- 相關推薦
導數的幾何意義精選教案
學習目標
掌握切線斜率由割線斜率的無限逼近而得,掌握切線斜率的求法
學習重點
。1)能體會曲線上一點附近的“局部以直代曲”的核心思想方法;
(2)會求曲線上一點處的切線斜率.
學習難點
(1)能體會曲線上一點附近的“局部以直代曲”的核心思想方法;
(2)會求曲線上一點處的切線斜率.
學法指導
探析歸納,講練結合
學習過程
一 自 主 學 習
1.情境:設 是曲線上的一點,將點 附近的曲線放大、再放大,則點 附近將逼近一條確定
的直線 .
2.問題:怎樣找到在曲線上的一點 處最逼曲線的直線 呢?
如上圖直線 為經過曲線上一點 的兩條直線.
(1)判斷哪一條直線在點 附近更加逼近曲線.
。2)在點 附近能作出一條比 更加逼近曲線
的直線 嗎?
。3)在點 附近能作出一條比 更加逼近曲線的直線 嗎?
3.歸納
。1).割線及其斜率:連結曲線 上的兩點的直線 叫曲線 的割線,
設曲線 上的一點 ,過點 的一條割線交曲線 于另一點 ,則割線 的斜率為
。
(2). 切線的定義:隨著點 沿著曲線 向點 運動,割線 在點 附近越來越逼近曲線 。當點 無限逼近點 時,直線 最終就成為在點 處最逼近曲線的直線 ,這條直線 也稱為曲線在點 處的切線;
。3). 切線的斜率:當點 沿著曲線 向點 運動,并無限靠近點 時,割線 逼近點 處的切線 ,從而割線的斜率逼近切線 的斜率,即當 無限趨近于 時, 無限趨近于點 處的切線的斜率.
二 師 生 互動
例1.已知曲線 ,
。1)判斷曲線 在點 處是否有切線,如果有,求切線的斜率,然后寫出切線的方程.
(2)求曲線 在 處的切線斜率。
分析:(1)若 是曲線 上點 附近的一點,當 沿著曲線 無限接近點 時,割線 的斜率是否無限接近于一個常數.若有,則這個常數是曲線 在點 處的切線的斜率;(2)為求得過點 的切線斜率,我們從經過點 的任意一點直線(割線)入手。
例2.已知 ,求曲線 在 處的切線的斜率.
分析:為了求過點 的切線的斜率,要從經過點 的任意一條割線入手.
例3.已知曲線方程 ,求曲線在 處的切線方程.
三、自我檢測
練習 第 1,2,3題;
習題2-2A組中 第 3題
四、課堂反思
1、這節(jié)課我們學到哪些知識?學到什么新的方法?
2、你覺得哪些知識 ,哪些知識 還需要課后繼續(xù)加深理解?
五、拓展提高
1、補充:判斷曲線 在點 處是否有切線?如果有,求出切線的方程. 2、習題2-2中B組 1、2
【導數的幾何意義教案】相關文章:
憶讀書的導學案及教案08-27
《比例的意義》教學實錄_《比例的意義》優(yōu)秀教案比例的意義優(yōu)質教案07-25
小數的意義教案05-06
《比例的意義》教案07-14
分數的意義教案08-05
小數的意義教案10-26
語文談生命導學教案09-16
《談生命》導學教案范本08-13
《分數的意義》教案范文10-18
概率的意義教學教案08-06