- 相關(guān)推薦
小升初數(shù)學(xué)知識(shí)點(diǎn):數(shù)的整除
在平凡的學(xué)習(xí)生活中,相信大家一定都接觸過(guò)知識(shí)點(diǎn)吧!知識(shí)點(diǎn)有時(shí)候特指教科書(shū)上或考試的知識(shí)。哪些才是我們真正需要的知識(shí)點(diǎn)呢?下面是小編整理的小升初數(shù)學(xué)知識(shí)點(diǎn):數(shù)的整除,希望能夠幫助到大家。
數(shù)的整除
一、基本概念和符號(hào):
1、整除:如果一個(gè)整數(shù)a,除以一個(gè)自然數(shù)b,得到一個(gè)整數(shù)商c,而且沒(méi)有余數(shù),那么叫做a能被b整除或b能整除a,記作b|a。
2、常用符號(hào):整除符號(hào)“|”,不能整除符號(hào)“ ”;因?yàn)榉?hào)“∵”,所以的符號(hào)“∴”;
二、整除判斷方法:
1. 能被3、9整除:各個(gè)數(shù)位上數(shù)字的和能被3、9整除。
2能被7整除:
、倌┤簧蠑(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成數(shù)之差能被7整除。
②逐次去掉最后一位數(shù)字并減去末位數(shù)字的2倍后能被7整除。
3. 能被11整除:
、倌┤簧蠑(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被11整除。
、谄鏀(shù)位上的數(shù)字和與偶數(shù)位數(shù)的數(shù)字和的差能被11整除。
、壑鸫稳サ糇詈笠晃粩(shù)字并減去末位數(shù)字后能被11整除。
4. 能被2、5整除:末位上的數(shù)字能被2、5整除。
5. 能被4、25整除:末兩位的數(shù)字所組成的數(shù)能被4、25整除。
6. 能被8、125整除:末三位的數(shù)字所組成的數(shù)能被8、125整除。
7. 能被13整除:
①末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被13整除。
、谥鸫稳サ糇詈笠晃粩(shù)字并減去末位數(shù)字的9倍后能被13整除。
知識(shí)點(diǎn)數(shù)的整除
1. 把一個(gè)合數(shù)分解質(zhì)因數(shù),通常用短除法。先用能整除這個(gè)合數(shù)的質(zhì)數(shù)去除,一直除到商是質(zhì)數(shù)為止,再把除數(shù)和商寫(xiě)成連乘的形式。
2. 求幾個(gè)數(shù)的最大公約數(shù)的方法是:先用這幾個(gè)數(shù)的公約數(shù)連續(xù)去除,一直除到所得的商只有公約數(shù)1為止,然后把所有的除數(shù)連乘求積,這個(gè)積就是這幾個(gè)數(shù)的的最大公約數(shù) 。
3. 求幾個(gè)數(shù)的最小公倍數(shù)的方法是:先用這幾個(gè)數(shù)(或其中的部分?jǐn)?shù))的公約數(shù)去除,一直除到互質(zhì)(或兩兩互質(zhì))為止,然后把所有的除數(shù)和商連乘求積,這個(gè)積就是這幾個(gè)數(shù)的最小公倍數(shù)。
4. 成為互質(zhì)關(guān)系的兩個(gè)數(shù):1和任何自然數(shù)互質(zhì) ; 相鄰的兩個(gè)自然數(shù)互質(zhì); 當(dāng)合數(shù)不是質(zhì)數(shù)的倍數(shù)時(shí),這個(gè)合數(shù)和這個(gè)質(zhì)數(shù)互質(zhì); 兩個(gè)合數(shù)的公約數(shù)只有1時(shí),這兩個(gè)合數(shù)互質(zhì)。
數(shù)的整除奧數(shù)復(fù)習(xí)知識(shí)點(diǎn)
1. 定義:如果一個(gè)整式除以另一個(gè)整式所得的商式也是一個(gè)整式,并且余式是零,則稱(chēng)這個(gè)整式被另一個(gè)整式整除。
2. 根據(jù)被除式=除式×商式+余式,設(shè)f(x),p(x),q(x)都是含x 的整式,
那么 式的整除的意義可以表示為:
若f(x)=p(x)×q(x), 則稱(chēng)f(x)能被 p(x)和q(x)整除
例如∵x2-3x-4=(x-4)(x +1),
∴x2-3x-4能被(x-4)和(x +1)整除。
顯然當(dāng) x=4或x=-1時(shí)x2-3x-4=0,
3. 一般地,若整式f(x)含有x –a的因式,則f(a)=0
反過(guò)來(lái)也成立,若f(a)=0,則x-a能整除f(x)。
4. 在二次三項(xiàng)式中
若x2+px+q=(x+a)(x+b)=x2+(a+b)x+ab 則p=a+b,q=ab
在恒等式中,左右兩邊同類(lèi)項(xiàng)的系數(shù)相等。這可以推廣到任意多項(xiàng)式。