- 相關(guān)推薦
關(guān)于淺談C語(yǔ)言函數(shù)調(diào)用參數(shù)壓棧的相關(guān)問(wèn)題
參數(shù)入棧的順序
以前在面試中被人問(wèn)到這樣的問(wèn)題,函數(shù)調(diào)用的時(shí)候,參數(shù)入棧的順序是從左向右,還是從右向左。參數(shù)的入棧順序主要看調(diào)用方式,一般來(lái)說(shuō),__cdecl 和__stdcall 都是參數(shù)從右到左入棧。
看下面的代碼:
#includeint test(int a, int b){ printf("address of a %x.n", &a); printf("address of b %x.n", &b); return 0;}int main(){ test(1, 2); return 0;}
在64位Ubuntu的系統(tǒng)下的運(yùn)行結(jié)果是:
address of a 1ec62c. address of b 1ec628.
32位Ubuntu的結(jié)果是:
address of a bfd03290. address of b bfd03294.
可以看出,首先,不同的體系結(jié)構(gòu),棧增長(zhǎng)的方向也不同,有的是從低地址向高地址方向增長(zhǎng),有的是從高地址向低地址方向增長(zhǎng)。
可以用以下的代碼來(lái)判斷棧的增長(zhǎng)方向:
typedef enum { LOW_TO_HIGH, HIGH_TO_LOW, LEFT_TO_RIGHT, RIGHT_TO_LEFT,}stack_direc_t;int stack_grow_direc(){ static char *p = NULL; char c; if (p == NULL) { p = &c; stack_grow_direc(); } else { printf("First in stack address is %x.n", p); printf("Second in stack address is %x.n", &c); if (&c > p) { printf("Stack grows from low address to high address!n"); return LOW_TO_HIGH; } else { printf("Stack grows from high address to low address!n"); return HIGH_TO_LOW; } }}
函數(shù)調(diào)用時(shí)棧里都有什么
以參數(shù)從左到右入棧為例:
push arg0 -- High Addresspush arg1...push argnpush eippush ebp -- Low address
32位系統(tǒng)和64位系統(tǒng)函數(shù)調(diào)用時(shí),參數(shù)入棧方式有不同么?
這個(gè)問(wèn)題在不久之前被人問(wèn)題,當(dāng)時(shí)傻了,我一直以來(lái)只關(guān)注過(guò)32位系統(tǒng)的參數(shù)入棧方式,一直以為64位系統(tǒng)也是一樣,沒(méi)有什么不同,現(xiàn)在歸納起來(lái)有兩點(diǎn):
64位系統(tǒng)先把傳入?yún)?shù)放在寄存器里面,在被調(diào)函數(shù)的具體實(shí)現(xiàn)中把寄存器的值入棧,然后再去棧中取參數(shù)
64位系統(tǒng)棧中參數(shù)存放的順序是從左至右的(因?yàn)橄冉?jīng)歷了寄存器傳值)
看下面的反匯編:
C代碼同上面一樣Ubuntu 32位反匯編:int main(){ 804846d: 55 push %ebp 804846e: 89 e5 mov %esp,%ebp 8048470: 83 e4 f0 and $0xfffffff0,%esp 8048473: 83 ec 10 sub $0x10,%esp test(1, 2); 8048476: c7 44 24 04 02 00 00 movl $0x2,0x4(%esp) 804847d: 00 804847e: c7 04 24 01 00 00 00 movl $0x1,(%esp) 8048485: e8 8a ff ff ff call 8048414return 0; 804848a: b8 00 00 00 00 mov $0x0,%eax}int test(int a, int b){ 8048414: 55 push %ebp 8048415: 89 e5 mov %esp,%ebp 8048417: 83 ec 18 sub $0x18,%esp printf("address of a %x.n", &a); 804841a: b8 60 85 04 08 mov $0x8048560,%eax 804841f: 8d 55 08 lea 0x8(%ebp),%edx 8048422: 89 54 24 04 mov %edx,0x4(%esp) 8048426: 89 04 24 mov %eax,(%esp) 8048429: e8 12 ff ff ff call 8048340return 0; 8048466: b8 00 00 00 00 mov $0x0,%eax}Ubuntu 64位反匯編:int main(){ 40056e: 55 push %rbp 40056f: 48 89 e5 mov %rsp,%rbp test(1, 2); 400572: be 02 00 00 00 mov $0x2,%esi 400577: bf 01 00 00 00 mov $0x1,%edi 40057c: e8 ac ff ff ff callq 40052dreturn 0; 400581: b8 00 00 00 00 mov $0x0,%eax}int test(int a, int b){ 40052d: 55 push %rbp 40052e: 48 89 e5 mov %rsp,%rbp 400531: 48 83 ec 10 sub $0x10,%rsp 400535: 89 7d fc mov %edi,-0x4(%rbp) 400538: 89 75 f8 mov %esi,-0x8(%rbp) printf("address of a %x.n", &a); 40053b: 48 8d 45 fc lea -0x4(%rbp),%rax 40053f: 48 89 c6 mov %rax,%rsi 400542: bf 14 06 40 00 mov $0x400614,%edi 400547: b8 00 00 00 00 mov $0x0,%eax 40054c: e8 bf fe ff ff callq 400410return 0; 400567: b8 00 00 00 00 mov $0x0,%eax}
看32位的ubuntu操作系統(tǒng), 8048476: 的確是把參數(shù)直接入棧,2先入棧,1后入棧。
8048476: c7 44 24 04 02 00 00 movl $0x2,0x4(%esp) 804847d: 00 804847e: c7 04 24 01 00 00 00 movl $0x1,(%esp) 8048485: e8 8a ff ff ff call 8048414
再來(lái)看64位的ubuntu操作系統(tǒng),2 和1根本就沒(méi)有放入到棧中,而是放到了寄存器esi和edi中。
40056f: 48 89 e5 mov %rsp,%rbp test(1, 2); 400572: be 02 00 00 00 mov $0x2,%esi 400577: bf 01 00 00 00 mov $0x1,%edi 40057c: e8 ac ff ff ff callq 40052d
再來(lái)看64位系統(tǒng)test的實(shí)現(xiàn),先把edi入棧,再把esi入棧,這就是為什么函數(shù)看起來(lái)像是從左到右入棧的原因了。
40052d: 55 push %rbp40052e: 48 89 e5 mov %rsp,%rbp400531: 48 83 ec 10 sub $0x10,%rsp400535: 89 7d fc mov %edi,-0x4(%rbp)400538: 89 75 f8 mov %esi,-0x8(%rbp)
【淺談C語(yǔ)言函數(shù)調(diào)用參數(shù)壓棧的相關(guān)問(wèn)題】相關(guān)文章:
C語(yǔ)言函數(shù)參數(shù)傳遞問(wèn)題10-17
C語(yǔ)言函數(shù)的遞歸調(diào)用08-26
C語(yǔ)言函數(shù)的遞歸和調(diào)用08-22
Java程序調(diào)用C/C++語(yǔ)言函數(shù)的方法07-31
java調(diào)用c函數(shù)的實(shí)例09-16
C語(yǔ)言程序的可讀性和函數(shù)的調(diào)用09-09