè)面是梯形
、蹅(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體
幾何特征:
①底面是全等的圓;
、谀妇與軸平行;
③軸與底面圓的半徑垂直;
、軅(cè)面展開(kāi)圖是一個(gè)矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體
幾何特征:
①底面是一個(gè)圓;
、谀妇交于圓錐的頂點(diǎn);
、蹅(cè)面展開(kāi)圖是一個(gè)扇形。
(6)圓臺(tái):
定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:
①上下底面是兩個(gè)圓;
、趥(cè)面母線交于原圓錐的頂點(diǎn);
、蹅(cè)面展開(kāi)圖是一個(gè)弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:
①球的截面是圓;
、谇蛎嫔先我庖稽c(diǎn)到球心的距離等于半徑。
高考數(shù)學(xué)立體幾何知識(shí)點(diǎn) 篇2
1.有關(guān)平行與垂直(線線、線面及面面)的問(wèn)題,是在解決立體幾何問(wèn)題的過(guò)程中,大量的'、反復(fù)遇到的,而且是以各種各樣的問(wèn)題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,高二,首先應(yīng)從解決平行與垂直的有關(guān)問(wèn)題著手,通過(guò)較為基本問(wèn)題,熟悉公理、定理的內(nèi)容和功能,通過(guò)對(duì)問(wèn)題的分析與概括,掌握立體幾何中解決問(wèn)題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。
2.判定兩個(gè)平面平行的方法:
(1)根據(jù)定義--證明兩平面沒(méi)有公共點(diǎn);
(2)判定定理--證明一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面;
(3)證明兩平面同垂直于一條直線。
3.兩個(gè)平面平行的主要性質(zhì):
、庞啥x知:兩平行平面沒(méi)有公共點(diǎn)。
、朴啥x推得:兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面。
、莾蓚(gè)平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行。
、纫粭l直線垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面。
、蓨A在兩個(gè)平行平面間的平行線段相等。
、式(jīng)過(guò)平面外一點(diǎn)只有一個(gè)平面和已知平面平行。
以上性質(zhì)⑵、⑷、⑸、⑹在課文中雖未直接列為性質(zhì)定理,但在解題過(guò)程中均可直接作為性質(zhì)定理引用。
【高考數(shù)學(xué)立體幾何知識(shí)點(diǎn)】相關(guān)文章:
高考數(shù)學(xué)立體幾何的知識(shí)點(diǎn)09-22
數(shù)學(xué)立體幾何知識(shí)點(diǎn)08-01
高考數(shù)學(xué)《立體幾何》第一輪復(fù)習(xí)知識(shí)點(diǎn)09-18
高考數(shù)學(xué)二輪復(fù)習(xí)《立體幾何》的知識(shí)點(diǎn)09-15
立體幾何高考數(shù)學(xué)第一輪復(fù)習(xí)知識(shí)點(diǎn)09-14
高考數(shù)學(xué)一輪復(fù)習(xí)立體幾何的知識(shí)點(diǎn)09-11
2018廣東高考數(shù)學(xué)立體幾何復(fù)習(xí)試題08-29