人教版八年級(jí)數(shù)學(xué)下冊(cè)期末備考知識(shí)點(diǎn)
第一章 一次函數(shù)
1 函數(shù)的定義,函數(shù)的定義域、值域、表達(dá)式,函數(shù)的圖像
2 一次函數(shù)和正比例函數(shù),包括他們的表達(dá)式、增減性、圖像
3 從函數(shù)的觀點(diǎn)看方程、方程組和不等式
第二章 數(shù)據(jù)的描述
1 了解幾種常見(jiàn)的統(tǒng)計(jì)圖表:條形圖、扇形圖、折線圖、復(fù)合條形圖、直方圖,了解各種圖表的特點(diǎn)
條形圖特點(diǎn):
(1)能夠顯示出每組中的具體數(shù)據(jù);
(2)易于比較數(shù)據(jù)間的差別
扇形圖的特點(diǎn):
(1)用扇形的面積來(lái)表示部分在總體中所占的百分比;
(2)易于顯示每組數(shù)據(jù)相對(duì)與總數(shù)的大小
折線圖的特點(diǎn);
易于顯示數(shù)據(jù)的變化趨勢(shì)
直方圖的特點(diǎn):
(1)能夠顯示各組頻數(shù)分布的情況;
(2)易于顯示各組之間頻數(shù)的差別
2 會(huì)用各種統(tǒng)計(jì)圖表示出一些實(shí)際的問(wèn)題
第三章 全等三角形
1 全等三角形的性質(zhì):
全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
2 全等三角形的判定
邊邊邊、邊角邊、角邊角、角角邊、直角三角形的HL定理
3 角平分線的性質(zhì)
角平分線上的點(diǎn)到角的兩邊的距離相等;
到角的兩邊距離相等的點(diǎn)在角的平分線上.
第四章 軸對(duì)稱
1 軸對(duì)稱圖形和關(guān)于直線對(duì)稱的兩個(gè)圖形
2 軸對(duì)稱的性質(zhì)
軸對(duì)稱圖形的對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線;
如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連的線段的垂直平分線;
線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等;
到線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的'垂直平分線上
3 用坐標(biāo)表示軸對(duì)稱
點(diǎn)(x,y)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)是(x,-y),關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)是(-x,y),關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是(-x,-y).
4 等腰三角形
等腰三角形的兩個(gè)底角相等;(等邊對(duì)等角)
等腰三角形的頂角平分線、底邊上的中線、底邊上的高線互相重合;(三線合一)
一個(gè)三角形的兩個(gè)相等的角所對(duì)的邊也相等.(等角對(duì)等邊)
5 等邊三角形的性質(zhì)和判定
等邊三角形的三個(gè)內(nèi)角都相等,都等于60度;
三個(gè)角都相等的三角形是等邊三角形;
有一個(gè)角是60度的等腰三角形是等邊三角形;
推論:
直角三角形中,如果有一個(gè)銳角是30度,那么他所對(duì)的直角邊等于斜邊的一半.
在三角形中,大角對(duì)大邊,大邊對(duì)大角.
第五章 整式
1 整式定義、同類項(xiàng)及其合并
2 整式的加減
3 整式的乘法
(1)同底數(shù)冪的乘法:
(2)冪的乘方
(3)積的乘方
(4)整式的乘法
4 乘法公式
(1)平方差公式
(2)完全平方公式
5 整式的除法
(1)同底數(shù)冪的除法
(2)整式的除法
6 因式分解
(1)提共因式法
(2)公式法
(3)十字相乘法
【八年級(jí)數(shù)學(xué)下冊(cè)期末備考知識(shí)點(diǎn)】相關(guān)文章:
初一數(shù)學(xué)下冊(cè)實(shí)數(shù)期末備考知識(shí)點(diǎn)10-15
八年級(jí)下冊(cè)數(shù)學(xué)期末備考知識(shí)點(diǎn)11-19
有關(guān)物理下冊(cè)期末備考知識(shí)點(diǎn)04-17
八年級(jí)語(yǔ)文下冊(cè)期末備考知識(shí)點(diǎn)09-03
八年級(jí)語(yǔ)文下冊(cè)期末備考的知識(shí)點(diǎn)09-05
八年級(jí)數(shù)學(xué)下冊(cè)期末備考知識(shí)點(diǎn)復(fù)習(xí)資料06-15
高二物理下冊(cè)期末備考知識(shí)點(diǎn)04-18