- 相關(guān)推薦
一元二次方程練習(xí)題
一元二次方程有4種解法,即直接開平方法、配方法、公式法、因式分解法。以下是小編整理的關(guān)于一元二次方程練習(xí)題,希望大家認(rèn)真閱讀!
題型1:認(rèn)識(shí)一元二次方程,并能找出各項(xiàng)的系數(shù)
解法:根據(jù)一元二次方程的概念,這個(gè)不難找,注意ax+bx+c=0,不是一元二次方程,因?yàn)闆](méi)有確定a的范圍,a=0時(shí),它就不是。還有一定要化成一般形式我們?cè)偃ヅ袛唷?/p>
例題:若方程是(m+2)x|m|+3mx+1=0關(guān)于x的一元二次方程,則( )
A.m=±2 B.m=2 C.m= -2
例題:把一元二次方程2x(x﹣1)=(x﹣3)+4化成一般式之后,其二次項(xiàng)系數(shù)與一次項(xiàng)分別是( )
A、2,﹣3 B、﹣2,﹣3 C、2,﹣3x D、﹣2,﹣3x
題型2:方程根的考查
例題:已知x=2是關(guān)于x的一元二次方程ax2-3bx-5=0的一個(gè)根,則4a-6b的值是 .
例題:關(guān)于x的方程a(x+m)2+b=0的解是x1=-2,x2=1(a,m,b均為常數(shù),
a≠0),則方程a(x+m+2)2+b=0的解是_________.
題型3:利用一元二次方程降次
解法:一般只要把二次項(xiàng)放在等式的左邊,其它放在等式的右邊,那么二次就降成一次了。
例題:
已知m,n是方程x-2x-1=0的兩根,且(2m-4m+a(3n-6n-7)=8,則a的值等于 .
例題:已知x-x-1=0,則-x+2x+2016的為 。
題型4:利用一元二次方程因式分解
1475486091506914.png
題型5:整體思想解方程
解法:用整體思想來(lái)解方程,如果是在實(shí)際問(wèn)題背景中,我們一定要記得檢驗(yàn),看是否會(huì)符合實(shí)際情況。
例題:已知(x+y)+(x+y)=0,則x+y=___________
例題:若實(shí)數(shù)a、b滿足(4a+4b) (4a+4b-2)-8=0,則a+b=_______.
題型6:一元二次方程的解法
解方程:(1)(y-1)2=2y(y-1). (2)2x2+1=3x. (配方法)
(3)9(x+2)2-16(2x + 3)2=0
題型7:根的判別式
例題:
已知關(guān)于x的方程kx+(1-k)x-1=0,下列說(shuō)法正確的是( ).
A.當(dāng)k=0時(shí),方程無(wú)解
B.當(dāng)k=1時(shí),方程有一個(gè)實(shí)數(shù)解
C.當(dāng)k=-1時(shí),方程有兩個(gè)相等的實(shí)數(shù)解
D.當(dāng)k≠0時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)解
例題:下列命題:
①若b=2a+c/2,則一元二次方程ax+bx+c=O必有一根為-2;
、谌鬭c<0, 則方程 cx+bx+a=O有兩個(gè)不等實(shí)數(shù)根;
、廴鬮-4ac=0, 則方程 cx+bx+a=O有兩個(gè)相等實(shí)數(shù)根;
其中正確的個(gè)數(shù)是( )
A.O個(gè) B.l個(gè) C.2個(gè) D.3 個(gè)
例題:已知關(guān)于x的一元二次方程x2+bx+b﹣1=0有兩個(gè)相等的實(shí)數(shù)根,則b的值是 .
題型8:一元二次方程與幾何的綜合
例題:已知等腰三角形兩腰長(zhǎng)分別是x2,2x+3,底為2,求三角形的周長(zhǎng)
例題:已知關(guān)于x的方程x2-(2a-1)x+4(a-1)=0的兩個(gè)根是斜邊長(zhǎng)為5的直角三角形的兩條直角邊的長(zhǎng),求這個(gè)直角三角形的面積。
【教學(xué)目的】
精選學(xué)生在解一元二次方程有關(guān)問(wèn)題時(shí)出現(xiàn)的典型錯(cuò)例加以剖析,幫助學(xué)生找出產(chǎn)生錯(cuò)誤的原因和糾正錯(cuò)誤的方法,使學(xué)生在解題時(shí)少犯錯(cuò)誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。
【課前練習(xí)】
1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時(shí),方程為一元一次方程;當(dāng) a_____時(shí),方程為一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,當(dāng)△_______時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根,當(dāng)△________時(shí),方程沒(méi)有實(shí)數(shù)根。
【典型例題】
例1 下列方程中兩實(shí)數(shù)根之和為2的方程是()
(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0
錯(cuò)答: B
正解: C
錯(cuò)因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實(shí)數(shù)根,故由△可知,方程B無(wú)實(shí)數(shù)根,方程C合適。
例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個(gè)實(shí)數(shù)根之和大于-4,則k的取值范圍是( )
(A) k-1 (B) k0 (c) -10 (D) -1≤k0
錯(cuò)解 :B
正解:D
錯(cuò)因剖析:漏掉了方程有實(shí)數(shù)根的前提是△≥0
例3(2000廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個(gè)不相等的實(shí)根,求k的取值范圍。
1:某種服裝,平均每天可以銷售20件,每件盈利44元,在每件降價(jià)幅度不超過(guò)10元的情況下,若每件降價(jià)1元,則每天可多售出5件,如果每天要盈利1600元,每件應(yīng)降價(jià)多少元
解:設(shè)沒(méi)件降價(jià)為x,則可多售出5x件,每件服裝盈利44-x元,
依題意x10
(44-x)(20+5x)=1600
展開后化簡(jiǎn)得:x-44x+144=0
即(x-36)(x-4)=0
x=4或x=36(舍)
即每件降價(jià)4元
要找準(zhǔn)關(guān)系式
2.游行隊(duì)伍有8行12列,后又增加了69人,使得隊(duì)伍增加的行列數(shù)相同,增加了多少行多少列
解:設(shè)增加x (8+x)(12+x)=96+69 x=3
增加了3行3列
3.某化工材料經(jīng)售公司購(gòu)進(jìn)了一種化工原料,進(jìn)貨價(jià)格為每千克30元.物價(jià)部門規(guī)定其銷售單價(jià)不得高于每千克70元,也不得低于30元.市場(chǎng)調(diào)查發(fā)現(xiàn):?jiǎn)蝺r(jià)每千克70元時(shí)日均銷售60kg;單價(jià)每千克降低一元,日均多售2kg。在銷售過(guò)程中,每天還要支出其他費(fèi)用500元(天數(shù)不足一天時(shí),按一天計(jì)算).如果日均獲利1950元,求銷售單價(jià)
解: (1)若銷售單價(jià)為x元,則每千克降低了(70-x)元,日均多售出2(70-x)千克,日均銷售量為[60+2(70-x)]千克,每千克獲利(x-30)元.
依題意得:
y=(x-30)[60+2(70-x)]-500
=-2x^2+260x-6500
(30=x=70)
(2)當(dāng)日均獲利最多時(shí):?jiǎn)蝺r(jià)為65元,日均銷售量為60+2(70-65)=70kg,那么獲總利為1950x7000/70=195000元,當(dāng)銷售單價(jià)最高時(shí):?jiǎn)蝺r(jià)為70元,日均銷售60kg,將這批化工原料全部售完需7000/60約等于117天,那么獲總利為(70-30)x7000-117x500=221500
元,而221500195000時(shí)且221500-195000=26500元.
銷售單價(jià)最高時(shí)獲總利最多,且多獲利26500元.
4.一輛警車停在路邊,當(dāng)警車發(fā)現(xiàn)一輛一8M/S的速度勻速行駛的貨車有違章行為,決定追趕,經(jīng)過(guò)2.5s,警車行駛100m追上貨車.試問(wèn)
(1)從開始加速到追上貨車,警車的速度平均每秒增加多少m
(2)從開始加速到行駛64m處是用多長(zhǎng)時(shí)間
解:
2.5x8=20 100-20=80 80/8=10
100/【(0+10a)/2】=10解方程為2
64/【(0+2a)/2】=a解方程為8
5.用一個(gè)白鐵皮做罐頭盒,每張鐵皮可制作25個(gè)盒身,或制作盒底40個(gè),一個(gè)盒身和兩個(gè)盒底配成一套罐頭盒,F(xiàn)在有36張白鐵皮,用多少?gòu)堉坪猩,多少(gòu)堉坪械卓梢允购猩砗秃械渍门涮?/p>
6、解:設(shè)用 X 張制罐身 用 Y 張制罐底 則X+Y=36 X=36-Y 25X=40Y/2 X=4Y/5 4Y/5=36-Y Y=20 X=16
7.現(xiàn)有長(zhǎng)方形紙片一張,長(zhǎng)19cm,寬15cm,需要剪去邊長(zhǎng)多少的小正方形才能做成底面積為77平方cm的無(wú)蓋長(zhǎng)方形的紙盒
解:設(shè)邊長(zhǎng)x
則(19-2x)(15-2x)=77
4x^2-68x+208=0
x^2-17x+52=0
(x-13)(x-4)=0,當(dāng)x=13時(shí)19-2x0不合題意,舍去
故x=4
8. 某超市一月分銷售額是20萬(wàn)元,以后每月的利潤(rùn)都比上個(gè)月的利潤(rùn)增長(zhǎng)10%,則二月分銷售額是多少 3月的銷售額是多少
解:二月20x(1+0.1)=22 三月22x(1+0.1)=24.2
9. 某企業(yè)2007年利潤(rùn)為50萬(wàn)元,如果以后每年的利潤(rùn)都比上年的利潤(rùn)增長(zhǎng)x%。那么2009年的年利潤(rùn)將達(dá)到多少萬(wàn)元
解:50x(1+x%)^2
10. 某廠經(jīng)過(guò)兩年體制改革和技術(shù)革新,生產(chǎn)效率翻了一番,求平均每年的增長(zhǎng)率(精確到0.1%)
解:設(shè)平均每年的增長(zhǎng)率x
(x+1)^2=2
x=0.414
11. 一拖拉機(jī)廠,一月份生產(chǎn)出甲、乙兩種新型拖拉機(jī),其中乙型16臺(tái),從二月份起,甲型每月增產(chǎn)10臺(tái),乙型每月按相同的增長(zhǎng)率逐月遞增,又知二月份甲、乙兩型的產(chǎn)量之比為3:2,三月份甲、乙兩型產(chǎn)量之和為65臺(tái),求乙型拖拉機(jī)每月增長(zhǎng)率及甲型拖拉機(jī)一月份的產(chǎn)量。
解:設(shè)乙的增長(zhǎng)率為X,那么二月乙就是16(1+X)臺(tái),甲就是16(1+X)32;三月乙就是16(1+X)臺(tái),甲就是16(1+X)32+10臺(tái),所以列出算式16(1+X)+16(1+X)32+10=65 求解,然后可以分別算出一月二月乙的產(chǎn)量,然后就可以解得甲的產(chǎn)量了17.
12.如圖,出發(fā)沿BC勻速向點(diǎn)C運(yùn)動(dòng)。已知點(diǎn)N的速度每秒比點(diǎn)M快1cm,兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)3秒后相距10cm。求點(diǎn)M和點(diǎn)N運(yùn)動(dòng)的速度。
解:設(shè)M速度x,則N為(x+1),(BC3x)的平方加上3(x+1)的平方=10的平方,解得x=1或x=5/3又因?yàn)锳C=7,所以x=1,M的速度為1m/s,N的速度2m/s
13.用長(zhǎng)為100cm的金屬絲做一個(gè)矩形框.李明做的矩形框的面積為400平方厘米,而王寧做的矩形框的面積為600平方厘米,你知道這是為什么嗎
解:設(shè)矩形一邊長(zhǎng)為X厘米,則相鄰一邊長(zhǎng)為1/2(100-2X)厘米,即(50-X)厘米,依題意得:
Xx(50-X)=400 解之得:X1=40,X2=10;
Xx(50-X)=600 解之得:X1=20,X2=30;
所以李明做的矩形的長(zhǎng)是40厘米,寬是10厘米;
王寧做的矩形的長(zhǎng)是30厘米,寬是20厘米。
14.某商品進(jìn)價(jià)為每件40元,如果售價(jià)為每件50元,每個(gè)月可賣出210件,如果售價(jià)超過(guò)50元,但不超過(guò)80元,每件商品的售價(jià)每上漲10元,每個(gè)月少賣1件,如果售價(jià)超過(guò)80元后,若再漲價(jià),每件商品的售價(jià)每漲1元,每個(gè)月少賣3件。設(shè)該商品的售價(jià)為X元。
(1)、每件商品的利潤(rùn)為 元。若超過(guò)50元,但不超過(guò)80元,每月售 件。
若超過(guò)80元,每月售 件。(用X的式子填空。)
(2)、若超過(guò)50元但是不超過(guò)80元,售價(jià)為多少時(shí) 利潤(rùn)可達(dá)到7200元
(3)、若超過(guò)80元,售價(jià)為多少時(shí)利潤(rùn)為7500元。
解: 1)x-40 210-(x-40)10 210-(x-40)10-3(x-80)
(2)設(shè)售價(jià)為a (a-40)[210-(a-40)10=7200
(3)設(shè)售價(jià)為b (b-40)[210-(b-40)10-3(b-80)=7500 (第2 、3問(wèn)也可設(shè)該商品的售價(jià)為X1 x2元)
15.某商場(chǎng)銷售一批襯衫,平均每天可出售30件,每件賺50元,為擴(kuò)大銷售,加盈利,盡量減少庫(kù)存,商場(chǎng)決定降價(jià),如果每件降1元,商場(chǎng)平均每天可多賣2件,若商場(chǎng)平均每天要賺2100元,問(wèn)襯衫降價(jià)多少元
解:襯衫降價(jià)x元
2100=(50-x)(30+2x)=1500+70x-x^2
x^2-70x+600=0
(x-10)(x-60)=0
x-60=0 x=6050 舍去
x-10=0 x=10
16.在一塊面積為888平方厘米的矩形材料的四角,各剪掉一個(gè)大小相同的正方形(剪掉的正方形作廢料處理,不再使用),做成一個(gè)無(wú)蓋的長(zhǎng)方體盒子,要求盒子的長(zhǎng)為25cm,寬為高的2倍,盒子的寬和高應(yīng)為多少
解:設(shè)剪去正方形的邊長(zhǎng)為x,x同時(shí)是盒子的高,則盒子寬為2x;
矩形材料的尺寸:
長(zhǎng):25+2x
寬:4x;
(25+2x)x4x=888,
解得:x1=6,x2=-18.5(舍去)
盒子的寬:12cm;盒子的高:6cm。
17.某公司生產(chǎn)開發(fā)了960件新產(chǎn)品,需要經(jīng)過(guò)加工后才能投放市場(chǎng),現(xiàn)在有A,B兩個(gè)工廠都想?yún)⒓蛹庸み@批產(chǎn)品,已知A工廠單獨(dú)加工這批產(chǎn)品比B工廠單獨(dú)加工這批產(chǎn)品要多用20天,而B工廠每天比A工廠多加工8件產(chǎn)品,公司需要支付給A工廠每天80元的加工費(fèi),B工廠每天120元的加工費(fèi)。
1. A,B兩個(gè)工廠每天各能加工多少件新產(chǎn)品
2. 公司制定產(chǎn)品方案如下:可以由每個(gè)廠家單獨(dú)完成;也可以由兩個(gè)廠家同時(shí)合作完成。在加工過(guò)程中,公司需要派一名工程師每天到廠進(jìn)行技術(shù)指導(dǎo),并負(fù)擔(dān)每天5元的午餐補(bǔ)助費(fèi)。請(qǐng)幫助公司選擇哪家工廠加工比較省錢,并說(shuō)明理由。
解:1.設(shè)A每天加工x件產(chǎn)品,則B每天加工x+8件產(chǎn)品
由題意得960/x-960/(x+8)=20
解得x=16件
所以A每天加工16件產(chǎn)品,則B每天加工24件產(chǎn)品
2.設(shè)讓A加工x件,B加工960-x件
則公司費(fèi)用為x/16x(80+5)+(960-x)/24x(120+5)
化簡(jiǎn)為5/48xx+5000
所以x=0時(shí)最省錢,即全讓B廠加工
18.一元二次方程解應(yīng)用題 將進(jìn)貨單價(jià)為40元的商品按50元出售時(shí),能賣500個(gè),如果該商品每漲價(jià)1元,其銷售量就減少10個(gè)。商店為了賺取8000元的利潤(rùn),這種商品的售價(jià)應(yīng)定為多少應(yīng)進(jìn)貨多少
解:利潤(rùn)是標(biāo)價(jià)-進(jìn)價(jià)
設(shè)漲價(jià)x元,則:
(10+x)(500-10x)=8000
5000-100x+500x-10x^2=8000
x^2-40x+300=0
(x-20)^2=100
x-20=10或x-20=-10
x=30或x=10
經(jīng)檢驗(yàn),x的值符合題意
所以售價(jià)為80元或60元
所以應(yīng)進(jìn)8000/(10+x)=200個(gè)或400個(gè)
所以應(yīng)標(biāo)價(jià)為80元或60元
應(yīng)進(jìn)200個(gè)或400個(gè)
19.參加一次聚會(huì)的每?jī)蓚(gè)人都握了一次手,所有人共握手10次,有多少人參加聚會(huì)
34.參加一次足球聯(lián)賽的每?jī)蓚(gè)隊(duì)之間都進(jìn)行兩次比賽,共要比賽90場(chǎng),共有多少個(gè)隊(duì)參加比賽
35.要組織一次籃球聯(lián)賽,賽制為單循環(huán)形式(每?jī)蓚(gè)隊(duì)之間賽一場(chǎng)),計(jì)劃安排15場(chǎng)比賽,應(yīng)邀請(qǐng)多少個(gè)球隊(duì)參加比賽
解:34、n(n-1)2=10
n=5
35、x(x-1)2x2=90
x=10
36、y(y-1)2=15
y=6
20.在某場(chǎng)象棋比賽中,每位選手和其他選手賽一場(chǎng),勝者記2分,敗者記0分,平局各記1分,今有四位統(tǒng)計(jì)員統(tǒng)計(jì)了全部選手的得分之和分別是2025分、2027分、2080分、2085分,經(jīng)核實(shí),只有一位統(tǒng)計(jì)員的結(jié)果是正確的,問(wèn)這場(chǎng)比賽有幾位選手參加
解: 無(wú)論如何,每一局兩人合計(jì)都應(yīng)得2分,所以最終的總得分一定是偶數(shù),由于2025、2027、2085都是奇數(shù),所以都不符合題意,所以正確的是第三個(gè)記分員
設(shè)有x人參加,則一共比了x(x-1)/2局
你的數(shù)字似乎有錯(cuò),請(qǐng)確認(rèn)是否為2070,而不是2080(2080得不出整數(shù)解)
x(x-1)/2=2070/2
x-x-2070=0
(x-46)(x+45)=0
x1=46,x2=-45(舍)
答:一共有46位選手參加.
21.將進(jìn)貨單價(jià)為40元的商品按50元出售時(shí),能賣出500個(gè),已知該商品每降價(jià)1元,其銷售量就要減少10個(gè),為了賺8000元利潤(rùn),售價(jià)應(yīng)定為多少這時(shí)進(jìn)貨應(yīng)為多少個(gè)
22.某商店如果將進(jìn)貨價(jià)8元的商品按每件10元出售,每天可銷售200件,現(xiàn)采用提高售價(jià),減少進(jìn)貨量的方法增加利潤(rùn),已知這種商品每漲0.5元,其銷售量就可以減少10元,問(wèn)應(yīng)將售價(jià)定為多少時(shí),才能使所賺利潤(rùn)最大,并求出最大利潤(rùn)
23解:設(shè)售價(jià)應(yīng)定為x元,根據(jù)題意列方程得 整理得
(x-60)(x-80)=0
解得x1=60,x2=80
答:當(dāng)x1=60時(shí),進(jìn)貨量為400個(gè)
當(dāng)x2=80時(shí),進(jìn)貨量為200個(gè)
44解:由題意列方程得,a(350-10a)-21(350-10a)=400
(a-25)(a-31)=0
解得,a1=25,a2=31
∵ a2=31不合題意,舍去
350-10a=100
答:需要賣出100品,商品售價(jià)25元
分析:根據(jù)表格可以看出每件的售價(jià)每降1元時(shí),每日就多銷售1件,根據(jù)這個(gè)隱含條件就可以得出此類型題和以上的練習(xí)非常相似了
45.解:若定價(jià)為m元時(shí),售出的商品為
[70-(m-130)]件
列方程得
整理得
m1=m2=160
答:m的值是160
24解:設(shè)售價(jià)定為x元,則每件的利潤(rùn)為
(x-8)元,銷售量為 件,列式得(x-8)
整理得,
即當(dāng)x=14時(shí),所得利潤(rùn)有最大值,最大利潤(rùn)是720元
【一元二次方程練習(xí)題】相關(guān)文章:
一元二次方程的解法教學(xué)設(shè)計(jì)02-14
介詞練習(xí)題07-29
CAD考試練習(xí)題07-17
商務(wù)禮儀練習(xí)題及答案04-24
單證員考試練習(xí)題09-05
20以內(nèi)加減法練習(xí)題07-02
10以內(nèi)加減法練習(xí)題03-29