亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

八年級(jí)數(shù)學(xué)一次函數(shù)的應(yīng)用知識(shí)點(diǎn)歸納

時(shí)間:2024-11-05 14:49:55 數(shù)學(xué) 我要投稿
  • 相關(guān)推薦

八年級(jí)數(shù)學(xué)一次函數(shù)的應(yīng)用知識(shí)點(diǎn)歸納

  漫長(zhǎng)的學(xué)習(xí)生涯中,大家對(duì)知識(shí)點(diǎn)應(yīng)該都不陌生吧?知識(shí)點(diǎn)也可以理解為考試時(shí)會(huì)涉及到的知識(shí),也就是大綱的分支。哪些才是我們真正需要的知識(shí)點(diǎn)呢?下面是小編精心整理的八年級(jí)數(shù)學(xué)一次函數(shù)的應(yīng)用知識(shí)點(diǎn)歸納,希望能夠幫助到大家。

八年級(jí)數(shù)學(xué)一次函數(shù)的應(yīng)用知識(shí)點(diǎn)歸納

  八年級(jí)數(shù)學(xué)一次函數(shù)的應(yīng)用知識(shí)點(diǎn)歸納 1

  一、分段函數(shù)問(wèn)題

  分段函數(shù)是在不同區(qū)間有不同對(duì)應(yīng)方式的函數(shù),要特別注意自變量取值范圍的劃分,既要科學(xué)合理,又要符合實(shí)際。

  二、函數(shù)的多變量問(wèn)題

  解決含有多變量問(wèn)題時(shí),可以分析這些變量的關(guān)系,選取其中一個(gè)變量作為自變量,然后根據(jù)問(wèn)題的條件尋求可以反映實(shí)際問(wèn)題的函數(shù)

  三、概括整合

  (1)簡(jiǎn)單的一次函數(shù)問(wèn)題:①建立函數(shù)模型的方法;②分段函數(shù)思想的應(yīng)用。

  (2)理清題意是采用分段函數(shù)解決問(wèn)題的關(guān)鍵。

  常用公式

  1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

  2.求與x軸平行線段的中點(diǎn):(x1+x2)/2

  3.求與y軸平行線段的`中點(diǎn):(y1+y2)/2

  4.求任意線段的長(zhǎng):√[(x1-x2)^2+(y1-y2)^2]

  5.求兩個(gè)一次函數(shù)式圖像交點(diǎn)坐標(biāo):解兩函數(shù)式

  兩個(gè)一次函數(shù)y1=k1x+b1y2=k2x+b2令y1=y2得k1x+b1=k2x+b2將解得的x=x0值代回y1=k1x+b1y2=k2x+b2兩式任一式得到y(tǒng)=y0則(x0,y0)即為y1=k1x+b1與y2=k2x+b2交點(diǎn)坐標(biāo)

  6.求任意2點(diǎn)所連線段的中點(diǎn)坐標(biāo):[(x1+x2)/2,(y1+y2)/2]

  八年級(jí)數(shù)學(xué)一次函數(shù)的應(yīng)用知識(shí)點(diǎn)歸納 2

  一次函數(shù)的表達(dá)式是=x+b (≠b 、b是常數(shù)),其中是x自變量,是因變量,讀作是x的一次函數(shù),當(dāng)x取一個(gè)值時(shí),有且只有一個(gè)值與x對(duì)應(yīng),如果有兩個(gè)或兩個(gè)以上的值與x對(duì)應(yīng),那么這個(gè)函數(shù)就不是一次函數(shù)。

  一次函數(shù)表達(dá)式求解:

  一次函數(shù)也叫做線性函數(shù),一般在X,坐標(biāo)軸中用一條直線來(lái)表示,當(dāng)一次函數(shù)中的一個(gè)變量的值確定的情況下,可以用一元一次方程來(lái)解答出另一個(gè)變量的值。

  一次函數(shù)的表達(dá)方式一般都為=x+b的函數(shù),叫做是X的一次函數(shù),當(dāng)常數(shù)項(xiàng)為零時(shí)的一次函數(shù),可表示為=x(≠0),這時(shí)的常數(shù)也叫比例系數(shù)。常用來(lái)表示一次函數(shù)的'方法有解析法,圖像法和列表法。一次函數(shù)的解析式一般分為點(diǎn)斜式,兩點(diǎn)式,截距式。

  解答一次函數(shù)的作法最簡(jiǎn)單的就是列表法,取一個(gè)滿足一次函數(shù)表達(dá)式的兩個(gè)點(diǎn)的坐標(biāo),來(lái)確定另一個(gè)未知數(shù)的值。還有一個(gè)描點(diǎn)法。一般取兩個(gè)點(diǎn),根據(jù)“兩點(diǎn)確定一條直線”的道理,也可叫“兩點(diǎn)法”。通常情況下=x+b(≠0)的圖象過(guò)(0,b)和(-b/,0)兩點(diǎn)即可畫出。

  一次函數(shù)與一次方程之間的關(guān)系:

  一次函數(shù)、方程和不等式是初中數(shù)學(xué)的主要內(nèi)容之一,也是中考的必考知識(shí)點(diǎn),新課程標(biāo)準(zhǔn)把三部分的關(guān)系提到了十分明朗化的程度。因此,應(yīng)該重視這部分內(nèi)容的教學(xué)在教學(xué)中,可以從以下幾個(gè)知識(shí)點(diǎn)進(jìn)行辨析。

  任何一個(gè)一元一次方程都可以轉(zhuǎn)化成ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個(gè)一次函數(shù)的值為0時(shí),求相應(yīng)的自變量的值(從數(shù)的角度);從圖像上來(lái)看,就相當(dāng)于已知直線=ax+b,確定它與x軸的交點(diǎn)橫坐標(biāo)的值(從形的角度)。

  利用函數(shù)圖像解方程:-2x+2=0,可以轉(zhuǎn)化為求一次函數(shù)=-2x+2與x軸交點(diǎn)的橫坐標(biāo)。而=-2x+2與x軸交點(diǎn)的橫坐標(biāo)為1,所以方程-2x+2=0的解為x=1。

  注意:解一元一次方程ax+b=0(a≠0)與求函數(shù)=ax+b(a≠0)的圖像與x軸交點(diǎn)的橫坐標(biāo)是同一個(gè)問(wèn)題。不同的是前者從數(shù)的角度來(lái)解決問(wèn)題,后者從形的角度來(lái)解決問(wèn)題。

  每個(gè)二元一次方程組都對(duì)應(yīng)兩個(gè)一次函數(shù),從數(shù)的角度來(lái)看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)的值相等,以及這個(gè)函數(shù)是何值;從形的角度來(lái)看,解方程組相當(dāng)于確定兩條直線交點(diǎn)的坐標(biāo),從而使方程組得出答案。

  八年級(jí)數(shù)學(xué)一次函數(shù)的應(yīng)用知識(shí)點(diǎn)歸納 3

  一.常量、變量:

  在一個(gè)變化過(guò)程中,數(shù)值發(fā)生變化的量叫做變量;數(shù)值始終不變的量叫做常量。

  二、函數(shù)的概念:

  函數(shù)的定義:一般的,在一個(gè)變化過(guò)程中,如果有兩個(gè)變量x與y,并且對(duì)于x的每一個(gè)確定的值,y都有唯一確定的值與其對(duì)應(yīng),那么我們就說(shuō)x是自變量,y是x的函數(shù).

  三、函數(shù)中自變量取值范圍的求法:

  (1)用整式表示的函數(shù),自變量的取值范圍是全體實(shí)數(shù)。

  (2)用分式表示的函數(shù),自變量的取值范圍是使分母不為0的一切實(shí)數(shù)。

  (3)用寄次根式表示的函數(shù),自變量的取值范圍是全體實(shí)數(shù)。

  用偶次根式表示的函數(shù),自變量的取值范圍是使被開方數(shù)為非負(fù)數(shù)的一切實(shí)數(shù)。

  (4)若解析式由上述幾種形式綜合而成,須先求出各部分的取值范圍,然后再求其公共范圍,即為自變量的取值范圍。

  (5)對(duì)于與實(shí)際問(wèn)題有關(guān)系的,自變量的取值范圍應(yīng)使實(shí)際問(wèn)題有意義。

  四、函數(shù)圖象的定義:一般的,對(duì)于一個(gè)函數(shù),如果把自變量與函數(shù)的每對(duì)對(duì)應(yīng)值分別作為點(diǎn)的橫、縱坐標(biāo),那么在坐標(biāo)平面內(nèi)由這些點(diǎn)組成的圖形,就是這個(gè)函數(shù)的圖象.

  五、用描點(diǎn)法畫函數(shù)的圖象的一般步驟

  1、列表(表中給出一些自變量的值及其對(duì)應(yīng)的函數(shù)值。)

  注意:列表時(shí)自變量由小到大,相差一樣,有時(shí)需對(duì)稱。

  2、描點(diǎn):(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對(duì)應(yīng)的各點(diǎn)。

  3、連線:(按照橫坐標(biāo)由小到大的順序把所描的各點(diǎn)用平滑的曲線連接起來(lái))。

  六、函數(shù)有三種表示形式:

  (1)列表法(2)圖像法(3)解析式法

  七、正比例函數(shù)與一次函數(shù)的概念:

  一般地,形如y=kx(k為常數(shù),且k≠0)的函數(shù)叫做正比例函數(shù).其中k叫做比例系數(shù)。

  一般地,形如y=kx+b(k,b為常數(shù),且k≠0)的函數(shù)叫做一次函數(shù).

  當(dāng)b=0時(shí),y=kx+b即為y=kx,所以正比例函數(shù),是一次函數(shù)的特例.

  八、正比例函數(shù)的圖象與性質(zhì):

  (1)圖象:正比例函數(shù)y=kx(k是常數(shù),k≠0))的圖象是經(jīng)過(guò)原點(diǎn)的一條直線,我們稱它為直線y=kx。

  (2)性質(zhì):當(dāng)k>0時(shí),直線y=kx經(jīng)過(guò)第三,一象限,從左向右上升,即隨著x的增大y也增大;當(dāng)k<0時(shí),直線y=kx經(jīng)過(guò)二,四象限,從左向右下降,即隨著x的增大y反而減小。

  單項(xiàng)式的乘法法則:

  單項(xiàng)式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個(gè)因式.

  單項(xiàng)式與多項(xiàng)式的乘法法則:

  單項(xiàng)式與多項(xiàng)式相乘,用單項(xiàng)式和多項(xiàng)式的每一項(xiàng)分別相乘,再把所得的積相加.

  多項(xiàng)式與多項(xiàng)式的乘法法則:

  多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)與另一個(gè)多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加.

  單項(xiàng)式的除法法則:

  單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式:對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的.一個(gè)因式.

  多項(xiàng)式除以單項(xiàng)式的法則:

  多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng)式,再把所得的商相加.

  2、乘法公式:

 、倨椒讲罟剑(a+b)(a-b)=a2-b2

  文字語(yǔ)言敘述:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差相乘,等于這兩個(gè)數(shù)的平方差.

 、谕耆椒焦剑(a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  文字語(yǔ)言敘述:兩個(gè)數(shù)的和(或差)的平方等于這兩個(gè)數(shù)的平方和加上(或減去)這兩個(gè)數(shù)的積的2倍.

  3、因式分解:

  因式分解的定義.

  把一個(gè)多項(xiàng)式化成幾個(gè)整式的乘積的形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解.

  掌握其定義應(yīng)注意以下幾點(diǎn):

  (1)分解對(duì)象是多項(xiàng)式,分解結(jié)果必須是積的形式,且積的因式必須是整式,這三個(gè)要素缺一不可;

  (2)因式分解必須是恒等變形;

  (3)因式分解必須分解到每個(gè)因式都不能分解為止.

  弄清因式分解與整式乘法的內(nèi)在的關(guān)系.

  因式分解與整式乘法是互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差的形式.

  九、求函數(shù)解析式的方法:

  待定系數(shù)法:先設(shè)出函數(shù)解析式,再根據(jù)條件確定解析式中未知的系數(shù),從而具體寫出這個(gè)式子的方法。

  1.一次函數(shù)與一元一次方程:從“數(shù)”的角度看x為何值時(shí)函數(shù)y=ax+b的值為0.

  2.求ax+b=0(a,b是常數(shù),a≠0)的解,從“形”的角度看,求直線y=ax+b與x軸交點(diǎn)的橫坐標(biāo)

  3.一次函數(shù)與一元一次不等式:

  解不等式ax+b>0(a,b是常數(shù),a≠0).從“數(shù)”的角度看,x為何值時(shí)函數(shù)y=ax+b的值大于0.

  4.解不等式ax+b>0(a,b是常數(shù),a≠0).從“形”的角度看,求直線y=ax+b在x軸上方的部分(射線)所對(duì)應(yīng)的的橫坐標(biāo)的取值范圍.

  十、一次函數(shù)與正比例函數(shù)的圖象與性質(zhì)

  1.勾股定理的內(nèi)容:如果直角三角形的兩直角邊分別是a、b,斜邊為c,那么a2+b2=c2.即直角三角形中兩直角邊的平方和等于斜邊的平方。

  注:勾——最短的邊、股——較長(zhǎng)的直角邊、弦——斜邊。

  勾股定理又叫畢達(dá)哥拉斯定理

  2.勾股定理的逆定理:

  如果三角形中兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是直角三角形。即

  3.勾股數(shù):

  滿足a2+b2=c2的三個(gè)正整數(shù),稱為勾股數(shù).勾股數(shù)擴(kuò)大相同倍數(shù)后,仍為勾股數(shù).常用勾股數(shù):3、4、5;5、12、13;7、24、25;8、15、17。

  4.勾股定理常常用來(lái)算線段長(zhǎng)度,對(duì)于初中階段的線段的計(jì)算起到很大的作用

  例題精講:

  例1:若一個(gè)直角三角形三邊的長(zhǎng)分別是三個(gè)連續(xù)的自然數(shù),則這個(gè)三角形的周長(zhǎng)為

  解析:可知三邊長(zhǎng)度為3,4,5,因此周長(zhǎng)為12

  (變式)一個(gè)直角三角形的三邊為三個(gè)連續(xù)偶數(shù),則它的三邊長(zhǎng)分別為

  解析:可知三邊長(zhǎng)度為6,8,10,則周長(zhǎng)為24

  例2:已知直角三角形的兩邊長(zhǎng)分別為3、4,求第三邊長(zhǎng).

  解析:第一種情況:當(dāng)直角邊為3和4時(shí),則斜邊為5

  第二種情況:當(dāng)斜邊長(zhǎng)度為4時(shí),一條直角邊為3,則另一邊為根號(hào)7

  《點(diǎn)評(píng)》此題是一道易錯(cuò)題目,同學(xué)們應(yīng)該認(rèn)真審題!

  例3:一個(gè)直角三角形中,兩直角邊長(zhǎng)分別為3和4,下列說(shuō)法正確的是()

  A.斜邊長(zhǎng)為25

  B.三角形周長(zhǎng)為25

  C.斜邊長(zhǎng)為5

  D.三角形面積為20

  解析:根據(jù)勾股定理,可知斜邊長(zhǎng)度為5,選擇C

  八年級(jí)數(shù)學(xué)一次函數(shù)的應(yīng)用知識(shí)點(diǎn)歸納 4

  一定要做好預(yù)習(xí)

  初二學(xué)生想要學(xué)好數(shù)學(xué),一定要學(xué)會(huì)提前預(yù)習(xí)。將老師要將的內(nèi)容提前預(yù)習(xí)一下,對(duì)于自己在預(yù)習(xí)中會(huì)出現(xiàn)的不理解的概念或者不懂的知識(shí)點(diǎn),要做好標(biāo)記和記錄,這樣初二學(xué)生在數(shù)學(xué)課堂上才會(huì)注意力集中,這樣在聽(tīng)課的過(guò)程中才能夠跟上老師的講課思路,自己的思維才能夠集中。帶著問(wèn)題去聽(tīng)老師講課,這樣會(huì)將被動(dòng)的學(xué)習(xí)變?yōu)橹鲃?dòng),可以有效的提高初二新生在數(shù)學(xué)課堂上的學(xué)習(xí)效率。

  課下要學(xué)會(huì)及時(shí)復(fù)習(xí)

  當(dāng)初二學(xué)生在課上認(rèn)真聽(tīng)講后,那么對(duì)于初二數(shù)學(xué)的學(xué)習(xí)課后也是需要及時(shí)復(fù)習(xí)的。當(dāng)老師講完初二數(shù)學(xué)一節(jié)課的內(nèi)容之后,初中生一定要聽(tīng)明白,不要留下任何的疑點(diǎn),有不懂的地方要及時(shí)的問(wèn)同學(xué)或者老師。這樣在課后復(fù)習(xí)的時(shí)候才能夠自己獨(dú)立的去完成作業(yè)。每一次的初二數(shù)學(xué)課后,初中生都應(yīng)該將這節(jié)課學(xué)習(xí)的知識(shí)點(diǎn)進(jìn)行歸納和整理。

  初中數(shù)學(xué)有理數(shù)知識(shí)點(diǎn)

 。ㄒ唬┒x

  有理數(shù)為整數(shù)(正整數(shù)、0、負(fù)整數(shù))和分?jǐn)?shù)的統(tǒng)稱,正整數(shù)和正分?jǐn)?shù)合稱為正有理數(shù),負(fù)整數(shù)和負(fù)分?jǐn)?shù)合稱為負(fù)有理數(shù)。因而有理數(shù)集的`數(shù)可分為正有理數(shù)、負(fù)有理數(shù)和零。

 。ǘ┯欣頂(shù)的性質(zhì)

  (1)順序性

 。2)封閉性

 。3)稠密性

 。ㄈ┯欣頂(shù)的加法運(yùn)算法則

  1、同號(hào)兩數(shù)相加,取與加數(shù)相同的符號(hào),并把絕對(duì)值相加。

  2、異號(hào)兩數(shù)相加,若絕對(duì)值相等則互為相反數(shù)的兩數(shù)和為0;若絕對(duì)值不相等,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。

  3、互為相反數(shù)的兩數(shù)相加得0。

  4、一個(gè)數(shù)同0相加仍得這個(gè)數(shù)。

  5、互為相反數(shù)的兩個(gè)數(shù),可以先相加。

  6、符號(hào)相同的數(shù)可以先相加。

  7、分母相同的數(shù)可以先相加。

  8、幾個(gè)數(shù)相加能得整數(shù)的可以先相加。

  9、減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù),即把有理數(shù)的減法利用數(shù)的相反數(shù)變成加法進(jìn)行運(yùn)算。

  八年級(jí)數(shù)學(xué)一次函數(shù)的應(yīng)用知識(shí)點(diǎn)歸納 5

  我們稱數(shù)值變化的量為變量(variable)。

  有些量的數(shù)值是始終不變的,我們稱它們?yōu)槌A?constant)。

  在一個(gè)變化過(guò)程中,如果有兩個(gè)變量x與y,并且對(duì)于x的每一個(gè)確定的值,y都有唯一確定的值與其對(duì)應(yīng),那么我們說(shuō)x是自變量(independentvariable),y是x的函數(shù)(function)。

  如果當(dāng)x=a時(shí)y=b,那么b叫做當(dāng)自變量的值為a時(shí)的.函數(shù)值。

  形如y=kx(k是常數(shù),k≠0)的函數(shù),叫做正比例函數(shù)(proportionalfunction),其中k叫做比例系數(shù)。

  形如y=kx+b(k,b是常數(shù),k≠0)的函數(shù),叫做一次函數(shù)(linearfunction)。正比例函數(shù)是一種特殊的一次函數(shù)。

  當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。

  每個(gè)二元一次方程組都對(duì)應(yīng)兩個(gè)一次函數(shù),于是也對(duì)應(yīng)兩條直線。從“形”的角度看,解方程組相當(dāng)于確定兩條直線交點(diǎn)的坐標(biāo)。

【八年級(jí)數(shù)學(xué)一次函數(shù)的應(yīng)用知識(shí)點(diǎn)歸納】相關(guān)文章:

一次函數(shù)圖像應(yīng)用知識(shí)點(diǎn)07-19

數(shù)學(xué)知識(shí)點(diǎn)歸納06-21

數(shù)學(xué)矩形知識(shí)點(diǎn)歸納04-25

數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)歸納07-26

數(shù)學(xué)知識(shí)點(diǎn)歸納03-13

小升初數(shù)學(xué)分?jǐn)?shù)除法和比的應(yīng)用知識(shí)點(diǎn)的整理歸納10-11

小升初數(shù)學(xué)列方程解應(yīng)用題知識(shí)點(diǎn)歸納10-26

初三數(shù)學(xué)的知識(shí)點(diǎn)歸納04-20

初三數(shù)學(xué)的知識(shí)點(diǎn)歸納09-25