亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

教案

平方根優(yōu)秀教案設(shè)計(jì)

時(shí)間:2024-09-19 14:59:41 教案 我要投稿
  • 相關(guān)推薦

平方根優(yōu)秀教案設(shè)計(jì)

  作為一位優(yōu)秀的人民教師,可能需要進(jìn)行教案編寫(xiě)工作,教案有助于順利而有效地開(kāi)展教學(xué)活動(dòng)。那么大家知道正規(guī)的教案是怎么寫(xiě)的嗎?下面是小編精心整理的平方根優(yōu)秀教案設(shè)計(jì),僅供參考,歡迎大家閱讀。

平方根優(yōu)秀教案設(shè)計(jì)

  平方根優(yōu)秀教案設(shè)計(jì) 篇1

  教學(xué)目標(biāo):

  【知識(shí)與技能】

  了解平方根與算術(shù)平方根的概念,理解負(fù)數(shù)沒(méi)有平方根及非負(fù)數(shù)開(kāi)平方的意義。

  【過(guò)程與方法】

  理解開(kāi)平方與平方是一對(duì)互逆的運(yùn)算,會(huì)用平方根的概念求某些數(shù)的平方根,并能用根號(hào)加以表示,能用科學(xué)計(jì)算器求平方根及其近似值。

  【情感、態(tài)度與價(jià)值觀】

  體會(huì)平方與開(kāi)平方這一對(duì)互逆運(yùn)算的辯證關(guān)系,感受平方根在現(xiàn)實(shí)世界中的客觀存在,增強(qiáng)數(shù)學(xué)知識(shí)的應(yīng)用意識(shí)。

  【教學(xué)重點(diǎn)】理解開(kāi)平方與平方是一對(duì)互逆的運(yùn)算,會(huì)用平方根的概念求某些數(shù)的平方根,并能用根號(hào)加以表示。

  【教學(xué)難點(diǎn)】會(huì)用平方根的概念求某些數(shù)的平方根,并能用根號(hào)加以表示。

  【教具準(zhǔn)備】小黑板 科學(xué)計(jì)算器

  【教學(xué)過(guò)程】

  一、導(dǎo)入

  1、通過(guò)七年級(jí)的學(xué)習(xí),相信同學(xué)們都對(duì)數(shù)學(xué)這門(mén)課程有了更深入的認(rèn)識(shí),這個(gè)學(xué)期,我們將一起來(lái)學(xué)習(xí)八年級(jí)的數(shù)學(xué)知識(shí),這個(gè)學(xué)期的知識(shí)將會(huì)更加有趣。

  2、板書(shū):實(shí)數(shù) 1.1 平方根

  二、新授

  (一)探求新知

  1、探討:有面積為8平方厘米的正方形嗎?如果有,那它的邊長(zhǎng)是多少?(少數(shù)學(xué)習(xí)超前的學(xué)生可能能答上來(lái))這個(gè)邊長(zhǎng)是個(gè)怎樣的數(shù)?你以前見(jiàn)過(guò)嗎?

  2、引入“無(wú)理數(shù)”的概念:像(2.82842712……)這樣無(wú)限不循環(huán)的小數(shù)就叫做無(wú)理數(shù)。

  3、你還能舉出哪些無(wú)理數(shù)?(,)、、1/3是無(wú)理數(shù)嗎?

  4、有理數(shù)和無(wú)理數(shù)統(tǒng)稱為實(shí)數(shù)。

  (二)知識(shí)歸納:

  1、板書(shū):1.1平方根

  2、李老師家裝修廚房,鋪地磚10.8平方米,用去正方形的地磚120塊,你能算出所用地磚的邊長(zhǎng)是多少嗎?(0.3米)

  3、怎么算?每塊地磚的面積是:10.8 120=0.09平方米。

  由于0.32=0.09,因此面積為0.09平方米的正方形,它的邊長(zhǎng)為0.3米。

  4、練習(xí):

  由于( )=400,因此面積為400平方厘米的正方形,它的邊長(zhǎng)為( )厘米。

  5、在實(shí)際問(wèn)題中,我們常常遇到要找一個(gè)數(shù),使它的平方等于給定的數(shù),如已知一個(gè)數(shù)a,要求r,使r2=a,那么我們就把r叫做a的一個(gè)平方根。(也可叫做二次方根)

  例如22=4,因此2是4的一個(gè)平方根;62=36,因此6是36的一個(gè)平方根。

  6、說(shuō)一說(shuō):9,16,25,49的一個(gè)平方根是多少?

 。ㄈ┨角笮轮

  1、4的平方根除了2以外,還有別的數(shù)嗎?

  2、學(xué)生探究:因?yàn)椋?2)2=4,因此-2也是4的一個(gè)平方根。

  3、除了2和-2以外,4的平方根還有別的數(shù)嗎?(4的平方根有且只有兩個(gè):2與-2。)

  4、結(jié)論:如果r是正數(shù)a的一個(gè)平方根,那么a的.平方根有且只有兩個(gè):r與-r。

  5、我們把a(bǔ)的正平方根叫做a的算術(shù)平方根,記作,讀作:“根號(hào)a”;

  把a(bǔ)的負(fù)平方根記作-。

  6、0的平方根有且只有一個(gè):0。 0的平方根記作,即=0。

  7、負(fù)數(shù)沒(méi)有平方根。

  8、求一個(gè)非負(fù)數(shù)的平方根,叫做開(kāi)平方。

 。ㄋ模╈柟叹毩(xí):

  1、分別求下列各數(shù)的平方根:36,25/9,1.21。

 。6和-6,5/3和-5/3,1.1和-1.1)(也可用號(hào)表示)

  2、分別求下列各數(shù)的算術(shù)平方根:100,16/25,0.49。 (10,4/5,0.7)

  三、小結(jié)與提高:

  1、面積是196平方厘米的正方形,它的邊長(zhǎng)是多少厘米?

  2、求算術(shù)平方根:81,25/144,0.16

  平方根優(yōu)秀教案設(shè)計(jì) 篇2

  學(xué)習(xí)目標(biāo):

  1、在實(shí)際問(wèn)題中,感受算術(shù)平方根存在的意義,理解算術(shù)平方根的概念,算術(shù)平方根具有雙重非負(fù)性

  2、會(huì)用計(jì)算器求一個(gè)數(shù)的算術(shù)平方根;利用計(jì)算器探究被開(kāi)方數(shù)擴(kuò)大(或縮。┡c它的算術(shù)平方根擴(kuò)大(或縮。┑囊(guī)律;

  學(xué)習(xí)重點(diǎn):理解算術(shù)平方根的概念

  學(xué)習(xí)難點(diǎn):算術(shù)平方根具有雙重非負(fù)性

  學(xué)習(xí)過(guò)程:

  一、學(xué)習(xí)準(zhǔn)備

  1、閱讀課本第3頁(yè),由題意得出方程x= ,那么X= ,

  這種地磚一塊的邊長(zhǎng)為 m

  2、正數(shù)a有2個(gè)平方根,其中正數(shù)a的正的平方根,也叫做a的算術(shù)平方根。

  例如,4的平方根是 , 叫做4的算術(shù)平方根,記作 =2,

  2的平方根是“ ”, 叫做2的算術(shù)平方根,

  3、(1)16的算術(shù)平方根的平方根是什么? 5的算術(shù)平方根是什么?

  (2)0的算術(shù)平方根是什么? 0的算術(shù)平方根有幾個(gè)?

  (3)2、-5、-6有算術(shù)平方根嗎?為什么?

  4、按課本第4頁(yè)例題1格式求下列各數(shù)的算術(shù)平方根:

 。1)625(2)0. 81;(3)6;(4) (5) (6)

  二、合作探究:

  1、閱讀課本第5頁(yè)利用計(jì)算器求算術(shù)平方根的方法,利用計(jì)算器求下列各式的值。

 。1) (2) (3)

  2、利用計(jì)算器求下列各數(shù)的算術(shù)平方根

  a2000020020.020.0002

  通過(guò)觀察算術(shù)平方根,歸納被開(kāi)方數(shù)與算術(shù)平方根之間小數(shù)點(diǎn)的變化規(guī)律

  3、在 中, 表示一個(gè) 數(shù), 表示一個(gè) 數(shù),算術(shù)平方根具有

  練習(xí):若a-5+ =0,則 的平方根是

  三、學(xué)習(xí):

  本節(jié)課你學(xué)到哪些知識(shí)?哪些地方是我們要注意的?你還有哪些疑惑?

  四、自我測(cè)試:

  1、判斷下列說(shuō)法是否正確:

 、5是25的算術(shù)平方根;( )②-6是 的算術(shù)平方根; ( )

 、 0的算術(shù)平方根是0;( ) ④ 0.01是0.1的算術(shù)平方根; ( )

 、菀粋(gè)正方形的邊長(zhǎng)就是這個(gè)正方形的面積的算術(shù)平方根. ( )

  2、若 =2.291, =7.246,那么 =( )

  A.22.91 B. 72.46 C.229.1 D.724.6

  3、下列各式哪些有意義,哪些沒(méi)有意義?

  4、求下列各數(shù)的算術(shù)平方根

 、121 ②2.25 ③ ④(-3)2

  5、求下列各式的值 ① ② ③ ④

  思維拓展:

  1、一個(gè)數(shù)的算術(shù)平方根等于它本身,這個(gè)數(shù)是 。

  2、若x=16,則5-x的算術(shù)平方根是 。

  3、若4a+1的平方根是±5,則a的算術(shù)平方根是 。

  4、 的平方根等于 ,算術(shù)平方根等于 。

  5、若a-9+ =0,則 的平方根是

  6、 的平方根等于 ,算術(shù)平方根是 。

  7、 求xy算術(shù)平方根是。

  數(shù)學(xué)小知識(shí)——怎樣用筆算開(kāi)平方

  我國(guó)古代數(shù)學(xué)的成就燦爛輝煌,早在公元前一世紀(jì)問(wèn)世的我國(guó)經(jīng)典數(shù)學(xué)著作《九章算術(shù)》里,就在世界數(shù)學(xué)史上第一次介紹了上述筆算開(kāi)平方法.據(jù)史料記載,國(guó)外直到公元五世紀(jì)才有對(duì)于開(kāi)平方法的介紹.這表明,古代對(duì)于開(kāi)方的研究我國(guó)在世界上是遙遙領(lǐng)先的`.

  1.將被開(kāi)方數(shù)的整數(shù)部分從個(gè)位起向左每隔兩位劃為一段,用撇號(hào)分開(kāi)(豎式中的11'56),分成幾段,表示所求平方根是幾位數(shù);

  2.根據(jù)左邊第一段里的數(shù),求得平方根的最高位上的數(shù)(豎式中的3);

  3.從第一段的數(shù)減去最高位上數(shù)的平方,在它們的差的右邊寫(xiě)上第 二段數(shù)組成第一個(gè)余數(shù)(豎式中的256);

  4.把求得的最高位數(shù)乘以20去試除第一個(gè)余數(shù),所得的最大整數(shù)作為試商(3×20除256,所得的最大整數(shù)是 4,即試商是4);

  5.用商的最高位數(shù)的20倍加上這個(gè)試商再乘以試商.如果所得的積小于或等于余數(shù),試商就是平方根的第二位數(shù);如果所得的積大于余數(shù),就把試商減小再試(豎式中(20×3+4)×4=256,說(shuō)明試商4就是平方根的第二位數(shù));

  6.用同樣的方法,繼續(xù)求平方根的其他各位上的數(shù).如圖2所示分別求85264, 12.5平方根的過(guò)程。自己舉例試試!

  平方根優(yōu)秀教案設(shè)計(jì) 篇3

  教學(xué)目標(biāo):

  1.了解算術(shù)平方根的概念,會(huì)用根號(hào)表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。

  2.了解開(kāi)方與乘方互為逆運(yùn)算,會(huì)用平方運(yùn)算求某些非負(fù)數(shù)的算術(shù)平方根。

  教學(xué)重點(diǎn):

  算術(shù)平方根的概念。

  教學(xué)難點(diǎn):

  根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。

  教學(xué)過(guò)程

  一、情境導(dǎo)入

  請(qǐng)同學(xué)們欣賞本節(jié)導(dǎo)圖,并回答問(wèn)題,學(xué)校要舉行金秋美術(shù)作品比賽,小歐很高興,他想裁出一塊面積為25 的正方形畫(huà)布,畫(huà)上自己的得意之作參加比賽,這塊正方形畫(huà)布的'邊長(zhǎng)應(yīng)取多少 ?如果這塊畫(huà)布的面積是 ?這個(gè)問(wèn)題實(shí)際上是已知一個(gè)正數(shù)的平方,求這個(gè)正數(shù)的問(wèn)題?

  這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.

  二、導(dǎo)入新課:

  1、提出問(wèn)題:(書(shū)P68頁(yè)的問(wèn)題)

  你是怎樣算出畫(huà)框的邊長(zhǎng)等于5dm的呢?(學(xué)生思考并交流解法)

  這個(gè)問(wèn)題相當(dāng)于在等式擴(kuò)=25中求出正數(shù)x的值.

  一般地,如果一個(gè)正數(shù)x的平方等于a,即 =a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為 ,讀作根號(hào)a,a叫做被開(kāi)方數(shù).規(guī)定:0的算術(shù)平方根是0.

  也就是,在等式 =a (x0)中,規(guī)定x = .

  2、 試一試:你能根據(jù)等式: =144說(shuō)出144的算術(shù)平方根是多少嗎?并用等式表示出來(lái).

  3、 想一想:下列式子表示什么意思?你能求出它們的值嗎?

  建議:求值時(shí),要按照算術(shù)平方根的意義,寫(xiě)出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫(xiě)出對(duì)應(yīng)的值.例如 表示25的算術(shù)平方根。

  4、例1 求下列各數(shù)的算術(shù)平方根:

  (1)100;(2)1;(3) ;(4)0.0001

  三、練習(xí)

  P69練習(xí) 1、2

  四、探究:(課本第69頁(yè))

  怎樣用兩個(gè)面積為1的小正方形拼成一個(gè)面積為2的大正方形?

  方法1:課本中的方法,略;

  方法2:

  可還有其他方法,鼓勵(lì)學(xué)生探究。

  問(wèn)題:這個(gè)大正方形的邊長(zhǎng)應(yīng)該是多少呢?

  大正方形的邊長(zhǎng)是 ,表示2的算術(shù)平方根,它到底是個(gè)多大的數(shù)?你能求出它的值嗎?

  建議學(xué)生觀察圖形感受 的大小.小正方形的對(duì)角線的長(zhǎng)是多少呢?(用刻度尺測(cè)量它與大正方形的邊長(zhǎng)的大小)它的近似值我們將在下節(jié)課探究.

  五、小結(jié):

  1、這節(jié)課學(xué)習(xí)了什么呢?

  2、算術(shù)平方根的具體意義是怎么樣的?

  3、怎樣求一個(gè)正數(shù)的算術(shù)平方根

  六、課外作業(yè):

  P75習(xí)題13.1活動(dòng)第1、2、3題

【平方根優(yōu)秀教案設(shè)計(jì)】相關(guān)文章:

草優(yōu)秀教案設(shè)計(jì)07-29

竹影優(yōu)秀教案設(shè)計(jì)09-25

示兒優(yōu)秀教案設(shè)計(jì)10-07

家鄉(xiāng)的橋優(yōu)秀教案設(shè)計(jì)07-28

《蘭蘭過(guò)橋》優(yōu)秀教案設(shè)計(jì)10-14

《看海》優(yōu)秀教學(xué)教案設(shè)計(jì)09-12

好學(xué)的爸爸的優(yōu)秀教案設(shè)計(jì)08-20

《爭(zhēng)論的故事》優(yōu)秀教案設(shè)計(jì)08-05

小學(xué)英語(yǔ)優(yōu)秀教案設(shè)計(jì)11-25

《海底世界》優(yōu)秀教案設(shè)計(jì)07-03