《平方根1》 教學(xué)設(shè)計
學(xué)科:數(shù)學(xué)年級:七年級審核:
內(nèi)容:滬科版七下6.1平方根(1)課型:新授時間:
學(xué)習(xí)目標(biāo):
1、了解平方根的概念,會用根號表示一個數(shù)的平方根,并了解被開方數(shù)的非負(fù)性;
2、了解開方與乘方互為逆運算,會用平方運算求某些非負(fù)數(shù)的平方根,進(jìn)行簡單的開平方運算。
學(xué)習(xí)重點:了解平方根的概念,求某些非負(fù)數(shù)的平方根
學(xué)習(xí)難點:了解被開方數(shù)的非負(fù)性;
學(xué)習(xí)過程:
一、學(xué)習(xí)準(zhǔn)備
1、我們已經(jīng)學(xué)習(xí)過哪些運算?它們中互為逆運算的是?
答:加法、減法、乘法、除法、乘方五種運算。加法與減法互逆;乘法與除法互逆。
2、什么叫乘方?什么叫冪?乘方有沒有逆運算?完成下面填空。
32=()()2=9
(-3)2=()()2=
()2=()()2=0
()2=()
02=()()2=-4
3、左邊算式已知底數(shù)、指數(shù)求冪,右邊算式已知冪、指數(shù)求底數(shù)
一般地,如果一個數(shù)的平方等于a,那么這個數(shù)叫做a的平方根,也叫做a的二次方根。
即如果X2=a,那么叫做的平方根。請按照第3頁的舉例你再舉兩個例子說明:
叫做開平方,平方與互為逆運算
4、觀察上面兩組算式,歸納一個數(shù)的平方根的性質(zhì)是:
一個正數(shù)有兩個平方根,它們互為相反數(shù);
零有一個平方根,它是零本身;
負(fù)數(shù)沒有平方根。
交流:(1)的平方根是什么?
(2)0.16的平方根是什么?
(3)0的平方根是什么?
(4)-9的平方根是什么?
5、平方根的表示方法
一個正數(shù)a有兩個平方根,它們互為相反數(shù).
正數(shù)a的正的平方根,記作“”
正數(shù)a的負(fù)的平方根,記作“”
這兩個平方根合在一起記作“”
如果X2=a,那么X=,其中符號“”讀作根號,a叫做被開方數(shù)
這里的a表示什么樣的數(shù)?a是非負(fù)數(shù)
二、合作探究
1、判斷下面的說法是否正確:
1).-5是25的平方根;()
2).25的平方根是-5;()
3).0的平方根是0()
4).1的'平方根是1()
5).(-3)2的平方根是-3()
6).-32的平方根是-3()
2、閱讀課本第4頁例題1,按例題格式判斷下列各數(shù)有沒有平方根,若有,求其平方根。若沒有,說明為什么。
(1)0.81(2)(3)-100(4)(-4)2
(5)1.69(6)(7)10(8)5
三、學(xué)習(xí)體會:
本節(jié)課你學(xué)到哪些知識?哪些地方是我們要注意的?你還有哪些疑惑?
四、自我測試
1、檢驗下面各題中前面的數(shù)是不是后面的數(shù)的平方根。
(1)±12,144()(2)±0.2,0.04()
(3)102,104()(4)14,256()
2、選擇題(1)0.01的平方根是()
A、0.1B、±0.1C、0.0001D、±0.0001
(2)因為(0.3)2=0.09所以()
A、0.09是0.3的平方根.B、0.09是0.3的3倍.
C、0.3是0.09的平方根.D、0.3不是0.09的平方根.
3、判斷下列說法是否正確:
(1)-9的平方根是-3;()
(2)49的平方根是7;()
(3)(-2)2的平方根是±2;()
(4)-1是1的平方根;()
(5)若X2=16則X=4()
(6)7的平方根是±49.()
4、求下列各數(shù)的平方根
1)812)0.253)4)(-6)2
5、求下列各式中的x:
(1)x=16(2)x=(3)x=15(4)4x=81
思維拓展:
1、一個數(shù)的平方等于它本身,這個數(shù)是一個數(shù)的平方根等于它本身,這個數(shù)是
2、若3a+1沒有平方根,那么a一定。3、若4a+1的平方根是±5,則a=。
4、一個數(shù)x的平方根等于m+1和m-3,則m=。x=。
5、若|a-9|+(b-4)=0,則ab的平方根是。
6、熟背1至20的平方的結(jié)果。
7、分別計算32,34,46,58,512,10的平方根,你能發(fā)現(xiàn)開平方后冪的指數(shù)有什么變化嗎?