亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

教學(xué)計劃

初三上冊數(shù)學(xué)教學(xué)工作計劃

時間:2024-08-15 19:53:47 教學(xué)計劃 我要投稿

初三上冊數(shù)學(xué)教學(xué)工作計劃四篇

  人生天地之間,若白駒過隙,忽然而已,又迎來了一個全新的起點,是時候開始制定計劃了。什么樣的計劃才是好的計劃呢?以下是小編為大家整理的初三上冊數(shù)學(xué)教學(xué)工作計劃4篇,希望對大家有所幫助。

初三上冊數(shù)學(xué)教學(xué)工作計劃四篇

初三上冊數(shù)學(xué)教學(xué)工作計劃 篇1

  學(xué)習(xí)目標

  1、進一步認識建立方程模型的作用,提高數(shù)學(xué)的應(yīng)用意識

  2、在用方程解決實際問題的過程中,提高抽象、概括、分析問題的能力

  學(xué)習(xí)重、難點

  重點:用一元二次方程解決實際問題

  難點:正確尋找等量關(guān)系

  學(xué)習(xí)過程:

  一、情境創(chuàng)設(shè)

  一根長22cm的鐵絲。

  (1)能否圍成面積是30cm2的矩形?

  (2)能否圍成面積是32 cm2的矩形?并說明理由。

  二、探索活動

  分析情境問題可知:如果設(shè)這根鐵絲圍成的矩形的長是xcm,那么矩形的寬是

  ____________。根據(jù)相等關(guān)系:矩形的長×矩形的寬=矩形的面積,可以列出方程求解。

  思考:這根鐵絲圍成的矩形中,面積最大是多少?

  三、例題教學(xué)

  例 1 如圖,在矩形ABCD中,AB=6,BC=12,點P從

  點A沿AB向點B 以1/s的速度移動;同時,點Q從點B沿邊BC

  向點C以2/s的速度移動,問幾秒后△PBQ的面積等于82?

  分析:題中含有等量關(guān)系:S△PBQ =82,只要用點P運動的時間

  來表示三角形各邊的長并代入等量關(guān)系式即可得到相應(yīng)的方程。

  例 2 如圖,在矩形ABCD中,AB=6cm,

  BC=3cm。點P沿邊AB從點A開始向點B以2cm/s

  的`速度移動,點Q沿邊DA從點D開始向點A以1cm/s

  的速度移動。如果P、Q同時出發(fā),用t(s)表示移動的時間(0≤t≤3)那么,當t為何值時,△QAP的面積等于2cm2?

  四、課堂練習(xí)

  1、P98 練習(xí)

  2、思維拓展:

  如圖,有100m長的籬笆材料,要圍成一矩形倉庫,

  要求面積不小于600m2,在場地的北面有一堵50m的舊墻,

  有人用這個籬笆圍成一個長40m,寬10m的倉庫,但面積

  只有40×10m2,不合要求,問應(yīng)如何設(shè)計矩形的長與寬才能符合要求呢?

  五、課堂小結(jié)

  如何正確尋找實際問題中的等量關(guān)系?

  六、作業(yè)

  后進生:P98 練習(xí) P99 習(xí)題4.3 6 優(yōu)生:P99 習(xí)題4.3 6、7、8

初三上冊數(shù)學(xué)教學(xué)工作計劃 篇2

  一、指導(dǎo)思想:

  九年級數(shù)學(xué)以黨和國家的教育教學(xué)此文轉(zhuǎn)自方針為指導(dǎo),按照九年義務(wù)教育數(shù)學(xué)課程標準來實施的,其目的是教書育人,使每個學(xué)都能夠在此數(shù)學(xué)學(xué)習(xí)過程中獲得最適合自已發(fā)展的廣泛空間。通過九年級數(shù)學(xué)的教學(xué),提供進一步學(xué)習(xí)所必需的.數(shù)學(xué)基礎(chǔ)知識與基本技能,進一步培養(yǎng)學(xué)生的運算能力、思維級力和空間想象能力,能夠運用所學(xué)知識解決簡樸的實際問題,培養(yǎng)學(xué)生手數(shù)學(xué)創(chuàng)新意識,良好個性品質(zhì)以及初步的唯物主義觀。

  二、教學(xué)內(nèi)容

  本學(xué)期所教九年級數(shù)學(xué)包括第一章《一元二次方程》,第二章《定義命題公理與證實》,第三章《相似形》,第四章《解直角三角形》。第五章《概率的計算》。

  三、教學(xué)目標

  知識技能目標:會解一元二次方程:理解定義命題公理并學(xué)會運用:掌握相似形的相關(guān)知識及運用;會解直解三角形,掌握概率的初步計算方法。

  過程方法目標:培養(yǎng)學(xué)生的觀察、探究、推理、歸納的能力,發(fā)展學(xué)生合情推理能力、邏輯推理能力和推理認證表達能力,提高知識綜合應(yīng)用能力。態(tài)度情感目標:進一步感受數(shù)學(xué)與日常生活密不可分的聯(lián)系,同時對學(xué)生進行辯證唯物主義世界觀教育。

  四、教學(xué)措拖

  1、教學(xué)過程中盡量采取多鼓勵、多引導(dǎo)、少批秤的教育方法。

  2、教學(xué)速度以適應(yīng)大多學(xué)生為主,盡量兼顧后進生,注意整體推進。

  3、新課教學(xué)中涉及到舊知識時,對其作相應(yīng)的復(fù)習(xí)回顧。

  4、復(fù)習(xí)階段多讓學(xué)生動腦、動手、通過各種習(xí)題、綜合試題和模仿試題的訓(xùn)練,使學(xué)生逐步認識各知識點,并能純熟運用。

  五、教學(xué)進度

  全學(xué)期約為22周,安排如下:

  09.1~09.30:一元二次方程

  10.7~10.30:定義命題公理與證實

  11.01~11.26:相似形

  11.27~12.27:解直角三角形

  12.28~20xx.1.14:概率的計算

  01.15~01.30:整理復(fù)習(xí)

初三上冊數(shù)學(xué)教學(xué)工作計劃 篇3

  初三《代數(shù)》包括一元二次方程、函數(shù)及其圖象和統(tǒng)計初步三章內(nèi)容,其中一元二次方程一章的主要內(nèi)容為:一元二次方程的解法和列方程解應(yīng)用題,一元二次方程的根的判別式,根與系數(shù)的關(guān)系,以及與一元二次方程有關(guān)的分式方程的解法;重點是一元二次方程的解法和列方程解應(yīng)用題;難點是配方法和列方程解應(yīng)用題;關(guān)鍵是一元二次方程的解法。函數(shù)及其圖象一章的主要內(nèi)容是函數(shù)的概念、表示法、以及幾種簡單的函數(shù)的初步介紹;重點是一次函數(shù)的概念、圖象和性質(zhì);難點是對函數(shù)的意義和函數(shù)的表示法的理解;關(guān)鍵是處理好新舊知識聯(lián)系,盡可能減少學(xué)生接受新知識的困難。統(tǒng)計初步一章的主要內(nèi)容和重點是平均數(shù)、方差、眾數(shù)、中位數(shù)的概念及其計算,頻率分布的概念和獲取方法,以及樣本與總體的關(guān)系。

  初三《幾何》包括解直角三角形和圓兩章內(nèi)容,其中解直角三角形一章的主要內(nèi)容為銳角三角函數(shù)和解直角三角形,也是本章重點;難點和關(guān)鍵是銳角三角函數(shù)的概念。圓一章的主要內(nèi)容為圓的概念、性質(zhì)、圓與直線、圓與角、圓與圓、圓與正多邊形的位置、數(shù)量關(guān)系;重點是圓的有關(guān)性質(zhì)、直線與圓、圓與圓相切的位置關(guān)系,以及和圓有關(guān)的計算問題;難點是運用本章及以前所學(xué)幾何或代數(shù)知識解決一些綜合性較強的題目;關(guān)鍵是對圓的有關(guān)性質(zhì)的掌握。

  初三《代數(shù)》和《幾何》是初中數(shù)學(xué)的重要組成部分,通過初三數(shù)學(xué)的教學(xué),要使學(xué)生學(xué)會適應(yīng)日常生活,參加生產(chǎn)和進一步學(xué)習(xí)所必需的數(shù)學(xué)基礎(chǔ)知識與基本技能,進一步培養(yǎng)學(xué)生的'運算能力、思維能力和空間想象能力,能夠運用所學(xué)知識。

  本學(xué)年我擔任初三年級x、x兩個班的數(shù)學(xué)教學(xué)工作。其兩班學(xué)生在數(shù)學(xué)學(xué)科的基本情況是:大多數(shù)學(xué)生對初二學(xué)年的數(shù)學(xué)基礎(chǔ)知識掌握太差,很多知識只限于表面了解,機械記憶,忽視內(nèi)在的、本質(zhì)的聯(lián)系與區(qū)別,不注重對知識的理解、掌握及靈活運用,特別是少數(shù)學(xué)生對某些章節(jié)(如四邊形、分式、二次根式等)或者是一問三不知,或者是張冠李戴。就班級整體而言,x班成績大多處于中等偏下,x班成績大多處于中等層次。

  針對上述情況,我計劃在即將開始的學(xué)年教學(xué)工作中采取以下幾點措施:

  1、 新課開始前,用一個周左右的時間簡要復(fù)習(xí)初二學(xué)年的所有內(nèi)容,特別是幾何部分。

  2、 教學(xué)過程中盡量采取多鼓勵、多引導(dǎo)、少批評的教育方法。

  3、 教學(xué)速度以適應(yīng)大多數(shù)學(xué)生為主,盡量兼顧后進生,注重整體推進。

  4、 新課教學(xué)中涉及到舊知識時,對其作相應(yīng)的復(fù)習(xí)回顧。

  5、 堅持以課本為主,要求學(xué)行完成課本中的練習(xí)、習(xí)題(A組)、復(fù)習(xí)題(A組)和自我測驗題,學(xué)生做完后教師講解,少做或不做繁、難、偏的數(shù)學(xué)題目。

  6、 復(fù)習(xí)階段多讓學(xué)生動腦、動手,通過各種習(xí)題、綜合試題和模擬試題的訓(xùn)練,使學(xué)生逐步熟悉各知識點,并能熟練運用。

  7、 利用各種綜合試卷、模擬試卷和樣卷考試訓(xùn)練,使學(xué)生逐步適應(yīng)考試,最終適應(yīng)并考出好成績。

  8、 教學(xué)中在不放松x班的同時,狠抓x班的基礎(chǔ)部分。

初三上冊數(shù)學(xué)教學(xué)工作計劃 篇4

  一、學(xué)生知識狀況分析

  學(xué)生的知識技能基礎(chǔ):學(xué)生在初二上學(xué)期已經(jīng)學(xué)習(xí)過開平方,知道一個正數(shù)有兩個平方根,會利用開方求一個正數(shù)的兩個平方根,并且也學(xué)習(xí)了完全平方公式。在本章前面幾節(jié)課中,又學(xué)習(xí)了一元二次方程的概念,并經(jīng)歷了用估算法求一元二次方程的根的過程,初步理解了一元二次方程解的意義;

  學(xué)生活動經(jīng)驗基礎(chǔ):在相關(guān)知識的學(xué)習(xí)過程中,學(xué)生已經(jīng)經(jīng)歷了用計算器估算一元二次方程解的過程,解決了一些簡單的現(xiàn)實問題,感受到解一元二次方程的必要性和作用,基于學(xué)生的學(xué)習(xí)心理規(guī)律,在學(xué)習(xí)了估算法求解一元二次方程的基礎(chǔ)上,學(xué)生自然會產(chǎn)生用簡單方法求其解的欲望;同時在以前的數(shù)學(xué)學(xué)習(xí)中學(xué)生已經(jīng)經(jīng)歷了很多合作學(xué)習(xí)的過程,具有了一定的合作學(xué)習(xí)的經(jīng)驗,具備了一定的合作與交流的能力。

  二、教學(xué)任務(wù)分析

  教科書基于學(xué)生用估算的方法求解一元二次方程的基礎(chǔ)之上,提出了本課的具體學(xué)習(xí)任務(wù):用配方法解二次項系數(shù)為1且一次項系數(shù)為偶數(shù)的一元二次方程。但這僅僅是這堂課具體的教學(xué)目標,或者說是一個近期目標。而數(shù)學(xué)教學(xué)的遠期目標,應(yīng)該與具體的課堂教學(xué)任務(wù)產(chǎn)生實質(zhì)性聯(lián)系。本課《配方法》內(nèi)容從屬于“方程與不等式”這一數(shù)學(xué)學(xué)習(xí)領(lǐng)域,因而務(wù)必服務(wù)于方程教學(xué)的遠期目標:“讓學(xué)生經(jīng)歷由具體問題抽象出方程的過程,體會方程是刻畫現(xiàn)實世界中數(shù)量關(guān)系的一個有效模型,并在解一元二次方程的過程中體會轉(zhuǎn)化的數(shù)學(xué)思想”,同時也應(yīng)力圖在學(xué)習(xí)中逐步達成學(xué)生的有關(guān)情感態(tài)度目標。為此,本節(jié)課的教學(xué)目標是:

  1、會用開方法解形如(x?m)2?n(n?0)的方程,理解配方法,會用配方法解二次項系數(shù)為1,一次項系數(shù)為偶數(shù)的一元二次方程;

  2、經(jīng)歷列方程解決實際問題的過程,體會一元二次方程是刻畫現(xiàn)實世界中數(shù)量關(guān)系的一個有效模型,增強學(xué)生的數(shù)學(xué)應(yīng)用意識和能力;

  3、體會轉(zhuǎn)化的數(shù)學(xué)思想方法;

  4、能根據(jù)具體問題中的實際意義檢驗結(jié)果的合理性。

  三、教學(xué)過程分析

  本節(jié)課設(shè)計了五個教學(xué)環(huán)節(jié):第一環(huán)節(jié):復(fù)習(xí)回顧;第二環(huán)節(jié):情境引入;第三環(huán)節(jié):講授新課;第四環(huán)節(jié):練習(xí)提高;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):布置作業(yè)。

  第一環(huán)節(jié):復(fù)習(xí)回顧

  活動內(nèi)容:1、如果一個數(shù)的平方等于4,則這個數(shù)是 ,若一個數(shù)的平方等于7,則這個數(shù)是 。一個正數(shù)有幾個平方根,它們具有怎樣的關(guān)系?

  2、用字母表示完全平方公式。

  3、用估算法求方程x2?4x?2?0的解?你喜歡這種方法嗎?為什么?你能設(shè)法求出其精確解嗎?

  活動目的:以問題串的形式引導(dǎo)學(xué)生逐步深入地思考,通過前兩個問題,引導(dǎo)學(xué)生復(fù)習(xí)開平方和完全平方公式,通過后一個問題的回答讓學(xué)生進一步體會用估計法解一元二次方程較麻煩,激發(fā)學(xué)生的求知欲,為學(xué)生后面配方法的學(xué)習(xí)作好鋪墊。

  實際效果:第1和第2問選兩三個學(xué)生口答,由于問題較簡單,學(xué)生很快回答出來。第3問由學(xué)生獨立練習(xí),通過練習(xí),學(xué)生既復(fù)習(xí)了估算法,同時又進一步體會到了估算法較麻煩,達到了激發(fā)學(xué)生探索新解法的目的。

  第二環(huán)節(jié):情境引入

  活動內(nèi)容:(1)工人師傅想在一塊足夠大的長方形鐵皮上裁出一個面積為100CM2正方形,請你幫他想一想,這個正方形的邊長應(yīng)為 ;若它的面積為75CM2,則其邊長應(yīng)為 。(選1個同學(xué)口答)

  (2)如果一個正方形的邊長增加3cm后,它的面積變?yōu)?4cm2,則原來的正方形的邊長為 。若變化后的面積為48cm2呢?(小組合作交流)

  (3)你會解下列一元二次方程嗎?(獨立練習(xí))

  x2?5; (x?2)2?5; x2?12x?36?0。

  (4)上節(jié)課,我們研究梯子底端滑動的距離x(m)滿足方程x2?12x?15?0,你能仿照上面幾個方程的解題過程,求出x的精確解嗎?你認為用這種方法解這個方程的困難在哪里?(合作交流)

  活動目的:利用實際問題,讓學(xué)生初步體會開方法在解一元二次方程中的應(yīng)用,為后面學(xué)習(xí)配方法作好鋪墊;培養(yǎng)學(xué)生善于觀察分析、樂于探索研究的學(xué)習(xí)品質(zhì)及與他人合作交流的意識。

  實際效果:在復(fù)習(xí)了開方的基礎(chǔ)上,學(xué)生很快口答出了第1問,為解決第二問做好了準備。第2問讓學(xué)生合作解決,學(xué)生在交流如何求原來正方形的邊長時,產(chǎn)生了不同的方法,有的學(xué)生直接開方先求出了新正方形的邊,再減增加的邊長,求出原來的正方形的邊長;有的同學(xué)用了方程,設(shè)原正方形的邊長為xcm,根據(jù)題意列出了一元二次方程(x?3)2?64;(x?3)2?48然后兩邊開方,根據(jù)實際情況求出了原來正方形的邊長,這樣,再一次經(jīng)歷了用一元二次方程解決實際問題的過程,并初步了解了開方法在一元二次方程中的簡單應(yīng)用。在第2問的基礎(chǔ)上,學(xué)生很快解決了第3問。但學(xué)生在解決第4問時遇到了困難,他們發(fā)現(xiàn)等號的左端不是完全平方式,不能直接化成(x?m)2?n (n?0)的形式,因此大部分同學(xué)認為這個方程不能用開方法解,那么如何解決這樣的'方程問題呢?這就是我們本節(jié)課要來研究的問題(自然引出課題),為后面探索配方法埋好了伏筆。

  第三環(huán)節(jié):講授新課

  活動內(nèi)容1:做一做:(填空配成完全平方式,體會如何配方)

  填上適當?shù)臄?shù),使下列等式成立。(選4個學(xué)生口答)

  x2?12x?_____?(x?6)2 x2?6x?____?(x?3)2

  x2?8x?____?(x?___)2 x2?4x?____?(x?___)2

  問題:上面等式的左邊常數(shù)項和一次項系數(shù)有什么關(guān)系?對于形如x2?ax的式子如何配成完全平方式?(小組合作交流)

  活動目的:配方法的關(guān)鍵是正確配方,而要正確配方就必須熟悉完全平方式的特征,在此通過幾個填空題,使學(xué)生能夠用語言敘述并充分理解左邊填的是“一次項系數(shù)一半的平方”,右邊填的是“一次項系數(shù)的一半”,進一步復(fù)習(xí)鞏固完全平方式中常數(shù)項與一次項系數(shù)的關(guān)系,為后面學(xué)習(xí)掌握配方法解一元二次方程做好充分的準備。

  實際效果:由于在復(fù)習(xí)回顧時已經(jīng)復(fù)習(xí)過完全平方式,所以大部分學(xué)生很快解決四個小填空題。通過小組的合作交流,學(xué)生發(fā)現(xiàn)要把形如x2?ax的式子a如何配成完全平方式,只要加上一次項系數(shù)一半的平方即加上()2即可。而2

  且講解中小組之間互相補充、互相競爭,氣氛熱烈,使如何配成完全平方式的方法更加透徹。事實上,通過對配方的感知的過程,學(xué)生都能用自己的語言歸納總結(jié)出配成完全平方式的方法,這就為下一環(huán)節(jié)“用配方法解一元二次方程”打好基礎(chǔ)。由此也反映出學(xué)生善于觀察分析的良好品質(zhì),而這種品質(zhì)是在學(xué)生自覺行為中得到培養(yǎng)的,體現(xiàn)了學(xué)生良好的情感、態(tài)度、價值觀。 活動內(nèi)容2:解決例題

  (1)解方程:x2+8x-9=0.(師生共同解決)

  解:可以把常數(shù)項移到方程的右邊,得

  x2+8x=9

  兩邊都加上(一次項系數(shù)8的一半的平方),得

  x2+8x+42=9+42.

  (x+4)2=25

  開平方,得 x+4=±5,

  即 x+4=5,或x+4=-5.

  所以 x1=1, x2=-9.

  (2)解決梯子底部滑動問題:x2?12x?15?0(仿照例1,學(xué)生獨立解決) 解:移項得 x2+12x=15,

  兩邊同時加上62得,x2+12x+62=15+36,即(x+6)2=51

  兩邊開平方,得x+6=±51 所以:x1??6,x2??51?6,但因為x表示梯子底部滑動的距離所以x2??51?6 不合題意舍去。 答:梯子底部滑動了(51?6)米。

  活動內(nèi)容3:及時小結(jié)、整理思路

  用這種方法解一元二次方程的思路是什么?其關(guān)鍵又是什么?(小組合作交流)

  活動目的:通過對例1和例2的講解,規(guī)范配方法解一元二次方程的過程,讓學(xué)生充分理解掌握用配方法解一元二次方程的基本思路及關(guān)鍵是將方程轉(zhuǎn)化成(x?m)2?n(n?0)形式,同時通過例2提醒學(xué)生注意:有的方程雖然有兩個不同的解,但在處理實際問題時要根據(jù)實際意義檢驗結(jié)果的合理性,對結(jié)果進行取舍。由于此問題在情境引入時出現(xiàn)過,因此也達到前后呼應(yīng)的目的。最后由問題“用這種方法解一元二次方程的思路是什么?”引出配方法的定義。

  實際效果:學(xué)生經(jīng)過前一環(huán)節(jié)對配方法的特點有了初步的認識,通過兩個例題的處理,進一步完善對配方法基本思路的把握,是對配方法的學(xué)習(xí)由探求邁向?qū)嶋H應(yīng)用的第一步。最后利用兩個問題,通過小組的合作交流得出配方法的基本思路和解決問題的關(guān)鍵,結(jié)論的得出來源于學(xué)生在實例分析中的親身感受,體現(xiàn)學(xué)生學(xué)習(xí)的主動性。

  活動內(nèi)容4、應(yīng)用提高

  例3:如圖,在一塊長和寬分別是16米和12米的長方形耕地上挖兩條寬度相等的水渠,使剩余的耕地面積等于原來長方形面積的一半,試求水渠的寬度。(先獨立思考,再小組合作交流)

  活動目的:在前兩個例題的基礎(chǔ)上,通過例3進一步提高學(xué)生分析問題解決問題的能力,幫助學(xué)生熟練掌握配方法在實際問題中的應(yīng)用,也為后續(xù)學(xué)習(xí)做好鋪墊。實際效果:大部分學(xué)生通過獨立思考,結(jié)合圖形很快列出了方程,在交流過程中小組成員之間產(chǎn)生了分歧,有的同學(xué)認為,如果設(shè)水渠的寬為x米,則1?12?16;有的同學(xué)認為如果設(shè)水渠的寬為x21米,則方程應(yīng)該是16?12?12x?16x?x2??12?16,并且給出了合理的解2方程應(yīng)該是(16?x)(12?x)?

  釋;有的同學(xué)則認為,如果剩余的耕地面積等于原來的一半則意味著水渠的面積也等于原來長方形面積的一半,所以方程可以列為:12x?16x?x2?1?12?16。面對這些問題,組織學(xué)生解他們2所列出的幾個方程,然后再讓小組成員合作交流討論,通過討論,學(xué)生發(fā)現(xiàn)這三種方法都正確,并且指出第一種方法可以利用平移水渠,把分割成的四部分拼在一起,構(gòu)成了一個較大的矩形(如下圖),然后再利用矩形的面積公式列出方程,此種方法在解決此類問題時最簡單。這樣通過學(xué)生之間的爭論、辯論提高了課堂效率,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,達到了資源共享。

  第四環(huán)節(jié):練習(xí)與提高

  活動內(nèi)容:解下列方程

  (1)x2?10x?25?7;(2)x2?6x?1;(3)x(x?14)?0(4)x2?8x?9

  活動目的:對本節(jié)知識進行鞏固練習(xí)。

  實際效果:此處留給學(xué)生充分的時間與空間進行獨立練習(xí),通過練習(xí),學(xué)生基本都能用配方法解解二次項系數(shù)為1、一次項系數(shù)為偶數(shù)的一元二次方程,取得了較好的教學(xué)效果,加深了學(xué)生對“用配方法解簡單一元二次方程”的理解。

  第五環(huán)節(jié):課堂小結(jié)

  活動內(nèi)容:師生互相交流、總結(jié)配方法解一元二次方程的基本思路和關(guān)鍵,以及在應(yīng)用配方法時應(yīng)注意的問題。

  活動目的:鼓勵學(xué)生結(jié)合本節(jié)課的學(xué)習(xí),談自己的收獲與感想(學(xué)生暢所欲言,教師給予鼓勵)。

  實際效果:學(xué)生暢所欲言談自己的切身感受與實際收獲,掌握了配方法的基本思路和過程。

  第六環(huán)節(jié):布置作業(yè)

  課本50頁習(xí)題2.3 1題、2題

  四、教學(xué)反思

  1、 創(chuàng)造性地使用教材

  教材只是為教師提供最基本的教學(xué)素材,教師完全可以根據(jù)學(xué)生的實際情況進行適當調(diào)整。學(xué)生在初一、初二已經(jīng)學(xué)過完全平方公式和如何對一個正數(shù)進行開方運算,而且普遍掌握較好,所以本節(jié)課從這兩個方面入手,利用幾個簡單的實際問題逐步引入配方法。教學(xué)中將難點放在探索如何配方上,重點放在配方法的應(yīng)用上。本節(jié)課老師安排了三個例題,通過前兩個例題規(guī)范用配方法解一元二次方程的過程,幫助學(xué)生充分掌握用配方法解一元二次方程的技巧,同時本節(jié)課創(chuàng)造性地使用教材,把配方法(3)中的一個是設(shè)計方案問題改編成一個實際應(yīng)用問題,讓學(xué)生體會到了方程在實際問題中的應(yīng)用,感受到了數(shù)學(xué)的實際價值。培養(yǎng)了學(xué)生分析問題,解決問題的能力。

  2、 相信學(xué)生并為學(xué)生提供充分展示自己的機會

  課堂上要把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)能力放在教學(xué)首位,通過運用各種啟發(fā)、激勵的語言,以及組織小組合作學(xué)習(xí),幫助學(xué)生形成積極主動的求知態(tài)度。本節(jié)課多次組織學(xué)生合作交流,通過小組合作,為學(xué)生提供展示自己聰明才智的機會,并且在此過程中教師發(fā)現(xiàn)了學(xué)生在分析問題和解決問題時出現(xiàn)的獨到見解,以及思維的誤區(qū),這樣使得老師可以更好地指導(dǎo)今后的教學(xué)。

  3、注意改進的方面

  在小組討論之前,應(yīng)該留給學(xué)生充分的獨立思考的時間,不要讓一些思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問。教師應(yīng)對小組討論給予適當?shù)闹笇?dǎo),包括知識的啟發(fā)引導(dǎo)、學(xué)生交流合作中注意的問題及對困難學(xué)生的幫助等,使小組合作學(xué)習(xí)更具實效性。

【初三上冊數(shù)學(xué)教學(xué)工作計劃】相關(guān)文章:

初三數(shù)學(xué)上冊教學(xué)計劃09-27

初三數(shù)學(xué)上冊教學(xué)總結(jié)(精選14篇)06-18

初三上冊數(shù)學(xué)教學(xué)總結(jié)(精選17篇)08-15

初三上冊數(shù)學(xué)教學(xué)工作計劃(精選15篇)06-21

初三上冊數(shù)學(xué)教學(xué)工作計劃(精選12篇)09-04

初三上冊數(shù)學(xué)教學(xué)工作計劃(精選16篇)10-04

精選初三上冊數(shù)學(xué)教學(xué)工作計劃11篇09-04

初三上冊數(shù)學(xué)教學(xué)計劃(精選10篇)06-30

初三數(shù)學(xué)上冊教學(xué)總結(jié)范文(通用6篇)07-02

初三上冊的數(shù)學(xué)教學(xué)計劃(通用13篇)09-04