數(shù)學(xué)核心課課堂答案
數(shù)學(xué)核心課課堂答案
一.仔細(xì)選一選
1.下列四個(gè)數(shù)中,結(jié)果為負(fù)數(shù)的是()
A.﹣(﹣)B.|﹣|C.(﹣)2D.﹣|﹣|
考點(diǎn):正數(shù)和負(fù)數(shù).
分析:根據(jù)相反數(shù),可判斷A,根據(jù)負(fù)數(shù)的絕對(duì)值,可判斷B,根據(jù)負(fù)數(shù)的偶次冪是正數(shù),可判斷C,根據(jù)絕對(duì)值的相反數(shù),可判斷D.
解答:解:A、﹣(﹣)=>0,故A錯(cuò)誤;
B、|﹣|=>0,故B錯(cuò)誤;
C、(﹣)2=>0,故C錯(cuò)誤;
D、﹣|﹣|=﹣<0,故D正確;
故選:D.
點(diǎn)評(píng):本題考查了正數(shù)和負(fù)數(shù),小于零的數(shù)是負(fù)數(shù),先化簡(jiǎn)再判斷負(fù)數(shù).
2.下列計(jì)算正確的是()
A.B.=﹣2C.D.(﹣2)3×(﹣3)2=72
考點(diǎn):實(shí)數(shù)的運(yùn)算.
分析:A、根據(jù)算術(shù)平方根的定義即可判定;
B、根據(jù)立方根的定義即可判定;
C、根據(jù)立方根的定義即可判定;
D、根據(jù)乘方運(yùn)算法則計(jì)算即可判定.
解答:解:A、=3,故選項(xiàng)A錯(cuò)誤;
B、=﹣2,故選項(xiàng)B正確;
C、=,故選項(xiàng)C錯(cuò)誤;
D、(﹣2)3×(﹣3)2=﹣8×9=﹣72,故選項(xiàng)D錯(cuò)誤.
故選B.
點(diǎn)評(píng):本題主要考查實(shí)數(shù)的運(yùn)算能力,解決此類題目的關(guān)鍵是熟記二次根式、三次根式和立方、平方的運(yùn)算法則.開(kāi)平方和開(kāi)立方分別和平方和立方互為逆運(yùn)算.立方根的性質(zhì):任何數(shù)都有立方根,①正數(shù)的立方根是正數(shù),②負(fù)數(shù)的立方根是負(fù)數(shù),③0的立方根是0.
3.用代數(shù)式表示:“a,b兩數(shù)的平方和與a,b乘積的差”,正確的是()
A.a(chǎn)2+b2﹣abB.(a+b)2﹣abC.a(chǎn)2b2﹣abD.(a2+b2)ab
考點(diǎn):列代數(shù)式.
分析:先求得a,b兩數(shù)的平方和為a2+b2,再減去a,b乘積列式得出答案即可.
解答:解:“a,b兩數(shù)的平方和與a,b乘積的差”,列示為a2+b2﹣ab.
故選:A.
點(diǎn)評(píng):此題考查列代數(shù)式,找出題目蘊(yùn)含的數(shù)量關(guān)系是解決問(wèn)題的關(guān)鍵.
4.據(jù)統(tǒng)計(jì),2013年我國(guó)用義務(wù)教育經(jīng)費(fèi)支持了13940000名農(nóng)民工隨遷子女在城市里接受義務(wù)教育,這個(gè)數(shù)字用科學(xué)計(jì)數(shù)法可表示為()
A.1.394×107B.13.94×107C.1.394×106D.13.94×105
考點(diǎn):科學(xué)記數(shù)法—表示較大的數(shù).
分析:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的'絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).
解答:解:13940000=1.394×107,
故選:A.
點(diǎn)評(píng):此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.
5.若﹣2am﹣1b2與5abn可以合并成一項(xiàng),則m+n的值是()
A.1B.2C.3D.4
考點(diǎn):合并同類項(xiàng).
分析:根據(jù)可以合并,可得同類項(xiàng),根據(jù)同類項(xiàng)是字母相同且相同字母的指數(shù)也相同,可得m、n的值,根據(jù)有理數(shù)的加法,可得答案.
解答:解:由﹣2am﹣1b2與5abn可以合并成一項(xiàng),得
m﹣1=1,n=2.
解得m=2,n=2.
m+n=2+2=4,
故選:D.
點(diǎn)評(píng):本題考查了合并同類項(xiàng),利用了同類項(xiàng)得出m、n的值是解題關(guān)鍵.
6.如圖,A是直線l外一點(diǎn),點(diǎn)B、C、E、D在直線l上,且AD⊥l,D為垂足,如果量得AC=8cm,AD=6cm,AE=7cm,AB=13cm,那么,點(diǎn)A到直線l的距離是()
A.13cmB.8cmC.7cmD.6cm
考點(diǎn):點(diǎn)到直線的距離.
分析:根據(jù)點(diǎn)到直線的距離是點(diǎn)與直線上垂足間線段的長(zhǎng),可得答案.
解答:解:點(diǎn)A到直線l的距離是AD的長(zhǎng),故點(diǎn)A到直線l的距離是6cm,
故選:D.
點(diǎn)評(píng):本題考查了點(diǎn)到直線的距離,點(diǎn)到直線的距離是點(diǎn)與直線上垂足間線段的長(zhǎng).
7.下列式子變形正確的是()
A.﹣(a﹣1)=﹣a﹣1B.3a﹣5a=﹣2aC.2(a+b)=2a+bD.|π﹣3|=3﹣π
考點(diǎn):合并同類項(xiàng);絕對(duì)值;去括號(hào)與添括號(hào).
專題:常規(guī)題型.
分析:根據(jù)去括號(hào)與添括號(hào)的法則以及合并同類項(xiàng)的定義對(duì)各選項(xiàng)依次進(jìn)行判斷即可解答.
解答:解:A、﹣(a﹣1)=﹣a+1,故本選項(xiàng)錯(cuò)誤;
B、3a﹣5a=﹣2a,故本選項(xiàng)正確;
C、2(a+b)=2a+2b,故本選項(xiàng)錯(cuò)誤;
D、|π﹣3|=π﹣3,故本選項(xiàng)錯(cuò)誤.
故選B.
點(diǎn)評(píng):本題考查去括號(hào)的方法:去括號(hào)時(shí),運(yùn)用乘法的分配律,先把括號(hào)前的數(shù)字與括號(hào)里各項(xiàng)相乘,再運(yùn)用括號(hào)前是”+“,去括號(hào)后,括號(hào)里的各項(xiàng)都不改變符號(hào);括號(hào)前是”﹣“,去括號(hào)后,括號(hào)里的各項(xiàng)都改變符號(hào).運(yùn)用這一法則去掉括號(hào).同時(shí)要注意掌握合并同類項(xiàng)的法則:把同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變.
8.若有理數(shù)m在數(shù)軸上對(duì)應(yīng)的點(diǎn)為M,且滿足m<1<﹣m,則下列數(shù)軸表示正確的是()
A.B.C.D.
考點(diǎn):數(shù)軸;相反數(shù);有理數(shù)大小比較.
分析:根據(jù)m<1<﹣m,求出m的取值范圍,進(jìn)而確定M的位置即可.
解答:解:∵m<1<﹣m,
∴,
解得:m<﹣1.
故選:A.
點(diǎn)評(píng):此題主要考查了不等式組的解法以及利用數(shù)軸確定點(diǎn)的位置,根據(jù)已知得出m的取值范圍是解題關(guān)鍵.
9.下列說(shuō)法:①兩點(diǎn)確定一條直線;②射線AB和射線BA是同一條射線;③相等的角是對(duì)頂角;④三角形任意兩邊和大于第三邊的理由是兩點(diǎn)之間線段最短.正確的是()
A.①③④B.①②④C.①④D.②③④
考點(diǎn):三角形三邊關(guān)系;直線、射線、線段;直線的性質(zhì):兩點(diǎn)確定一條直線;對(duì)頂角、鄰補(bǔ)角.
分析:利用確定直線的條件、射線的定義、對(duì)頂角的性質(zhì)、三角形的三邊關(guān)系分別判斷后即可確定正確的選項(xiàng).
解答:解:①兩點(diǎn)確定一條直線,正確;
、谏渚AB和射線BA是同一條射線,錯(cuò)誤;
、巯嗟鹊慕鞘菍(duì)頂角,錯(cuò)誤;
、苋切稳我鈨蛇吅痛笥诘谌叺睦碛墒莾牲c(diǎn)之間線段最短,正確,
故選C.
點(diǎn)評(píng):本題考查了確定直線的條件、射線的定義、對(duì)頂角的性質(zhì)、三角形的三邊關(guān)系,屬于基礎(chǔ)知識(shí),比較簡(jiǎn)單.
10.已知線段AB=8cm,在直線AB上有一點(diǎn)C,且BC=4cm,點(diǎn)M是線段AC的中點(diǎn),則線段AM的長(zhǎng)為()
A.2cmB.4cmC.2cm或6cmD.4cm或6cm
考點(diǎn):兩點(diǎn)間的距離.
分析:分類討論:點(diǎn)C在線段AB上,點(diǎn)C在線段BC的延長(zhǎng)線上,根據(jù)線段的和差,可得AC的長(zhǎng),根據(jù)線段中點(diǎn)的性質(zhì),可得AM的長(zhǎng).
解答:解:當(dāng)點(diǎn)C在線段AB上時(shí),由線段的和差,得AC=AB﹣BC=8﹣4=4(cm),
由線段中點(diǎn)的性質(zhì),得AM=AC=×4=2(cm);
點(diǎn)C在線段BC的延長(zhǎng)線上,由線段的和差,得AC=AB+BC=8+4=12(cm),
由線段中點(diǎn)的性質(zhì),得AM=AC=×12=6(cm);
故選:C.
點(diǎn)評(píng):本題考查了兩點(diǎn)間的距離,利用了線段的和差,線段中點(diǎn)的性質(zhì).
二.認(rèn)真填一填
11.若∠1=40°50′,則∠1的余角為49°10′,∠1的補(bǔ)角為139°10′.
考點(diǎn):余角和補(bǔ)角;度分秒的換算.
分析:根據(jù)余角的定義求出90°﹣∠1°,即可得出答案,根據(jù)補(bǔ)角的定義求出180°﹣∠1,即可得出答案.
解答:解:∵∠1=40°50′,
∴∠1的余角為90°﹣∠1=49°10′,
∠1的補(bǔ)角為180°﹣∠1=139°10′,
故答案為:49°10′,139°10′.
點(diǎn)評(píng):本題考查了余角和補(bǔ)角的應(yīng)用,注意:∠1是的余角是90°﹣∠1,補(bǔ)角是180°﹣∠1.
12.在實(shí)數(shù),,0,,,﹣1.414,0.131131113…(兩個(gè)“3”之間依次多一個(gè)“1”),﹣中,其中無(wú)理數(shù)是,,0.131131113…(兩個(gè)“3”之間依次多一個(gè)“1”).
考點(diǎn):無(wú)理數(shù).
分析:無(wú)理數(shù)是指無(wú)限不循環(huán)小數(shù),根據(jù)無(wú)理數(shù)的定義判斷即可.
解答:解:無(wú)理數(shù)有,,0.131131113…(兩個(gè)“3”之間依次多一個(gè)“1”),
故答案為:,,0.131131113…(兩個(gè)“3”之間依次多一個(gè)“1”).
點(diǎn)評(píng):本題考查了對(duì)無(wú)理數(shù)的定義的應(yīng)用,注意:無(wú)理數(shù)包括三方面的數(shù):①含π的,②開(kāi)方開(kāi)不盡的根式,③一些有規(guī)律的數(shù).
13.關(guān)于x的方程3x+2a=6的解是a﹣1,則a的值是.
考點(diǎn):一元一次方程的解.
分析:把x=a﹣1代入方程計(jì)算即可求出a的值.
解答:解:把x=a﹣1代入方程得:3a﹣3+2a=6,
解得:a=,
故答案為:.
點(diǎn)評(píng):此題考查了一元一次方程的解,方程的解即為能使方程左右兩邊相等的未知數(shù)的值.
14.如果a﹣3b=6,那么代數(shù)式5﹣3a+9b的值是﹣13.
考點(diǎn):代數(shù)式求值.
分析:將原式提取公因式,進(jìn)而將已知代入求出即可.
解答:解:∵a﹣3b=6,
∴5﹣3a+9b=5﹣3(a﹣3b)=5﹣3×6=﹣13.
故答案為:﹣13.
點(diǎn)評(píng):此題主要考查了代數(shù)式求值,正確應(yīng)用已知得出是解題關(guān)鍵.
15.若當(dāng)x=3時(shí),代數(shù)式(3x+4+m)與2﹣mx的值相等,則m=﹣.
考點(diǎn):解一元一次方程.
專題:計(jì)算題.
分析:把x=3代入兩代數(shù)式,使其值相等求出m的值即可.
解答:解:把x=3代入得:(13+m)=2﹣m,
去分母得:4(13+m)=28﹣21m,
去括號(hào)得:42+4m=28﹣21m,
移項(xiàng)合并得:25m=﹣14,
解得:m=﹣,
故答案為:﹣
點(diǎn)評(píng):此題考查了解一元一次方程,其步驟為:去分母,去括號(hào),移項(xiàng)合并,把未知數(shù)系數(shù)化為1,求出解.
16.下面每個(gè)正方形中的五個(gè)數(shù)之間都有相同的規(guī)律,根據(jù)這種規(guī)律,則第4個(gè)正方形中間數(shù)字m為29,第n個(gè)正方形的中間數(shù)字為8n﹣3.(用含n的代數(shù)式表示)
考點(diǎn):規(guī)律型:圖形的變化類.
分析:由前三個(gè)正方形可知:右上和右下兩個(gè)數(shù)的和等于中間的數(shù),根據(jù)這一規(guī)律即可求出m的值;
首先求得第n個(gè)的最小數(shù)為1+4(n﹣1)=4n﹣3,其它三個(gè)分別為4n﹣2,4n﹣1,4n,由以上規(guī)律求得答案即可.
解答:解:如圖,
因此第4個(gè)正方形中間數(shù)字m為14+15=29,
第n個(gè)正方形的中間數(shù)字為4n﹣2+4n﹣1=8n﹣3.
故答案為:29,8n﹣3.
點(diǎn)評(píng):此題考查圖形的變化規(guī)律,通過(guò)觀察,分析、歸納發(fā)現(xiàn)數(shù)字之間的運(yùn)算規(guī)律,并應(yīng)用發(fā)現(xiàn)的規(guī)律解決問(wèn)題.
【數(shù)學(xué)核心課課堂答案】相關(guān)文章:
2017課堂內(nèi)外數(shù)學(xué)答案04-10
核心素養(yǎng)如何落地?cái)?shù)學(xué)教學(xué)課堂05-25
高效課堂數(shù)學(xué)答案01-20
數(shù)學(xué)精致課堂答案04-11
課堂數(shù)學(xué)卷子及答案04-10
主體課堂答案數(shù)學(xué)04-10
數(shù)學(xué)卓越課堂答案04-10
暑假課堂數(shù)學(xué)答案09-28