高二下冊數(shù)學(xué)期中考三角函數(shù)知識點
01
銳角三角函數(shù)定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。
正弦(sin)等于對邊比斜邊;sinA=a/c
余弦(cos)等于鄰邊比斜邊;cosA=b/c
正切(tan)等于對邊比鄰邊;tanA=a/b
余切(cot)等于鄰邊比對邊;cotA=b/a
正割(sec)等于斜邊比鄰邊;secA=c/b
余割(csc)等于斜邊比對邊。cscA=c/a
02
互余角的三角函數(shù)間的關(guān)系
sin(90-)=cos, cos(90-)=sin,
tan(90-)=cot, cot(90-)=tan.
03
平方關(guān)系
sin^2()+cos^2()=1
tan^2()+1=sec^2()
cot^2()+1=csc^2()
04
積的關(guān)系
sin=tancos
cos=cotsin
tan=sinsec
cot=coscsc
sec=tancsc
csc=seccot
05
倒數(shù)關(guān)系
tancot=1
sincsc=1
cossec=1
特殊角三角函數(shù)值
角度a | 0 | 30 | 45 | 60 | 90 | 120 | 180 |
sina | 0 | 1/2 | 2/2 | 3/2 | 1 | 3/2 | 0 |
cosa | 1 | 3/2 | 2/2 | 1/2 | 0 | -1/2 | -1 |
tana | 0 | 3/3 | 1 | 3 | 無窮大 | -3 | 0 |
cota | / | 3 | 1 | 3/3 | 0 | -3/3 | / |
06
銳角三角函數(shù)公式
兩角和與差的三角函數(shù):
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB ?
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
三角和的三角函數(shù):
sin(++)=sincoscos+cossincos+coscossin-sinsinsin
cos(++)=coscoscos-cossinsin-sincossin-sinsincos
tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)
輔助角公式:
Asin+Bcos=(A^2+B^2)^(1/2)sin(+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asin+Bcos=(A^2+B^2)^(1/2)cos(-t),tant=A/B
倍角公式:
sin(2)=2sincos=2/(tan+cot)
cos(2)=cos^2()-sin^2()=2cos^2()-1=1-2sin^2()
tan(2)=2tan/[1-tan^2()]
三倍角公式:
sin(3)=3sin-4sin^3()
cos(3)=4cos^3()-3cos
半角公式:
sin(/2)=((1-cos)/2)
cos(/2)=((1+cos)/2)
tan(/2)=((1-cos)/(1+cos))=sin/(1+cos)=(1-cos)/sin
降冪公式
sin^2()=(1-cos(2))/2=versin(2)/2
cos^2()=(1+cos(2))/2=covers(2)/2
tan^2()=(1-cos(2))/(1+cos(2))
萬能公式:
sin=2tan(/2)/[1+tan^2(/2)]
cos=[1-tan^2(/2)]/[1+tan^2(/2)]
tan=2tan(/2)/[1-tan^2(/2)]
積化和差公式:
sincos=(1/2)[sin(+)+sin(-)]
cossin=(1/2)[sin(+)-sin(-)]
coscos=(1/2)[cos(+)+cos(-)]
sinsin=-(1/2)[cos(+)-cos(-)]
和差化積公式:
sin+sin=2sin[(+)/2]cos[(-)/2]
sin-sin=2cos[(+)/2]sin[(-)/2]
cos+cos=2cos[(+)/2]cos[(-)/2]
cos-cos=-2sin[(+)/2]sin[(-)/2]
推導(dǎo)公式:
tan+cot=2/sin2
tan-cot=-2cot2
1+cos2=2cos^2
1-cos2=2sin^2
1+sin=(sin/2+cos/2)^2
其他:
sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)++sin[+2*(n-1)/n]=0
cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)++cos[+2*(n-1)/n]=0 以及
sin^2()+sin^2(-2/3)+sin^2(+2/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
函數(shù)名 正弦 余弦 正切 余切 正割 余割
在平面直角坐標(biāo)系xOy中,從點O引出一條射線OP,設(shè)旋轉(zhuǎn)角為,設(shè)OP=r,P點的坐標(biāo)為(x,y)有
正弦函數(shù) sin=y/r
余弦函數(shù) cos=x/r
正切函數(shù) tan=y/x
余切函數(shù) cot=x/y
正割函數(shù) sec=r/x
余割函數(shù) csc=r/y
正弦(sin):角的對邊比上斜邊
余弦(cos):角的鄰邊比上斜邊
正切(tan):角的對邊比上鄰邊
余切(cot):角的鄰邊比上對邊
正割(sec):角的斜邊比上鄰邊
余割(csc):角的斜邊比上對邊
三角函數(shù)萬能公式
萬能公式
(1)(sin)^2+(cos)^2=1
(2)1+(tan)^2=(sec)^2
(3)1+(cot)^2=(csc)^2
證明下面兩式,只需將一式,左右同除(sin)^2,第二個除(cos)^2即可
(4)對于任意非直角三角形,總有
tanA+tanB+tanC=tanAtanBtanC
證:
A+B=-C
tan(A+B)=tan(-C)
(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
得證
同樣可以得證,當(dāng)x+y+z=nZ)時,該關(guān)系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
萬能公式為:
設(shè)tan(A/2)=t
sinA=2t/(1+t^2) (A+,kZ)
tanA=2t/(1-t^2) (A+,kZ)
cosA=(1-t^2)/(1+t^2) (A+,且A+(/2) kZ)
就是說sinA.tanA.cosA都可以用tan(A/2)來表示,當(dāng)要求一串函數(shù)式最值的時候,就可以用萬能公式,推導(dǎo)成只含有一個變量的函數(shù),最值就很好求了.
三角函數(shù)關(guān)系
倒數(shù)關(guān)系
tan cot=1
sin csc=1
cos sec=1
商的.關(guān)系
sin/cos=tan=sec/csc
cos/sin=cot=csc/sec
平方關(guān)系
sin^2()+cos^2()=1
1+tan^2()=sec^2()
1+cot^2()=csc^2()
同角三角函數(shù)關(guān)系六角形記憶法
構(gòu)造以上弦、中切、下割;左正、右余、中間1的正六邊形為模型。
倒數(shù)關(guān)系
對角線上兩個函數(shù)互為倒數(shù);
商數(shù)關(guān)系
六邊形任意一頂點上的函數(shù)值等于與它相鄰的兩個頂點上函數(shù)值的乘積。(主要是兩條虛線兩端的三角函數(shù)值的乘積,下面4個也存在這種關(guān)系。)。由此,可得商數(shù)關(guān)系式。
平方關(guān)系
在帶有陰影線的三角形中,上面兩個頂點上的三角函數(shù)值的平方和等于下面頂點上的三角函數(shù)值的平方。
兩角和差公式
sin(+)=sincos+cossin
sin(-)=sincos-cossin
cos(+)=coscos-sinsin
cos(-)=coscos+sinsin
tan(+)=(tan+tan )/(1-tan tan)
tan(-)=(tan-tan)/(1+tan tan)
二倍角的正弦、余弦和正切公式
sin2=2sincos
cos2=cos^2()-sin^2()=2cos^2()-1=1-2sin^2()
tan2=2tan/(1-tan^2())
tan(1/2*)=(sin )/(1+cos )=(1-cos )/sin
半角的正弦、余弦和正切公式
sin^2(/2)=(1-cos)/2
cos^2(/2)=(1+cos)/2
tan^2(/2)=(1-cos)/(1+cos)
tan(/2)=(1cos)/sin=sin/1+cos
萬能公式
sin=2tan(/2)/(1+tan^2(/2))
cos=(1-tan^2(/2))/(1+tan^2(/2))
tan=(2tan(/2))/(1-tan^2(/2))
三倍角的正弦、余弦和正切公式
sin3=3sin-4sin^3()
cos3=4cos^3()-3cos
tan3=(3tan-tan^3())/(1-3tan^2())
誘導(dǎo)公式
誘導(dǎo)公式的本質(zhì)
所謂三角函數(shù)誘導(dǎo)公式,就是將角n(/2)的三角函數(shù)轉(zhuǎn)化為角的三角函數(shù)。
常用的誘導(dǎo)公式
公式一: 設(shè)為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 設(shè)為任意角,的三角函數(shù)值與的三角函數(shù)值之間的關(guān)系:
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
【高二下冊數(shù)學(xué)期中考三角函數(shù)知識點】相關(guān)文章:
高二數(shù)學(xué)三角函數(shù)的知識點03-08
高二下冊數(shù)學(xué)三角函數(shù)的知識點07-22
高二數(shù)學(xué)下冊《算法》知識點講解08-10
高三數(shù)學(xué)三角函數(shù)知識點07-22