亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

初中知識(shí)

高二數(shù)學(xué)期末考試題

時(shí)間:2024-10-31 21:33:14 初中知識(shí) 我要投稿
  • 相關(guān)推薦

高二數(shù)學(xué)期末考試題2016

  孩子成功教育從好習(xí)慣培養(yǎng)開始,下面是小編整理的高二數(shù)學(xué)期末考試題2016,大家一起來看看吧。

高二數(shù)學(xué)期末考試題2016

  一、選擇題:本大題共12小題,每小題3分,共36分,在每個(gè)小題給出的四個(gè)選項(xiàng)中,只有一個(gè)符合題目要求的.

  1.命題“a=0,則ab=0”的逆否命題是(  )

  A.若ab=0,則a=0 B.若a≠0,則ab≠0 C.若ab=0,則a≠0 D.若ab≠0,則a≠0

  2.橢圓 + =1的長軸長是(  )

  A.2 B.3 C.4 D.6

  3.已知函數(shù)f(x)=x2+sinx,則f′(0)=(  )

  A.0 B.﹣1 C.1 D.3

  4.“a>1”是“a2<1”的(  )

  A.充分不必要條件 B.必要不充分條件

  C.充要條件 D.既不充分也不必要條件

  5.雙曲線 =1的漸近線方程是(  )

  A.y=±2x B.y=±4x C.y=± x D.y=± x

  6.已知y=f(x)的導(dǎo)函數(shù)f′(x)的圖象如圖所示,則下列結(jié)論正確的是(  )

  A.f(x)在(﹣3,﹣1)上先增后減 B.x=﹣2是函數(shù)f(x)極小值點(diǎn)

  C.f(x)在(﹣1,1)上是增函數(shù) D.x=1是函數(shù)f(x)的極大值點(diǎn)

  7.已知雙曲線的離心率e= ,點(diǎn)(0,5)為其一個(gè)焦點(diǎn),則該雙曲線的標(biāo)準(zhǔn)方程為(  )

  A. ﹣ =1 B. ﹣ =1

  C. ﹣ =1 D. ﹣ =1

  8.函數(shù)f(x)=xlnx的單調(diào)遞減區(qū)間為(  )

  A.(﹣∞, ) B.(0, ) C.(﹣∞,e) D.(e,+∞)

  9.若方程 + =1表示焦點(diǎn)在y軸上的橢圓,則實(shí)數(shù)m的取值范圍為(  )

  A.(﹣∞,1) B.(1,2) C.(2,3) D.(3,+∞)

  10.已知命題p:∀x∈(0,+∞),2x>3x,命題q:∃x0∈(0,+∞),x >x ,則下列命題中的真命題是(  )

  A.p∧q B.p∨(¬q) C.(¬p)∧(¬q) D.(¬p)∧q

  11.f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,則不等式f(x)g(x)<0的解集是(  )

  A.(﹣∞,﹣3)∪(0,3) B.(﹣∞,﹣3)∪(3,+∞) C.(﹣3,0)∪(3,+∞) D.(﹣3,0)∪(0,3)

  12.過點(diǎn)M(2,﹣1)作斜率為 的直線與橢圓 + =1(a>b>0)相交于A,B兩個(gè)不同點(diǎn),若M是AB的中點(diǎn),則該橢圓的離心率e=(  )

  A. B. C. D.

  二、填空題:本大題共4個(gè)小題,每小題4分.、共16分.

  13.拋物線x2=4y的焦點(diǎn)坐標(biāo)為      .

  14.已知命題p:∃x0∈R,3 =5,則¬p為      .

  15.已知曲線f(x)=xex在點(diǎn)P(x0,f(x0))處的切線與直線y=x+1平行,則點(diǎn)P的坐標(biāo)為      .

  16.已知f(x)=ax3+3x2﹣1存在唯一的零點(diǎn)x0,且x0<0,則實(shí)數(shù)a的取值范圍是      .

  三、解答題:本大題共7小題,共48分,解答應(yīng)寫出文字說明、證明過程或演算步驟.

  17.已知命題p:函數(shù)y=kx是增函數(shù),q:方程 +y2=1表示焦點(diǎn)在x軸上的橢圓,若p∧(¬q)為真命題,求實(shí)數(shù)k的取值范圍.

  18.已知函數(shù)f(x)=2x3﹣6x2+m在[﹣2,2]上的最大值為3,求f(x)在[﹣2,2]上的最小值.

  19.已知點(diǎn)P(1,﹣2)在拋物線C:y2=2px(p>0)上.

  (1)求拋物線C的方程及其準(zhǔn)線方程;

  (2)若過拋物線C焦點(diǎn)F的直線l與拋物線C相交于A,B兩個(gè)不同點(diǎn),求|AB|的最小值.

  20.已知函數(shù)f(x)=x﹣ ﹣2alnx(a∈R).

  (1)若函數(shù)f(x)在x= 處取得極值,求實(shí)數(shù)a的值;

  (2)求證:當(dāng)a≤1時(shí),不等式f(x)≥0在[1,+∞)恒成立.

  21.已知函數(shù)f(x)=x﹣ ﹣2alnx(a∈R).

  (1)若函數(shù)f(x)在x= 處取得極值,求實(shí)數(shù)a的值;

  (2)若不等式f(x)≥0在[1,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

  22.已知橢圓C: + =1(a>b>0)的離心率e= ,點(diǎn)P(﹣ ,1)在該橢圓上.

  (1)求橢圓C的方程;

  (2)若點(diǎn)A,B是橢圓C上關(guān)于直線y=kx+1對(duì)稱的兩點(diǎn),求實(shí)數(shù)k的取值范圍.

  23.已知橢圓C: + =1(a>b>0)的離心率e= ,原點(diǎn)到直線 + =1的距離為 .

  (1)求橢圓C的方程;

  (2)若點(diǎn)A,B是橢圓C上關(guān)于直線y=kx+1對(duì)稱的兩點(diǎn),求實(shí)數(shù)k的取值范圍.

  參考答案與試題解析

  一、選擇題:本大題共12小題,每小題3分,共36分,在每個(gè)小題給出的四個(gè)選項(xiàng)中,只有一個(gè)符合題目要求的.

  1.命題“a=0,則ab=0”的逆否命題是(  )

  A.若ab=0,則a=0 B.若a≠0,則ab≠0 C.若ab=0,則a≠0 D.若ab≠0,則a≠0

  【考點(diǎn)】四種命題間的逆否關(guān)系.

  【分析】根據(jù)互為逆否的兩命題是條件和結(jié)論先逆后否來解答.

  【解答】解:因?yàn)樵}是“a=0,則ab=0”,

  所以其逆否命題為“若ab≠0,則a≠0”,

  故選D.

  2.橢圓 + =1的長軸長是(  )

  A.2 B.3 C.4 D.6

  【考點(diǎn)】橢圓的簡單性質(zhì).

  【分析】直接利用橢圓的標(biāo)準(zhǔn)方程求解實(shí)軸長即可.

  【解答】解:橢圓 + =1的實(shí)軸長是:2a=6.

  故選:D.

  3.已知函數(shù)f(x)=x2+sinx,則f′(0)=(  )

  A.0 B.﹣1 C.1 D.3

  【考點(diǎn)】導(dǎo)數(shù)的運(yùn)算.

  【分析】求函數(shù)的導(dǎo)數(shù),利用代入法進(jìn)行求解即可.

  【解答】解:函數(shù)的導(dǎo)數(shù)f′(x)=2x+cosx,

  則f′(0)=cos0=1,

  故選:C.

  4.“a>1”是“a2<1”的(  )

  A.充分不必要條件 B.必要不充分條件

  C.充要條件 D.既不充分也不必要條件

  【考點(diǎn)】必要條件、充分條件與充要條件的判斷.

  【分析】由a2<1解得﹣1

  【解答】解:由a2<1解得﹣1

  ∴“a>1”是“a2<1”的既不充分也不必要條件.

  故選:D.

  5.雙曲線 =1的漸近線方程是(  )

  A.y=±2x B.y=±4x C.y=± x D.y=± x

  【考點(diǎn)】雙曲線的標(biāo)準(zhǔn)方程.

  【分析】利用雙曲線的簡單性質(zhì)直接求解.

  【解答】解:雙曲線 =1的漸近線方為 ,

  整理,得y= .

  故選:C.

  6.已知y=f(x)的導(dǎo)函數(shù)f′(x)的圖象如圖所示,則下列結(jié)論正確的是(  )

  A.f(x)在(﹣3,﹣1)上先增后減 B.x=﹣2是函數(shù)f(x)極小值點(diǎn)

  C.f(x)在(﹣1,1)上是增函數(shù) D.x=1是函數(shù)f(x)的極大值點(diǎn)

  【考點(diǎn)】利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.

  【分析】本小題考查導(dǎo)數(shù)的運(yùn)用;根據(jù)導(dǎo)數(shù)值與0的關(guān)系判斷各個(gè)選項(xiàng)即可.

  【解答】解:由圖象得:﹣30,﹣2

  ∴f(x)在(﹣3,﹣2)遞增,在(﹣2,﹣1)遞減,

  故選:A.

  7.已知雙曲線的離心率e= ,點(diǎn)(0,5)為其一個(gè)焦點(diǎn),則該雙曲線的標(biāo)準(zhǔn)方程為(  )

  A. ﹣ =1 B. ﹣ =1

  C. ﹣ =1 D. ﹣ =1

  【考點(diǎn)】雙曲線的簡單性質(zhì).

  【分析】設(shè)雙曲線的方程為 ﹣ =1(a,b>0),運(yùn)用離心率公式和a,b,c的關(guān)系,解方程可得a=3,b=4,進(jìn)而得到所求雙曲線的方程.

  【解答】解:設(shè)雙曲線的方程為 ﹣ =1(a,b>0),

  由題意可得e= = ,c=5,

  可得a=3,b= =4,

  即有雙曲線的標(biāo)準(zhǔn)方程為 ﹣ =1.

  故選:D.

  8.函數(shù)f(x)=xlnx的單調(diào)遞減區(qū)間為(  )

  A.(﹣∞, ) B.(0, ) C.(﹣∞,e) D.(e,+∞)

  【考點(diǎn)】利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.

  【分析】求出函數(shù)的定義域,求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)函數(shù)小于等于0求出x的范圍,寫出區(qū)間形式即得到函數(shù)y=xlnx的單調(diào)遞減區(qū)間.

  【解答】解:函數(shù)的定義域?yàn)閤>0

  ∵y′=lnx+1

  令lnx+1<0得0

  ∴函數(shù)y=xlnx的單調(diào)遞減區(qū)間是( 0, ),

  故選:B.

  9.若方程 + =1表示焦點(diǎn)在y軸上的橢圓,則實(shí)數(shù)m的取值范圍為(  )

  A.(﹣∞,1) B.(1,2) C.(2,3) D.(3,+∞)

  【考點(diǎn)】橢圓的簡單性質(zhì).

  【分析】由題意可得m﹣1>3﹣m>0,解不等式即可得到所求范圍.

  【解答】解:方程 + =1表示焦點(diǎn)在y軸上的橢圓,

  可得m﹣1>3﹣m>0,

  解得2

  故選:C.

  10.已知命題p:∀x∈(0,+∞),2x>3x,命題q:∃x0∈(0,+∞),x >x ,則下列命題中的真命題是(  )

  A.p∧q B.p∨(¬q) C.(¬p)∧(¬q) D.(¬p)∧q

  【考點(diǎn)】復(fù)合命題的真假.

  【分析】根據(jù)∀x∈(0,+∞),2x<3x,是真命題,再根據(jù)復(fù)合命題之間的判定方法即可判斷出真假.

  【解答】解:命題p:∀x∈(0,+∞),2x>3x,是假命題,例如取x=2不成立;

  命題q:∵∀x∈(0,+∞),2x<3x,因此命題q是假命題,

  ∴只有(¬p)∧(¬q)是真命題.

  故選:C.

  11.f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,則不等式f(x)g(x)<0的解集是(  )

  A.(﹣∞,﹣3)∪(0,3) B.(﹣∞,﹣3)∪(3,+∞) C.(﹣3,0)∪(3,+∞) D.(﹣3,0)∪(0,3)

  【考點(diǎn)】利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;函數(shù)奇偶性的性質(zhì).

  【分析】構(gòu)造函數(shù)h(x)=f(x)g(x),利用已知可判斷出其奇偶性和單調(diào)性,進(jìn)而即可得出不等式的解集.

  【解答】解:令h(x)=f(x)g(x),則h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g(x)=﹣h(x),因此函數(shù)h(x)在R上是奇函數(shù).

  ①∵當(dāng)x<0時(shí),h′(x)=f′(x)g(x)+f(x)g′(x)>0,∴h(x)在x<0時(shí)單調(diào)遞增,

  故函數(shù)h(x)在R上單調(diào)遞增.

  ∵h(yuǎn)(﹣3)=f(﹣3)g(﹣3)=0,

  ∴h(x)=f(x)g(x)<0=h(﹣3),

  ∴x<﹣3.

  ②當(dāng)x>0時(shí),函數(shù)h(x)在R上是奇函數(shù),可知:h(x)在(0,+∞)上單調(diào)遞增,且h(3)=﹣h(﹣3)=0,

  ∴h(x)<0,的解集為(0,3).

  ∴不等式f(x)g(x)<0的解集是(﹣∞,﹣3)∪(0,3).

  故選:A

  12.過點(diǎn)M(2,﹣1)作斜率為 的直線與橢圓 + =1(a>b>0)相交于A,B兩個(gè)不同點(diǎn),若M是AB的中點(diǎn),則該橢圓的離心率e=(  )

  A. B. C. D.

  【考點(diǎn)】橢圓的簡單性質(zhì).

  【分析】利用點(diǎn)差法,結(jié)合M是線段AB的中點(diǎn),斜率為 = = ,即可求出橢圓的離心率.

  【解答】解:設(shè)A(x1,y1),B(x2,y2),則x1+x2=4,y1+y2=﹣2,

  A,B兩個(gè)不同點(diǎn)代入橢圓方程,可得 + =1, + =1,

  作差整理可得 + =0,

  ∵斜率為 = = ,

  ∴a=2b,

  ∴c= = b,

  ∴e= = .

  故選:C.

  二、填空題:本大題共4個(gè)小題,每小題4分.、共16分.

  13.拋物線x2=4y的焦點(diǎn)坐標(biāo)為 (0,1) .

  【考點(diǎn)】拋物線的簡單性質(zhì).

  【分析】由拋物線x2=4y的焦點(diǎn)在y軸上,開口向上,且2p=4,即可得到拋物線的焦點(diǎn)坐標(biāo).

  【解答】解:拋物線x2=4y的焦點(diǎn)在y軸上,開口向上,且2p=4,∴

  ∴拋物線x2=4y的焦點(diǎn)坐標(biāo)為(0,1)

  故答案為:(0,1)

  14.已知命題p:∃x0∈R,3 =5,則¬p為 ∀x∈R,3x≠5 .

  【考點(diǎn)】命題的否定.

  【分析】由特稱命題的否定方法可得結(jié)論.

  【解答】解:由特稱命題的否定可知:

  ¬p:∀x∈R,3x≠5,

  故答案為:∀x∈R,3x≠5.

  15.已知曲線f(x)=xex在點(diǎn)P(x0,f(x0))處的切線與直線y=x+1平行,則點(diǎn)P的坐標(biāo)為 (0,0) .

  【考點(diǎn)】利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程.

  【分析】求出f(x)的導(dǎo)數(shù),求得切線的斜率,由兩直線平行的條件:斜率相等,可得x0為x+1=e﹣x的解,運(yùn)用單調(diào)性可得方程的解,進(jìn)而得到P的坐標(biāo).

  【解答】解:f(x)=xex的導(dǎo)數(shù)為f′(x)=(x+1)ex,

  可得切線的斜率為(x0+1)ex0,

  由切線與直線y=x+1平行,可得

  (x0+1)ex0=1,

  即有x0為x+1=e﹣x的解,

  由y=x+1﹣e﹣x,在R上遞增,且x=0時(shí),y=0.

  即有x0=0,

  則P的坐標(biāo)為(0,0).

  故答案為:(0,0).

  16.已知f(x)=ax3+3x2﹣1存在唯一的零點(diǎn)x0,且x0<0,則實(shí)數(shù)a的取值范圍是 (﹣∞,﹣2) .

  【考點(diǎn)】利用導(dǎo)數(shù)研究函數(shù)的極值;函數(shù)零點(diǎn)的判定定理.

  【分析】討論a的取值范圍,求函數(shù)的導(dǎo)數(shù)判斷函數(shù)的極值,根據(jù)函數(shù)極值和單調(diào)性之間的關(guān)系進(jìn)行求解即可.

  【解答】解:(i)當(dāng)a=0時(shí),f(x)=﹣3x2+1,令f(x)=0,解得x= ,函數(shù)f(x)有兩個(gè)零點(diǎn),舍去.

  (ii)當(dāng)a≠0時(shí),f′(x)=3ax2+6x=3ax(x+ ),令f′(x)=0,解得x=0或﹣ .

 、佼(dāng)a<0時(shí),﹣ >0,當(dāng)x>﹣ 或x<0,f′(x)<0,此時(shí)函數(shù)f(x)單調(diào)遞減;當(dāng)00,此時(shí)函數(shù)f(x)單調(diào)遞增.

  ∴故x=﹣ 是函數(shù)f(x)的極大值點(diǎn),0是函數(shù)f(x)的極小值點(diǎn).

  ∵函數(shù)f(x)=ax3+3x2﹣1存在唯一的零點(diǎn)x0,且x0<0,則f(﹣ )=﹣ + ﹣1= ﹣1<0,

  即a2>4得a>2(舍)或a<﹣2.

 、诋(dāng)a>0時(shí),﹣ <0,當(dāng)x<﹣ 或x>0時(shí),f′(x)>0,此時(shí)函數(shù)f(x)單調(diào)遞增;

  當(dāng)﹣

  ∴x=﹣ 是函數(shù)f(x)的極大值點(diǎn),0是函數(shù)f(x)的極小值點(diǎn).

  ∵f(0)=﹣1<0,

  ∴函數(shù)f(x)在(0,+∞)上存在一個(gè)零點(diǎn),此時(shí)不滿足條件.

  綜上可得:實(shí)數(shù)a的取值范圍是(﹣∞,﹣2).

  故答案為:(﹣∞,﹣2).

  三、解答題:本大題共7小題,共48分,解答應(yīng)寫出文字說明、證明過程或演算步驟.

  17.已知命題p:函數(shù)y=kx是增函數(shù),q:方程 +y2=1表示焦點(diǎn)在x軸上的橢圓,若p∧(¬q)為真命題,求實(shí)數(shù)k的取值范圍.

  【考點(diǎn)】復(fù)合命題的真假.

  【分析】命題p:函數(shù)y=kx是增函數(shù),利用一次函數(shù)的單調(diào)性可得k>0.命題q:方程 +y2=1表示焦點(diǎn)在x軸上的橢圓,可得k>1.由于p∧(¬q)為真命題,可得p為真命題,q為假命題.即可得出.

  【解答】解:命題p:函數(shù)y=kx是增函數(shù),∴k>0.

  命題q:方程 +y2=1表示焦點(diǎn)在x軸上的橢圓,∴k>1.

  ∵p∧(¬q)為真命題,∴p為真命題,q為假命題.

  ∴ ,解得0

  ∴實(shí)數(shù)k的取值范圍是0

  18.已知函數(shù)f(x)=2x3﹣6x2+m在[﹣2,2]上的最大值為3,求f(x)在[﹣2,2]上的最小值.

  【考點(diǎn)】二次函數(shù)的性質(zhì).

  【分析】求導(dǎo)并判斷導(dǎo)數(shù)的正負(fù),從而確定單調(diào)區(qū)間;由最大值建立方程求出m的值,進(jìn)而求出最小值.

  【解答】解:f′(x)=6x2﹣12x,令f′(x)=0,則x=0或x=2,

  x (﹣∞,0) 0 (0,2) 2 (2,+∞)

  f(x) 正 0 負(fù) 0 正

  f(x) 遞增 極大值 遞減 極小值 遞增

  ∴f(x)在[﹣2,0]上單調(diào)遞增,在(0,2]上單調(diào)遞減,

  ∴f(x)max=f(0)=m=3,

  即f(x)=2x3﹣6x2+3,

  又∵f(﹣2)=﹣37,f(2)=﹣5,

  ∴f(x)min=f(﹣2)=﹣37.

  19.已知點(diǎn)P(1,﹣2)在拋物線C:y2=2px(p>0)上.

  (1)求拋物線C的方程及其準(zhǔn)線方程;

  (2)若過拋物線C焦點(diǎn)F的直線l與拋物線C相交于A,B兩個(gè)不同點(diǎn),求|AB|的最小值.

  【考點(diǎn)】拋物線的簡單性質(zhì).

  【分析】(1)根據(jù)點(diǎn)P(1,﹣2)在拋物線C:y2=2px(p>0)上,可得p值,即可求拋物線C的方程及其準(zhǔn)線方程;

  (2)設(shè)直線l的方程為:x+my﹣1=0,代入y2=4x,整理得,y2+4my﹣4=0,利用韋達(dá)定理和拋物線的定義知|AB|=4(m2+1)≥4,由此能求出|AB|的最小值.

  【解答】解:∵點(diǎn)P(1,﹣2)在拋物線C:y2=2px(p>0)上,

  ∴2p=4,解得:p=2,

  ∴拋物線C的方程為y2=4x,準(zhǔn)線方程為x=﹣1;

  (2)設(shè)直線l的方程為:x+my﹣1=0,

  代入y2=4x,整理得,y2+4my﹣4=0

  設(shè)A(x1,y1),B(x2,y2),

  則y1,y2是上述關(guān)于y的方程的兩個(gè)不同實(shí)根,所以y1+y2=﹣4m

  根據(jù)拋物線的定義知:|AB|=x1+x2+2=(1﹣my1)+(1﹣my2)=4(m2+1)

  ∴|AB|=4(m2+1)≥4,

  當(dāng)且僅當(dāng)m=0時(shí),|AB|有最小值4.

  20.已知函數(shù)f(x)=x﹣ ﹣2alnx(a∈R).

  (1)若函數(shù)f(x)在x= 處取得極值,求實(shí)數(shù)a的值;

  (2)求證:當(dāng)a≤1時(shí),不等式f(x)≥0在[1,+∞)恒成立.

  【考點(diǎn)】利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值;利用導(dǎo)數(shù)研究函數(shù)的極值.

  【分析】(1)求出函數(shù)的導(dǎo)數(shù),根據(jù)f′( )=0,解出驗(yàn)證即可;(2)求出函數(shù)的導(dǎo)數(shù),通過a的范圍,確定導(dǎo)函數(shù)的符號(hào),求出函數(shù)f(x)的單調(diào)性,從而判斷f(x)的范圍.

  【解答】解:(1)f(x)的定義域是(0,+∞),

  f′(x)=1+ ﹣ ,

  ∴f′( )=1+4(2a﹣1)﹣4a=0,解得:a= ,

  ∴a= 時(shí),f′(x)= ,

  ∴f(x)在(0, )遞增,在( ,1)遞減,

  f(x)在x= 處取得極值,

  故a= 符合題意;

  (2)f′(x)=1+ ﹣ = ,

  當(dāng)a≤1時(shí),則2a﹣1≤1,

  ∴f′(x)>0在(1,+∞)恒成立,

  函數(shù)f(x)遞增,

  ∴f(x)≥f(1)=2(1﹣a)≥0.

  21.已知函數(shù)f(x)=x﹣ ﹣2alnx(a∈R).

  (1)若函數(shù)f(x)在x= 處取得極值,求實(shí)數(shù)a的值;

  (2)若不等式f(x)≥0在[1,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

  【考點(diǎn)】利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;利用導(dǎo)數(shù)研究函數(shù)的極值.

  【分析】(1)求出函數(shù)的導(dǎo)數(shù),根據(jù)f′( )=0,解出驗(yàn)證即可;

  (2)依題意有:fmin(x,)≥0從而求出f(x)的導(dǎo)數(shù),令f′(x)=0,得:x1=2a﹣1,x2=1,通過討論①當(dāng)2a﹣1≤1即a≤1時(shí)②當(dāng)2a﹣1>1即a>1時(shí),進(jìn)而求出a的范圍

  【解答】解:(1)f(x)的定義域是(0,+∞),

  f′(x)=1+ ﹣ ,

  ∴f′( )=1+4(2a﹣1)﹣4a=0,解得:a= ,

  ∴a= 時(shí),f′(x)= ,

  ∴f(x)在(0, )遞增,在( ,1)遞減,

  f(x)在x= 處取得極值,

  故a= 符合題意;

  (2)依題意有:fmin(x,)≥0

  f′(x)= ,

  令f′(x)=0,

  得:x1=2a﹣1,x2=1,

  ①當(dāng)2a﹣1≤1即a≤1時(shí),

  函數(shù)f'(x)≥0在[1,+∞)恒成立,

  則f(x)在[1,+∞)單調(diào)遞增,

  于是fmin(x)=f(1)=2﹣2a≥0,

  解得:a≤1;

  ②當(dāng)2a﹣1>1即a>1時(shí),

  函數(shù)f(x)在[1,2a﹣1]單調(diào)遞減,在[2a﹣1,+∞)單調(diào)遞增,

  于是fmin(x)=f(2a﹣1)

  綜上所述:實(shí)數(shù)a的取值范圍是a≤1.

  22.已知橢圓C: + =1(a>b>0)的離心率e= ,點(diǎn)P(﹣ ,1)在該橢圓上.

  (1)求橢圓C的方程;

  (2)若點(diǎn)A,B是橢圓C上關(guān)于直線y=kx+1對(duì)稱的兩點(diǎn),求實(shí)數(shù)k的取值范圍.

  【考點(diǎn)】橢圓的簡單性質(zhì).

  【分析】(1)根據(jù)離心率公式和點(diǎn)滿足橢圓方程,結(jié)合b2=a2﹣c2,即可求得橢圓C的方程;

  (2)設(shè)A(x1,y1),B(x2,y2),y1≠y2,BA的中點(diǎn)(x0,y0),直線y=kx+1且k≠0,恒過(0,1),點(diǎn)B,A在橢圓上,化簡可得y0= =﹣1,AB的中點(diǎn)在y=kx+1上,解得x0,利用 ,可得x=± ,推出k的不等式,得到結(jié)果.

  【解答】解:(1)由已知e= = ,即c2= a2,b2=a2﹣c2= a2,

  將P(﹣ ,1)代入橢圓方程,可得 + =1,

  ∴a=2,b= ,∴a2=4,∴b2=2,

  ∴橢圓C的方程為: + =1;

  (2)橢圓C上存在點(diǎn)B,A關(guān)于直線y=kx+1對(duì)稱,

  設(shè)A(x1,y1),B(x2,y2),y1≠y2

  AB的中點(diǎn)(x0,y0),直線y=kx+1且k≠0,恒過(0,1),

  則x12+(y1﹣1)2=x22+(y2﹣1)2,

  點(diǎn)B,A在橢圓上,

  ∴x12=4﹣2y12,x22=4﹣2y22,∴4﹣2y12+(y1﹣1)2=4﹣2y22+(y2﹣1)2,

  化簡可得:y12﹣y22=﹣2(y1﹣y2),即y1+y2=﹣2,

  ∴y0= =﹣1,

  又因?yàn)锳B的中點(diǎn)在y=kx+1上,所以y0=kx0+1,x0=﹣ ,

  由 ,可得x=± ,

  ∴0<﹣ < ,或﹣ <﹣ <0,

  即k<﹣ 或k> .

  則k的取值范圍是(﹣∞,﹣ )∪( ,+∞).

  23.已知橢圓C: + =1(a>b>0)的離心率e= ,原點(diǎn)到直線 + =1的距離為 .

  (1)求橢圓C的方程;

  (2)若點(diǎn)A,B是橢圓C上關(guān)于直線y=kx+1對(duì)稱的兩點(diǎn),求實(shí)數(shù)k的取值范圍.

  【考點(diǎn)】橢圓的簡單性質(zhì).

  【分析】(1)根據(jù)離心率公式和點(diǎn)到直線的距離公式,結(jié)合b2=a2﹣c2,即可求得橢圓C的方程;

  (2)設(shè)A(x1,y1),B(x2,y2),y1≠y2,BA的中點(diǎn)(x0,y0),直線y=kx+1且k≠0,恒過(0,1),點(diǎn)B,A在橢圓上,化簡可得y0= =﹣1,AB的中點(diǎn)在y=kx+1上,解得x0,利用 ,可得x=± ,推出k的不等式,得到結(jié)果.

  【解答】解:(1)由已知e= = ,即c2= a2,b2=a2﹣c2= a2,

  原點(diǎn)到直線 + =1的距離為 ,

  即有 = ,

  ∴a=2,b= ,∴a2=4,∴b2=2,

  ∴橢圓C的方程為: + =1;

  (2)橢圓C上存在點(diǎn)B,A關(guān)于直線y=kx+1對(duì)稱,

  設(shè)A(x1,y1),B(x2,y2),y1≠y2

  AB的中點(diǎn)(x0,y0),直線y=kx+1且k≠0,恒過(0,1),

  則x12+(y1﹣1)2=x22+(y2﹣1)2,

  點(diǎn)B,A在橢圓上,

  ∴x12=4﹣2y12,x22=4﹣2y22,∴4﹣2y12+(y1﹣1)2=4﹣2y22+(y2﹣1)2,

  化簡可得:y12﹣y22=﹣2(y1﹣y2),即y1+y2=﹣2,

  ∴y0= =﹣1,

  又因?yàn)锳B的中點(diǎn)在y=kx+1上,所以y0=kx0+1,x0=﹣ ,

  由 ,可得x=± ,

  ∴0<﹣ < ,或﹣ <﹣ <0,

  即k<﹣ 或k> .

  則k的取值范圍是(﹣∞,﹣ )∪( ,+∞)

【高二數(shù)學(xué)期末考試題】相關(guān)文章:

商務(wù)禮儀期末考試題06-29

2017計(jì)算機(jī)期末考試題及答案05-27

2017年cad期末考試題目及答案07-17

2017小學(xué)升初中數(shù)學(xué)考試題題庫05-15

2017小升初數(shù)學(xué)必考試題及答案10-02

劍橋少兒英語1級(jí)下冊期末考試題05-13

大一計(jì)算機(jī)期末考試題及答案12-16

英語高級(jí)考試題10-12

excel考試題附答案07-19

執(zhí)業(yè)藥師考試題型10-22