高二數(shù)學試卷模擬答案
高二數(shù)學試卷模擬答案
一、選擇題
1.已知an+1=an-3,則數(shù)列{an}是()
A.遞增數(shù)列 B.遞減數(shù)列
C.常數(shù)列 D.擺動數(shù)列
解析:∵an+1-an=-30,由遞減數(shù)列的定義知B選項正確.故選B.
答案:B
2.設an=1n+1+1n+2+1n+3++12n+1(nN*),則()
A.an+1an B.an+1=an
C.an+1
解析:an+1-an=(1n+2+1n+3++12n+1+12n+2+12n+3)-(1n+1+1n+2++12n+1)=12n+3-12n+1=-12n+32n+2.
∵nN*,an+1-an0.故選C.
答案:C
3.1,0,1,0,的通項公式為()
A.2n-1 B.1+-1n2
C.1--1n2 D.n+-1n2
解析:解法1:代入驗證法.
解法2:各項可變形為1+12,1-12,1+12,1-12,,偶數(shù)項為1-12,奇數(shù)項為1+12.故選C.
答案:C
4.已知數(shù)列{an}滿足a1=0,an+1=an-33an+1(nN*),則a20等于()
A.0 B.-3
C.3 D.32
解析:由a2=-3,a3=3,a4=0,a5=-3,可知此數(shù)列的最小正周期為3,a20=a36+2=a2=-3,故選B.
答案:B
5.已知數(shù)列{an}的通項an=n2n2+1,則0.98()
A.是這個數(shù)列的項,且n=6
B.不是這個數(shù)列的項
C.是這個數(shù)列的項,且n=7
D.是這個數(shù)列的項,且n=7
解析:由n2n2+1=0.98,得0.98n2+0.98=n2,n2=49.n=7(n=-7舍去),故選C.
答案:C
6.若數(shù)列{an}的通項公式為an=7(34)2n-2-3(34)n-1,則數(shù)列{an}的()
A.最大項為a5,最小項為a6
B.最大項為a6,最小項為a7
C.最大項為a1,最小項為a6
D.最大項為a7,最小項為a6
解析:令t=(34)n-1,nN+,則t(0,1],且(34)2n-2=[(34)n-1]2=t2.
從而an=7t2-3t=7(t-314)2-928.
函數(shù)f(t)=7t2-3t在(0,314]上是減函數(shù),在[314,1]上是增函數(shù),所以a1是最大項,故選C.
答案:C
7.若數(shù)列{an}的前n項和Sn=32an-3,那么這個數(shù)列的通項公式為()
A.an=23n-1 B.an=32n
C.an=3n+3 D.an=23n
解析:
、-②得anan-1=3.
∵a1=S1=32a1-3,
a1=6,an=23n.故選D.
答案:D
8.數(shù)列{an}中,an=(-1)n+1(4n-3),其前n項和為Sn,則S22-S11等于()
A.-85 B.85
C.-65 D.65
解析:S22=1-5+9-13+17-21+-85=-44,
S11=1-5+9-13++33-37+41=21,
S22-S11=-65.
或S22-S11=a12+a13++a22=a12+(a13+a14)+(a15+a16)++(a21+a22)=-65.故選C.
答案:C
9.在數(shù)列{an}中,已知a1=1,a2=5,an+2=an+1-an,則a2007等于()
A.-4 B.-5
C.4 D.5
解析:依次算出前幾項為1,5,4,-1,-5,-4,1,5,4,,發(fā)現(xiàn)周期為6,則a2007=a3=4.故選C.
答案:C
10.數(shù)列{an}中,an=(23)n-1[(23)n-1-1],則下列敘述正確的是()
A.最大項為a1,最小項為a3
B.最大項為a1,最小項不存在
C.最大項不存在,最小項為a3
D.最大項為a1,最小項為a4
解析:令t=(23)n-1,則t=1,23,(23)2,且t(0,1]時,an=t(t-1),an=t(t-1)=(t-12)2-14.
故最大項為a1=0.
當n=3時,t=(23)n-1=49,a3=-2081;
當n=4時,t=(23)n-1=827,a4=-152729;
又a3
答案:A
二、填空題
11.已知數(shù)列{an}的通項公式an=
則它的前8項依次為________.
解析:將n=1,2,3,,8依次代入通項公式求出即可.
答案:1,3,13,7,15,11,17,15
12.已知數(shù)列{an}的通項公式為an=-2n2+29n+3,則{an}中的最大項是第________項.
解析:an=-2(n-294)2+8658.當n=7時,an最大.
答案:7
13.若數(shù)列{an}的前n項和公式為Sn=log3(n+1),則a5等于________.
解析:a5=S5-S4=log3(5+1)-log3(4+1)=log365.
答案:log365
14.給出下列公式:
、賏n=sinn
、赼n=0,n為偶數(shù),-1n,n為奇數(shù);
、踑n=(-1)n+1.1+-1n+12;
、躠n=12(-1)n+1[1-(-1)n].
其中是數(shù)列1,0,-1,0,1,0,-1,0,的通項公式的.有________.(將所有正確公式的序號全填上)
解析:用列舉法可得.
答案:①
三、解答題
15.求出數(shù)列1,1,2,2,3,3,的一個通項公式.
解析:此數(shù)列化為1+12,2+02,3+12,4+02,5+12,6+02,,由分子的規(guī)律知,前項組成正自然數(shù)數(shù)列,后項組成數(shù)列1,0,1,0,1,0,.
an=n+1--1n22,
即an=14[2n+1-(-1)n](nN*).
也可用分段式表示為
16.已知數(shù)列{an}的通項公式an=(-1)n12n+1,求a3,a10,a2n-1.
解析:分別用3、10、2n-1去替換通項公式中的n,得
a3=(-1)3123+1=-17,
a10=(-1)101210+1=121,
a2n-1=(-1)2n-1122n-1+1=-14n-1.
17.在數(shù)列{an}中,已知a1=3,a7=15,且{an}的通項公式是關于項數(shù)n的一次函數(shù).
(1)求此數(shù)列的通項公式;
(2)將此數(shù)列中的偶數(shù)項全部取出并按原來的先后順序組成一個新的數(shù)列{bn},求數(shù)列{bn}的通項公式.
解析:(1)依題意可設通項公式為an=pn+q,
得p+q=3,7p+q=15.解得p=2,q=1.
{an}的通項公式為an=2n+1.
(2)依題意bn=a2n=2(2n)+1=4n+1,
{bn}的通項公式為bn=4n+1.
18.已知an=9nn+110n(nN*),試問數(shù)列中有沒有最大項?如果有,求出最大項,如果沒有,說明理由.
解析:∵an+1-an=(910)(n+1)(n+2)-(910)n(n+1)=(910)n+18-n9,
當n7時,an+1-an
當n=8時,an+1-an=0;
當n9時,an+1-an0.
a1
故數(shù)列{an}存在最大項,最大項為a8=a9=99108.
【高二數(shù)學試卷模擬答案】相關文章:
小升初數(shù)學試卷:模擬試題及答案09-16
關于2017重點小升初數(shù)學試卷模擬及答案04-13
數(shù)學試卷及答案01-26
高二語文上冊模擬題及答案01-09
高二語文下冊模擬題及答案01-09
小學數(shù)學試卷及答案01-27
小升初數(shù)學試卷及答案07-11
小升初數(shù)學試卷及答案08-09